1
|
Abidnejad R, Robertson D, Khakalo A, Gholami Haghighi Fard M, Seppälä A, Pasquier E, Tardy BL, Mattos BD, Rojas OJ. Gas evolution in self-extinguishing and insulative nanopolysaccharide-based hybrid foams. Carbohydr Polym 2024; 346:122646. [PMID: 39245507 DOI: 10.1016/j.carbpol.2024.122646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Lightweight, energy-efficient materials in building construction typically include polymeric and composite foams. However, these materials pose significant fire hazards due to their high combustibility and toxic gas emissions, including carbon monoxide and hydrogen cyanide. This study delves into the latter aspects by comparing hybrid systems based on nanofiber-reinforced silica-based Pickering foams with a synthetic reference (polyurethane foams). The extent and dynamics of fire retardancy and toxic gas evolution were assessed, and the results revealed the benefits of combining the thermal insulation of silica with the structural strength of biobased nanofibers, the latter of which included anionic and phosphorylated cellulose as well as chitin nanofibers. We demonstrate that the nanofiber-reinforced silica-based Pickering foams are thermal insulative and provide both fire safety and energy efficiency. The results set the basis for the practical design of hybrid foams to advance environmental sustainability goals by reducing energy consumption in built environments.
Collapse
Affiliation(s)
- Roozbeh Abidnejad
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Finland
| | - Daria Robertson
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Finland
| | - Alexey Khakalo
- VTT Technical Research Centre of Finland, Espoo, Finland
| | | | - Ari Seppälä
- Department of Mechanical Engineering, Aalto University School of Engineering, Espoo, Finland
| | - Eva Pasquier
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Finland; RISE PFI, Høgskoleringen 6b, Trondheim 7491, Norway
| | - Blaise L Tardy
- Department of Chemical and Petroleum Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Bruno D Mattos
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Finland.
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Finland; Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada; Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
2
|
D'Acierno F, Capron I. Wetting and emulsification properties of cellulose nanocrystals modified with tannic acid and alkyl cellulose derivatives. J Colloid Interface Sci 2024; 679:868-882. [PMID: 39486226 DOI: 10.1016/j.jcis.2024.10.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
HYPOTHESIS Cellulose nanocrystals (CNCs) are sustainable rod-like nanoparticles that can be used to stabilize oil-in-water emulsions and can create hydrophilic coatings. Modifying the surface of CNCs can improve emulsion properties and allow for adjustable wettability. EXPERIMENTS This study explores the improvement of Pickering emulsion properties for various oils and the adjustability of coated surfaces through the physical modification of CNCs, without chemical functionalization. Bio-based additives, including antioxidant tannic acid (TA), methyl cellulose (MC), and ethyl cellulose (EC) were used as surface modifiers. The identification of optimal formulations involved varying the weight fraction of the alkyl cellulose derivatives. FINDINGS The findings suggest that, akin to pure CNCs, Pickering emulsions stabilized by TA and/or MC-modified CNCs demonstrate comparably high stability. The introduction of MC at a low weight fraction enhances hydrophilicity, and AFM analysis reveals smooth surfaces, mitigating the potential influence of roughness. In contrast, EC-modified CNCs result in less stable emulsions but exhibit more hydrophobic surfaces. This translates to a broad spectrum of characteristics, ranging from quasi-superhydrophilic to nearly hydrophobic (with contact angles spanning from below 11° up to 68°), all controllable through a straightforward physical coating process. This facile preparation of coated CNCs provides a versatile approach to customizing the wetting and emulsification properties of nanomaterials.
Collapse
Affiliation(s)
- Francesco D'Acierno
- UR1268 Biopolymères Interactions Assemblages, INRAE, F-44316 Nantes, France.
| | - Isabelle Capron
- UR1268 Biopolymères Interactions Assemblages, INRAE, F-44316 Nantes, France.
| |
Collapse
|
3
|
Chen S, Lin P, Yuan J. Enhancing strength and toughness simultaneously: Diblock-grafted cellulose nanofiber one-component nanocomposites. Int J Biol Macromol 2024; 281:136497. [PMID: 39423975 DOI: 10.1016/j.ijbiomac.2024.136497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
To overcome the drawbacks of homopolymer-grafted CNF one-component nanocomposites, a range of diblock-grafted cellulose nanofiber (CNF), CNF-g-(polybutyl acrylate-b-polymethyl methacrylate)s were synthesized through reversible-deactivation radical polymerization (RDRP) methods. The chemical structures and ratios between the two blocks were confirmed, with surface-grafted CNF observed as submicron particles. Both thermal and thermodynamic analysis revealed two glass transition temperatures (Tg) in the diblock-grafted CNF, and phase-separated morphology was observed in the nanocomposites. The densely grafted CNF displayed island structures, while sparsely grafted samples transitioned into continuous structure. Thermodynamic analysis showed that the diblock-grafted CNF nanocomposites maintained mechanical properties at high temperatures. These nanocomposites demonstrated robust strength and toughnes, with tensile strength reaching as high as 43.7 ± 1.6 MPa and elongation at break of 70.3 ± 16.2 %. Moreover, while densely grafted CNF exhibited higher modulus and strength, whereas sparsely grafted CNF displayed behavior more reminiscent of thermoplastic elastomers, indicated by lower modulus and higher elongation.
Collapse
Affiliation(s)
- Sikai Chen
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| | - Peng Lin
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Jinglin Yuan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| |
Collapse
|
4
|
Yan S, Yuan Z, Qian H, Dai Y, Sun B, Jiang P, Guo Y, Fang W. Advanced magnetic nanospheres for oil pollutant management: Dual roles in emulsification and demulsification. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136026. [PMID: 39368361 DOI: 10.1016/j.jhazmat.2024.136026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Environmental contamination from oil spills and industrial oily wastewater poses significant ecological risks due to the persistence of harmful organic compounds. To address these challenges, magnetic composite nanospheres (CMNP@CHPEI) are systematically developed, with carboxylated Fe3O4 nanoparticles (CMNP) as the core and amphiphilic hyperbranched polyethyleneimine (CHPEI) as the decorated shell. These novel nanospheres combine the controllable size and magnetic responsiveness of "hard" magnetic nanomaterials with the structural complexity and functional diversity of "soft" hyperbranched polymers. This design allows for switching between emulsification and demulsification behaviors by regulating the size of the nanospheres and the amphiphilicity of CHPEI. Specifically, the nanospheres can form Pickering emulsions with oil droplet sizes smaller than 1 µm, maintaining stability for up to 75 days, and achieve rapid oil-water separation with demulsification efficiencies up to 99.8 %. Even after seven recycling experiments, they still retain significant interfacial activity and applicability. Interfacial characteristic experiments and molecular dynamics simulations reveal that particle size directly affects the film structures formed at oil-water interface, while the amphiphilic functional molecules determine the interaction mode of nanospheres with oil-water phases. These achievements introduce a versatile, environmentally friendly material for removing hazardous oil-based pollutants, with promising applications in oil spill remediation and industrial wastewater treatment.
Collapse
Affiliation(s)
- Shu Yan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China; Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310058, China
| | - Zhiyuan Yuan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hehe Qian
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yitong Dai
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China; Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310058, China
| | - Bin Sun
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Pengfei Jiang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China; Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310058, China.
| | - Yongsheng Guo
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China; Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310058, China.
| | - Wenjun Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China; Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
He Y, Wang C, Liu Y, Chen J, Wei Y, Chen G. Pickering emulsions stabilized by cellulose nanofibers with tunable surface properties for thermal energy storage. Int J Biol Macromol 2024; 280:136013. [PMID: 39326606 DOI: 10.1016/j.ijbiomac.2024.136013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Cellulose nanofibers (CNFs) have been widely used as a renewable emulsifier to stabilize two immiscible liquids due to their intrinsic amphiphilicity and excellent emulsifying ability. However, it remains challenging to fully understand the effects of carboxylate group content and surface charge density on the emulsifying ability of CNFs and the stability of Pickering emulsion. Herein, carboxymethylated CNFs were extracted from bleached kraft pulp using etherification reaction and high-pressure homogenization, allowing for easy surface charge density and size adjustment by changing sodium chloroacetate content and homogenization cycles. The optimizing CNFs possessed a high Zeta potential (-71.2 mV) and a suitable carboxylate group content (1.81 mmol/g), which enabled CNFs to irreversibly adsorb at the hydrophobic paraffin wax (PW) droplet surface and form interfacial steric barriers, providing large electrostatic repulsion between the PW droplets against coalescence. Thus, the CNF-stabilized PW emulsions could be stored for more than 6 months. Moreover, the phase change enthalpy of the freeze-dried emulsion is as high as 193.7 J/g, which provides the emulsion to reversibly store and release heat. This work provides a comprehensive insight into the interfacial stability mechanism of CNFs as stabilizers and facilitates the potential application in thermal energy storage.
Collapse
Affiliation(s)
- Yingying He
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chunyu Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yijun Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Hainan Key Laboratory of Storage & Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Jinxuan Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuan Wei
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Gang Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-Based Functional Materials, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
6
|
Bi W, Le M, Jia YG, Bao Z, Sun S, Wang C, Binks BP, Chen Y. Cholic Acid/Glutathione-Assembled Nanofibrils for Stabilizing Pickering Emulsion Biogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403667. [PMID: 39148219 DOI: 10.1002/smll.202403667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Achieving the delicate balance required for both emulsion and gel characteristics, while also imparting biological functionality in gelled emulsions, poses a significant challenge. Herein, Pickering emulsion biogels stabilized is reported by novel biological nanofibrils assembled from natural glutathione (GSH) and a tripod cholic acid derivative (TCA) via electrostatic interactions. GSH, composed of tripeptides with carboxyl groups, facilitates the protonation and dissolution of TCA compounds in water and the electrostatic interactions between GSH and TCA trigger nanofibrillar assembly. Fibrous nuclei initially emerge, and the formed mature nanofibrils can generate a stable hydrogel at a low solid concentration. These nanofibrils exhibit efficient emulsifying capability, enabling the preparation of stable Pickering oil-in-water (O/W) emulsion gels with adjustable phase volume ratios. The entangled nanofibrils adsorbed at the oil-water interface restrict droplet movement, imparting viscoelasticity and injectability to the emulsions. Remarkably, the biocompatible nanofibrils and stabilized emulsion gels demonstrate promising scavenging properties against reactive oxygen species (ROS). This strategy may open new scenarios for the design of advanced emulsion gel materials using natural precursors and affordable building blocks for biomedical applications.
Collapse
Affiliation(s)
- Wenzhi Bi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Mengqi Le
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yong-Guang Jia
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai, 519087, China
| | - Zeyu Bao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Shuo Sun
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Chaoyang Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull, HU6 7RX, UK
| | - Yunhua Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, andInnovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
7
|
Koshani R, Yeh SL, Pitcher ML, Sheikhi A. Antiscaling Pickering Emulsions Enabled by Amphiphilic Hairy Cellulose Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42802-42815. [PMID: 39102562 DOI: 10.1021/acsami.4c03451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Nucleation and growth of sparingly soluble salts, referred to as scaling, has posed substantial challenges in industrial processes that deal with multiphase flows, including enhanced oil recovery (EOR). During crude oil extraction/recovery, seawater is injected into oil reservoirs and yields water-in-oil (W/O) emulsions that may undergo calcium carbonate (CaCO3) scaling. Common antiscaling macromolecules and nanoparticles have adverse environmental impacts and/or are limited to functioning only in single-phase aqueous media. Here, we develop a novel antiscaling cellulose-based nanoparticle that enables scale-resistant Pickering emulsions. Cellulose fibrils are rationally nanoengineered to yield amphiphilic hairy cellulose nanocrystals (AmHCNC), bearing hydrophilic dicarboxylate groups and hydrophobic alkyl chains on disordered cellulose chains (hairs) protruding from nanocrystal ends. The unique chemical and structural properties of AmHCNC render them the first dual functional antiscaling and emulsion stabilizing nanoparticle. AmHCNC stabilize W/O Pickering emulsions at a concentration of 1.00 wt % for 1 week while inhibiting CaCO3 scale formation up to 70% by mass at a supersaturation degree of ∼101 compared with the synthetic surfactant Span 80. To the best of our knowledge, this study presents the first biopolymer-based solution for the long-lasting scaling challenge in multiphase media, which may set the stage for developing sustainable scale-resistant multiphase flows in a broad spectrum of industrial sectors.
Collapse
Affiliation(s)
- Roya Koshani
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shang-Lin Yeh
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mica L Pitcher
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
8
|
Li S, van der Ven LGJ, Garcia SJ, Esteves ACC. Healable Supracolloidal Nanocomposite Water-Borne Coatings. ACS APPLIED POLYMER MATERIALS 2024; 6:8830-8841. [PMID: 39144275 PMCID: PMC11320382 DOI: 10.1021/acsapm.4c00946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024]
Abstract
Water-borne coatings often contain nanofillers to enhance their mechanical or optical properties. The aggregation of these fillers may, however, lead to undesired effects such as brittle and opaque coatings, reducing their performance and lifetime. By controlling the distribution and structural arrangement of the nanofillers in the coatings and inserting reversible chemical bonds, both the elasticity and strength of the coatings may be effectively improved, while healing properties, via the reversible chemistry, extend the coating's lifetime. Aqueous dispersions of polymer-core/silica-corona supracolloidal particles were used to prepare water-borne coatings. Polymer and silica nanoparticles were prefunctionalized with thiol/disulfide groups during the supracolloid assembly. Disulfide bridges were further established between a cross-linker and the supracolloids during drying and coating formation. The supracolloidal nanocomposite coatings were submitted to intentional (physical) damages, i.e., blunt and sharp surface scratches or cut through into two pieces, and subsequently UV irradiated to induce the recovery of the damage(s). The viscoelasticity and healing properties of the coatings were examined by dynamic, static, and surface mechanical analyses. The nanocomposite coatings showed a great extent of interfacial restoration of cut damage and surface scratches. The healing properties are strongly related to the coating's viscoelasticity and interfacial (re)activation of the disulfide bridges. Nanocomposite coatings with silica concentrations below their critical volume fraction show higher in situ healing efficiency, as compared to coatings with higher silica concentration. This work provides insights into the control of nanofillers distribution in water-borne coatings and strategies to increase the coating lifetime via mechanical damage recovery.
Collapse
Affiliation(s)
- Siyu Li
- Laboratory
of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Leendert G. J. van der Ven
- Laboratory
of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Santiago J. Garcia
- Aerospace
Structures and Materials Department, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg1, Delft 2629 HS, The Netherlands
| | - A. Catarina C. Esteves
- Laboratory
of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
9
|
Tang M, Zhong H, Lu X, Yang R, Lee CKW, Pan Y, Chen Y, Li MG. In situ Electrical Impedance Tomography for Visualizing Water Transportation in Hygroscopic Aerogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402676. [PMID: 38742435 PMCID: PMC11304325 DOI: 10.1002/advs.202402676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/01/2024] [Indexed: 05/16/2024]
Abstract
The global water crisis demands immediate attention, and atmospheric water harvesting (AWH) provides a viable alternative. However, studying the real-time subtle relationship between water absorption, diffusion, and internal structure for hygroscopic materials is challenging. Herein, a dynamic visualization technique is proposed that utilizes an in situ electrical impedance tomography (EIT) system and a precise reconstruction algorithm to achieve real-time monitoring of the water sorption process within aerogels from an internal microstructural perspective. These results can be inferred that composites' pore sizes affecting the kinetics of their moisture absorption. In addition, the diffusion path of moisture absorption and the distribution of stored moisture inside aerogels exhibit intrinsic self-selective behavior, where the fiber skeleton of the aerogel plays a crucial role. In summary, this work proposes a generic EIT-based technique for the in situ and dynamic monitoring of the hygroscopic process, pointing to an entirely new approach regarding research on AWH materials.
Collapse
Affiliation(s)
- Miao Tang
- Center for Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongSAR 999077China
| | - Haosong Zhong
- Center for Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongSAR 999077China
| | - Xupeng Lu
- Center for Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongSAR 999077China
| | - Rongliang Yang
- Center for Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongSAR 999077China
| | - Connie Kong Wai Lee
- Center for Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongSAR 999077China
| | - Yexin Pan
- Center for Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongSAR 999077China
| | - Yi Chen
- Center for Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongSAR 999077China
| | - Mitch Guijun Li
- Center for Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongSAR 999077China
| |
Collapse
|
10
|
Han W, Zhang R, Liu S, Zhang T, Yao X, Cao Y, Li J, Liu X, Li B. Recent Advances in Whiskers: Properties and Clinical Applications in Dentistry. Int J Nanomedicine 2024; 19:7071-7097. [PMID: 39045343 PMCID: PMC11265390 DOI: 10.2147/ijn.s471546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/22/2024] [Indexed: 07/25/2024] Open
Abstract
Whiskers are nanoscale, high-strength fibrous crystals with a wide range of potential applications in dentistry owing to their unique mechanical, thermal, electrical, and biological properties. They possess high strength, a high modulus of elasticity and good biocompatibility. Hence, adding these crystals to dental composites as reinforcement can considerably improve the mechanical properties and durability of restorations. Additionally, whiskers are involved in inducing the value-added differentiation of osteoblasts, odontogenic osteocytes, and pulp stem cells, and promoting the regeneration of alveolar bone, periodontal tissue, and pulp tissue. They can also enhance the mucosal barrier function, inhibit the proliferation of tumor cells, control inflammation, and aid in cancer prevention. This review comprehensively summarizes the classification, properties, growth mechanisms and preparation methods of whiskers and focuses on their application in dentistry. Due to their unique physicochemical properties, excellent biological properties, and nanoscale characteristics, whiskers show great potential for application in bone, periodontal, and pulp tissue regeneration. Additionally, they can be used to prevent and treat oral cancer and improve medical devices, thus making them a promising new material in dentistry.
Collapse
Affiliation(s)
- Wenze Han
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Ran Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Shuzhi Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Tong Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Xuemin Yao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Yuxin Cao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Jiadi Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Xiaoming Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| |
Collapse
|
11
|
Wu C, Li J, Ding JW, Jiang H, Su HF, Li DQ. Maleic anhydride-functionalized cellulose nanocrystal-stabilized high internal phase Pickering emulsion for pesticide delivery. Int J Biol Macromol 2024; 273:132971. [PMID: 38880442 DOI: 10.1016/j.ijbiomac.2024.132971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
The salt-responsiveness of Pickering emulsions has significantly influenced their applications due to the large amount of salt on the surface of plant leaves. The present study provided a maleic anhydride-functionalized cellulose nanocrystal-stabilized high internal phase Pickering emulsion (MACNCs-HIPPEs) that was stable to high-concentration salt and used for pesticide delivery. The stability of MACNCs-HIPPEs was investigated by adjusting the oil-phase volume fraction (φ), the MACNCs concentration, NaCl dosages, and the rheological properties. The high internal phase Pickering emulsion was obtained at φ of 0.8 and MACNCs concentration of 2wt% and showed excellent salt stability (NaCl, 1200 mM) and significant storage stability (60 days). The sustained release of imidacloprid (IMI) from imidacloprid-loaded MACNCs-HIPPEs (IMI@MACNCs-HIPPEs) showed a positive correlation to the temperature (15°C, 25°C, 35°C), indicating clear thermo-responsiveness of the prepared pesticide formulation. The test of spread and retention of IMI@MACNCs-HIPPEs on the leaf surface showed a significant advantage compared with the commercial IMI water dispersible granules (CG). All the advantages mentioned above showed the excellent potential of the MACNCs-HIPPEs in delivering lipophilic pesticides.
Collapse
Affiliation(s)
- Chao Wu
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| | - Jun Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China.
| | - Jia-Wei Ding
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| | - Hui Jiang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| | - Hui-Fen Su
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| | - De-Qiang Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China.
| |
Collapse
|
12
|
Pandita G, de Souza CK, Gonçalves MJ, Jasińska JM, Jamróz E, Roy S. Recent progress on Pickering emulsion stabilized essential oil added biopolymer-based film for food packaging applications: A review. Int J Biol Macromol 2024; 269:132067. [PMID: 38710257 DOI: 10.1016/j.ijbiomac.2024.132067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Nowadays food safety and protection are a growing concern for food producers and food industry. The stability of food-grade materials is key in food processing and shelf life. Pickering emulsions (PEs) have gained significant attention in food regimes owing to their stability enhancement of food specimens. PE can be developed by high and low-energy methods. The use of PE in the food sector is completely safe as it uses solid biodegradable particles to stabilize the oil in water and it also acts as an excellent carrier of essential oils (EOs). EOs are useful functional ingredients, the inclusion of EOs in the packaging film or coating formulation significantly helps in the improvement of the shelf life of the packed food item. The highly volatile nature, limited solubility and ease of oxidation in light of EOs restricts their direct use in packaging. In this context, the use of PEs of EOs is suitable to overcome most of the challenges, Therefore, recently there have been many papers published on PEs of EOs including active packaging film and coatings and the obtained results are promising. The current review amalgamates these studies to inform about the chemistry of PEs followed by types of stabilizers, factors affecting the stability and different high and low-energy manufacturing methods. Finally, the review summarizes the recent advancement in PEs-added packaging film and their application in the enhancement of shelf life of food.
Collapse
Affiliation(s)
- Ghumika Pandita
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | | | | | - Joanna Maria Jasińska
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| | - Ewelina Jamróz
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland; Department of Product Packaging, Cracow University of Economics, Rakowicka 27, PL-31-510 Kraków, Poland
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
13
|
Samyn P, Cosemans P. Nanocellulose Grades with Different Morphologies and Surface Modification as Additives for Waterborne Epoxy Coatings. Polymers (Basel) 2024; 16:1095. [PMID: 38675014 PMCID: PMC11054773 DOI: 10.3390/polym16081095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
While adding different micro- and nanocellulose types into epoxy coating formulations with waterborne phenalkamine crosslinker, effects on processing conditions and coating performance were systematically investigated. The variations in viscosity, thermal and thermomechanical properties, mechanical behavior, abrasive wear, water contact angles, and coating morphologies were evaluated. The selected additives include microcrystalline cellulose (MCC) at 1 to 10 wt.% and cellulose nanocrystals (CNC), cellulose nanofibers (CNF), cellulose microfibers (CMF), and hydrophobically modified cellulose microfibers (mCMF) at 0.1 to 1.5 wt.%. The viscosity profiles are determined by the inherent additive characteristics with strong shear thinning effects for epoxy/CNF, while the epoxy/mCMF provides lower viscosity and better matrix compatibility owing to the lubrication of encapsulated wax. The crosslinking of epoxy/CNF is favored and postponed for epoxy/(CNC, CMF, mCMF), as the stronger interactions between epoxy and CNF are confirmed by an increase in the glass transition temperature and reduction in the dampening factor. The mechanical properties indicate the highest hardness and impact strength for epoxy/CNF resulting in the lowest abrasion wear rates, but ductility enhances and wear rates mostly reduce for epoxy/mCMF together with hydrophobic protection. In addition, the mechanical reinforcement owing to the specific organization of a nanocellulose network at percolation threshold concentrations of 0.75 wt.% is confirmed by microscopic analysis: the latter results in a 2.6 °C (CNF) or 1.6 °C (CNC) increase in the glass transition temperature, 50% (CNF) or 20% (CNC) increase in the E modulus, 37% (CNF) or 32% (CNC) increase in hardness, and 58% (CNF) or 33% (CNC) lower abrasive wear compared to neat epoxy, while higher concentrations up to 1.5 wt.% mCMF can be added. This research significantly demonstrates that nanocellulose is directly compatible with a waterborne phenalkamine crosslinker and actively contributes to the crosslinking of waterborne epoxy coatings, changing the intrinsic glass transition temperatures and hardness properties, to which mechanical coating performance directly relates.
Collapse
Affiliation(s)
- Pieter Samyn
- Department of Innovations in Circular Economy and Renewable Materials, SIRRIS, 3001 Leuven, Belgium;
| | | |
Collapse
|
14
|
Kim H, Dutta SD, Randhawa A, Patil TV, Ganguly K, Acharya R, Lee J, Park H, Lim KT. Recent advances and biomedical application of 3D printed nanocellulose-based adhesive hydrogels: A review. Int J Biol Macromol 2024; 264:130732. [PMID: 38479658 DOI: 10.1016/j.ijbiomac.2024.130732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Nanocellulose-based tissue adhesives show promise for achieving rapid hemostasis and effective wound healing. Conventional methods, such as sutures and staples, have limitations, prompting the exploration of bioadhesives for direct wound adhesion and minimal tissue damage. Nanocellulose, a hydrolysis product of cellulose, exhibits superior biocompatibility and multifunctional properties, gaining interest as a base material for bioadhesive development. This study explores the potential of nanocellulose-based adhesives for hemostasis and wound healing using 3D printing techniques. Nanocellulose enables the creation of biodegradable adhesives with minimal adverse effects and opens avenues for advanced wound healing and complex tissue regeneration, such as skin, blood vessels, lungs, cartilage, and muscle. This study reviews recent trends in various nanocellulose-based 3D printed hydrogel patches for tissue engineering applications. The review also introduces various types of nanocellulose and their synthesis, surface modification, and bioadhesive fabrication techniques via 3D printing for smart wound healing.
Collapse
Affiliation(s)
- Hojin Kim
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea.
| |
Collapse
|
15
|
Zhang L, Li X, Xu X, Song L, Bi A, Wu C, Ma Y, Du M. Semisolid medium internal phase emulsions stabilized by dendritic-like mushroom cellulose nanofibrils: Concentration effect and stabilization mechanism. Food Chem 2024; 436:137693. [PMID: 37832422 DOI: 10.1016/j.foodchem.2023.137693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Emulsions with reduced fat and natural stabilizers are currently prevalent. Herein, semisolid emulsions with an oil phase of 50 % were successfully prepared using cellulose nanofibrils from mushroom stipes as stabilizers. Cellulose nanofibrils obtained by high-pressure homogenization were dendritic-like and possessed a contact angle of 70.50 ± 0.41°. The rheological properties and stability of emulsions increased significantly as nanocellulose concentrations increased from 5 to 20 mg/mL, while nanocellulose at 25-30 mg/mL significantly reduced the storage stability and anti-lipid oxidation ability of emulsions. The microstructure of semisolid emulsions demonstrated that nanocellulose fibers at 20 mg/mL could stabilize emulsions by forming compact interfacial films around droplets and creating intensive bridging networks between neighboring droplets, while nanofibers at concentrations over 20 mg/mL easily clustered in the aqueous phase, making the droplets more susceptible to aggregation and demulsification. The results demonstrate that cellulose nanofibrils from mushroom byproducts have the potential to stabilize semisolid food-grade emulsions.
Collapse
Affiliation(s)
- Ling Zhang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiang Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Xianbing Xu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Liang Song
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Anqi Bi
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chao Wu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yunjiao Ma
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
16
|
Huang L, Xu C, Gao W, Rojas OJ, Jiao W, Guo S, Li J. Formulation and stabilization of high internal phase emulsions via mechanical cellulose nanofibrils/ethyl lauroyl arginate complexes. Carbohydr Polym 2024; 324:121541. [PMID: 37985062 DOI: 10.1016/j.carbpol.2023.121541] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Motivated by the quest for biocompatibility, we report on oil-in-water (O/W), high-internal-phase Pickering emulsions stabilized via complexes of mechanical cellulose nanofibrils (CNF) and food-grade cationic surfactant ethyl lauroyl arginate (LAE). The complexation of oppositely charged CNF and LAE can be held together by electrostatic interaction. Their effect on suspensions electrostatic stabilization, heteroaggregation state, and emulsifying ability was studied and related to properties of resultant interfacial tension between oil and water and 3D printing of emulsions. The Pickering system with adjustable droplet diameter and stability against creaming and oiling-off during storage was achieved resting with LAE loading. Complexes formed by LAE adjustment act as Pickering stabilizers and three-dimensional networks in emulsion system, forming a scaffold with elastoplastic rheological properties that flows above critical stress while, without any additional treatment, exhibiting the required self-standing properties for 3D printing. By understanding the properties of CNF/LAE behavior in bulk and on interfaces, printing edible functional foods of CNF/LAE-based emulgel inks has been demonstrated to enable regulation of oil release.
Collapse
Affiliation(s)
- Luyao Huang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chuan Xu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenhua Gao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Wenjuan Jiao
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Shasha Guo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jun Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
17
|
Heng W, Weihua L, Bachagha K. Review on design strategies and applications of flexible cellulose‑carbon nanotube functional composites. Carbohydr Polym 2023; 321:121306. [PMID: 37739536 DOI: 10.1016/j.carbpol.2023.121306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 08/14/2023] [Indexed: 09/24/2023]
Abstract
Combining the excellent biocompatibility and mechanical flexibility of cellulose with the outstanding electrical, mechanical, optical and stability properties of carbon nanotubes (CNTs), cellulose-CNT composites have been extensively studied and applied to many flexible functional materials. In this review, we present advances in structural design strategies and various applications of cellulose-CNT composites. Firstly, the structural characteristics and corresponding treatments of cellulose and CNTs are analyzed, as are the potential interactions between the two to facilitate the formation of cellulose-CNT composites. Then, the design strategies and processing techniques of cellulose-CNT composites are discussed from the perspectives of cellulose fibers at the macroscopic scale (natural cotton, hemp, and other fibers; recycled cellulose fibers); nanocellulose at the micron scale (nanofibers, nanocrystals, etc.); and macromolecular chains at the molecular scale (cellulose solutions). Further, the applications of cellulose-CNT composites in various fields, such as flexible energy harvesting and storage devices, strain and humidity sensors, electrothermal devices, magnetic shielding, and photothermal conversion, are introduced. This review will help readers understand the design strategies of cellulose-CNT composites and develop potential high-performance applications.
Collapse
Affiliation(s)
- Wei Heng
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Li Weihua
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, Shandong, PR China.
| | - Kareem Bachagha
- Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
18
|
Tan R, Sun Q, Yan Y, Chen T, Wang Y, Li J, Guo X, Fan Z, Zhang Y, Chen L, Wu G, Wu N. Co-production of pigment and high value-added bacterial nanocellulose from Suaeda salsa biomass with improved efficiency of enzymatic saccharification and fermentation. Front Bioeng Biotechnol 2023; 11:1307674. [PMID: 38098970 PMCID: PMC10720727 DOI: 10.3389/fbioe.2023.1307674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
This study evaluated the co-production of pigment and bacterial nanocellulose (BNC) from S. salsa biomass. The extraction of the beet red pigment reduced the salts and flavonoids contents by 82.7%-100%, promoting the efficiencies of enzymatic saccharification of the biomass and the fermentation of BNC from the hydrolysate. SEM analysis revealed that the extraction process disrupted the lignocellulosic fiber structure, and the chemical analysis revealed the lessened cellulase inhibitors, consequently facilitating enzymatic saccharification for 10.4 times. BNC producing strains were found to be hyper-sensitive to NaCl stress, produced up to 400.4% more BNC from the hydrolysate after the extraction. The fermentation results of BNC indicated that the LDU-A strain yielded 2.116 g/L and 0.539 g/L in ES-M and NES-M, respectively. In comparison to the control, the yield in ES-M increased by approximately 20.0%, while the enhancement in NES-M was more significant, reaching 292.6%. After conducting a comprehensive characterization of BNC derived from S. salsa through Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Thermogravimetric Analysis (TGA), the average fiber diameter distribution of these four BNC materials ranges from 22.23 to 33.03 nanometers, with a crystallinity range of 77%-90%. Additionally, they exhibit a consistent trend during the thermal degradation process, further emphasizing their stability in high-temperature environments and similar thermal properties. Our study found an efficient co-production approach of pigment and BNC from S. salsa biomass. Pigment extraction made biomass more physically and chemically digestible to cellulase, and significantly improved BNC productivity and quality.
Collapse
Affiliation(s)
- Ran Tan
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Qiwei Sun
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Yiran Yan
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Tao Chen
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Yifei Wang
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Jiakun Li
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Xiaohong Guo
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Zuoqing Fan
- Shandong Institute of Sericulture, Yantai, China
| | - Yao Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, China
| | - Linxu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Guochao Wu
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai, China
| | - Nan Wu
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| |
Collapse
|
19
|
Sayfutdinova AR, Cherednichenko KA, Rakitina MA, Dubinich VN, Bardina KA, Rubtsova MI, Petrova DA, Vinokurov VA, Voronin DV. Natural Fibrous Materials Based on Fungal Mycelium Hyphae as Porous Supports for Shape-Stable Phase-Change Composites. Polymers (Basel) 2023; 15:4504. [PMID: 38231929 PMCID: PMC10708136 DOI: 10.3390/polym15234504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 01/19/2024] Open
Abstract
Adsorption of organic phase-change materials (PCMs) by the porous matrix of microfibrillar cellulose (MFC) is a simple and versatile way to prepare shape-stable phase-change composites, which are promising as sustainable thermoregulating additives to construction materials. However, due to MFC inherent morphology, the resulting composites have relatively low poured density that complicates their introduction in sufficient amounts, for instance, into mortar mixes. Unlike MFC, fungal mycelium has, by an order, less fibrils thickness and, thus, possesses significantly higher poured density. Herein, we studied the feasibility of fungal mycelium-based matrices as alternative biopolymeric porous supports for preparation of sustainable and shape-stable phase-change composites. Two methods were employed to prepare the porous mycelium-based supports. The first one was the solid-state fermentation, which resulted in partial biotransformation of MFCs to mycelium hyphae, while the second one was the liquid-state surface fermentation, used to cultivate the reference matrix of Trametes hirsuta hyphae. The phase-change composites were prepared by adsorption of model organic PCMs on porous biopolymer matrices. The mass ratio of support/PCM was 40/60 wt%. The composites were studied with respect to their structure, composition, poured density, latent heat storage properties, and thermal and shape stability. The employment of the partially transformed to mycelium-hyphae MFC fibers was found to be a suitable way to prepare phase-change composites with improved poured density while preserving a reasonable latent heat capacity and shape stability as compared to the MFC/PCM composites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Denis V. Voronin
- Department of Physical and Colloid Chemistry, National University of Oil and Gas “Gubkin University”, Moscow 119991, Russia
| |
Collapse
|
20
|
Ji C, Wang Y. Nanocellulose-stabilized Pickering emulsions: Fabrication, stabilization, and food applications. Adv Colloid Interface Sci 2023; 318:102970. [PMID: 37523998 DOI: 10.1016/j.cis.2023.102970] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Pickering emulsions have been widely studied due to their good stability and potential applications. Nanocellulose including cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), and bacterial cellulose nanofibrils (BCNFs) has emerged as sustainable stabilizers/emulsifiers in food-related Pickering emulsions due to their favorable properties such as renewability, low toxicity, amphiphilicity, biocompatibility, and high aspect ratio. Nanocellulose can be widely obtained from different sources and extraction methods and can effectively stabilize Pickering emulsions via the irreversible adsorption onto oil-water interface. The synergistic effects of nanocellulose and other substances can further enhance the interfacial networks. The nanocellulose-based Pickering emulsions have potential food-related applications in delivery systems, food packaging materials, and fat substitutes. Nanocellulose-based Pickering emulsions as 3D printing inks exhibit good injectable and gelling properties and are promising to print spatial architectures. In the future, the utilization of biomass waste and the development of "green" and facile extraction methods for nanocellulose production deserve more attention. The stability of nanocellulose-based Pickering emulsions in multi-component food systems and at various conditions is an utmost challenge. Moreover, the case-by-case studies on the potential safety issues of nanocellulose-based Pickering emulsions need to be carried out with the standardized assessment procedures. In this review, we highlight key fundamental work and recent reports on nanocellulose-based Pickering emulsion systems. The sources and extraction of nanocellulose and the fabrication of nanocellulose-based Pickering emulsions are briefly summarized. Furthermore, the synergistic stability and food-related applications of nanocellulose-stabilized Pickering emulsions are spotlighted.
Collapse
Affiliation(s)
- Chuye Ji
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
21
|
Gao J, Qiu Y, Chen F, Zhang L, Wei W, An X, Zhu Q. Pomelo peel derived nanocellulose as Pickering stabilizers: Fabrication of Pickering emulsions and their potential as sustained-release delivery systems for lycopene. Food Chem 2023; 415:135742. [PMID: 36848833 DOI: 10.1016/j.foodchem.2023.135742] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Two kinds of nanocellulose (cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) were synthesized from pomelo peels via a facile approach of TEMPO oxidation and sulfuric acid treatment respectively. The FTIR results illustrated that hemicelluloses and lignin were completely removed from the pomelo peel cellulose substrate. The obtained CNFs and CNCs possessed a uniform morphology and nanoscale particle size. The stability of CNF-based Pickering emulsions was higher than that of emulsions stabilized with CNCs, due to the formation of gel structure induced by the CNFs' longer fibrils. Increased oil fractions enhanced the viscoelasticity of CNF-based Pickering emulsions. The in vitro digestion results suggested that increased oil fractions decreased the lipolysis degree, as a result of the larger droplet size and higher viscoelasticity of emulsion. The release of lycopene showed a trend similar to that of FFA release, suggesting that higher oil fractions were beneficial for controlling lycopene release during gastrointestinal digestion.
Collapse
Affiliation(s)
- Jianbiao Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yihua Qiu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fu Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lujia Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Wei Wei
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xingye An
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Qiaomei Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, PR China.
| |
Collapse
|
22
|
Li Z, Yu D. Controlled ibuprofen release from Pickering emulsions stabilized by pH-responsive cellulose-based nanofibrils. Int J Biol Macromol 2023; 242:124942. [PMID: 37210059 DOI: 10.1016/j.ijbiomac.2023.124942] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Pickering emulsions represent a promising avenue in the field of controlled drug delivery systems. Recently, cellulose nanofibers (CNFs) and chitosan nanofibers (ChNFs) have gained interest as eco-friendly stabilizers for Pickering emulsions, yet their application in pH-responsive drug delivery systems remains unexplored. However, the potential of these biopolymer complexes in formulating stable, pH-responsive emulsions for controlled drug release is of significant interest. Here, we show the development of a highly stable, pH-responsive fish oil-in-water Pickering emulsion stabilized by ChNF/CNF complexes, with optimal stability achieved at a 0.2 wt% ChNF concentration and an average emulsion particle size of approximately 4 μm. Our results demonstrate long-term stability (16 days of storage) for ChNF/CNF-stabilized emulsions, with the interfacial membrane's pH modulation facilitating controlled, sustained ibuprofen (IBU) release. Furthermore, we observed a remarkable release of approximately 95 % of the embedded IBU within the pH range of 5-9, while the drug loading and encapsulation efficiency of the drug-loaded microspheres reached their peak at a 1 % IBU dosage, with values of 1 % and 87 %, respectively. This study highlights the potential of using ChNF/CNF complexes in designing versatile, stable, and entirely renewable Pickering systems for controlled drug delivery, with potential applications in food and eco-friendly products.
Collapse
Affiliation(s)
- Zhuo Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Dehai Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China; Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Huatai Group Corp. Ltd., Dongying, Shandong Province 257335, China.
| |
Collapse
|
23
|
Ganjeh-Anzabi P, Jahandideh H, Kedzior SA, Trifkovic M. Precise quantification of nanoparticle surface free energy via colloidal probe atomic force microscopy. J Colloid Interface Sci 2023; 641:404-413. [PMID: 36940596 DOI: 10.1016/j.jcis.2023.03.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/01/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Interfacial interactions of nanoparticles (NPs) in colloids are greatly influenced by the NP surface free energy (SFE). Due to the intrinsic physical and chemical heterogeneity of the NP surface, measuring SFE is nontrivial. The use of direct force measurement methods, such as colloidal probe atomic force microscopy (CP-AFM), have been proven to be effective for the determination of SFE on relatively smooth surfaces, but fail to provide reliable measurements for rough surfaces generated by NPs. Here, we developed a reliable approach to determine the SFE of NPs by adopting Persson's contact theory to include the effect of surface roughness on the measurements in CP-AFM experiments. We obtain the SFE for a range of materials varying in surface roughness and surface chemistry. The reliability of the proposed method is verified by the SFE determination of polystyrene. Subsequently, the SFE of bare and functionalized silica, graphene oxide, and reduced graphene oxide were quantified and validity of the results was demonstrated. The presented method unlocks the potential of CP-AFM as a robust and reliable method of the SFE determination of nanoparticles with a heterogeneous surface, which is challenging to obtain with conventionally implemented experimental techniques.
Collapse
Affiliation(s)
- Pejman Ganjeh-Anzabi
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| | - Heidi Jahandideh
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| | - Stephanie A Kedzior
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| | - Milana Trifkovic
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
24
|
Solhi L, Guccini V, Heise K, Solala I, Niinivaara E, Xu W, Mihhels K, Kröger M, Meng Z, Wohlert J, Tao H, Cranston ED, Kontturi E. Understanding Nanocellulose-Water Interactions: Turning a Detriment into an Asset. Chem Rev 2023; 123:1925-2015. [PMID: 36724185 PMCID: PMC9999435 DOI: 10.1021/acs.chemrev.2c00611] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modern technology has enabled the isolation of nanocellulose from plant-based fibers, and the current trend focuses on utilizing nanocellulose in a broad range of sustainable materials applications. Water is generally seen as a detrimental component when in contact with nanocellulose-based materials, just like it is harmful for traditional cellulosic materials such as paper or cardboard. However, water is an integral component in plants, and many applications of nanocellulose already accept the presence of water or make use of it. This review gives a comprehensive account of nanocellulose-water interactions and their repercussions in all key areas of contemporary research: fundamental physical chemistry, chemical modification of nanocellulose, materials applications, and analytical methods to map the water interactions and the effect of water on a nanocellulose matrix.
Collapse
Affiliation(s)
- Laleh Solhi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Valentina Guccini
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Katja Heise
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Iina Solala
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Elina Niinivaara
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - Wenyang Xu
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Laboratory of Natural Materials Technology, Åbo Akademi University, TurkuFI-20500, Finland
| | - Karl Mihhels
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Marcel Kröger
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Zhuojun Meng
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Jakob Wohlert
- Wallenberg Wood Science Centre (WWSC), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044Stockholm, Sweden
| | - Han Tao
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| |
Collapse
|
25
|
Prabsangob N. Plant-based cellulose nanomaterials for food products with lowered energy uptake and improved nutritional value-a review. NFS JOURNAL 2023. [DOI: 10.1016/j.nfs.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
26
|
Silva CEP, Bernardes JS, Loh W. Stabilizing both oil droplets and titanium dioxide nanoparticles in aqueous dispersion with nanofibrillated cellulose. Carbohydr Polym 2023; 302:120354. [PMID: 36604044 DOI: 10.1016/j.carbpol.2022.120354] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/14/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Nanocellulose is a well-known stabilizer for several colloidal dispersions, including emulsions and solid nanoparticles, replacing surfactants, polymers, and other additives, and therefore providing more minimalistic and eco-friendly formulations. However, could this ability be extended to stabilize oil droplets and inorganic nanoparticles simultaneously in the same colloidal system? This work aimed to answer this question. We evaluated both cationic and anionic nanofibrillated celluloses to stabilize both titanium dioxide nanoparticles and oil droplets. The resulting suspensions held their macroscopic stability for up to 2 months, regardless of pH or surface charge. Cryo-TEM images revealed a complex network formation involving nanofibers and TiO2 nanoparticles, which agrees with the high viscosity values and gel-like behavior found in rheology measurements. We propose that the formation of this network is responsible for the simultaneous stabilization of oil droplets and TiO2 nanoparticles, and that this may be used as a formulation tool for other complex systems.
Collapse
Affiliation(s)
- Caroline E P Silva
- Institute of Chemistry, University of Campinas (UNICAMP), Caixa Postal 6154, 13083-970 Campinas, SP, Brazil; Brazilian Nanotechnology National Laboratory (LNNano), CNPEM, 13083-970 Campinas, SP, Brazil
| | - Juliana S Bernardes
- Brazilian Nanotechnology National Laboratory (LNNano), CNPEM, 13083-970 Campinas, SP, Brazil; Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP 09210-580, Brazil.
| | - Watson Loh
- Institute of Chemistry, University of Campinas (UNICAMP), Caixa Postal 6154, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
27
|
Jiang W, Xiang W, Xu L, Yuan D, Gao Z, Hu B, Li Y, Wu Y. Fabrication, characterization, and emulsifying properties of hexadecyltrimethylammonium bromide complexed alginate microgel. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
28
|
Biopolymer-based emulsions for the stabilization of Trichoderma atrobrunneum conidia for biological control. Appl Microbiol Biotechnol 2023; 107:1465-1476. [PMID: 36683057 PMCID: PMC9898383 DOI: 10.1007/s00253-023-12381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/24/2023]
Abstract
Trichoderma spp. are ubiquitous soil-borne fungi that are widely used in biological control to promote and regulate healthy plant growth, as well as protect against plant pathogens. However, as with many biological materials, the relative instability of Trichoderma propagules limits its practical use in industrial applications. Therefore, there has been significant research interest in developing novel formulations with various carrier substances that are compatible with these fungal propagules and can enhance the shelf-life and overall efficacy of the Trichoderma. To this end, herein, we investigate the use of a variety of biopolymers and nanoparticles for the stabilization of Trichoderma atrobrunneum T720 conidia for biological control. The best-performing agents-agar and cellulose nanocrystals (CNC)-were then used in the preparation of oil-in-water emulsions to encapsulate conidia of T720. Emulsion properties including oil type, oil:water ratio, and biopolymer/particle concentration were investigated with respect to emulsion stability, droplet size, and viability of T720 conidia over time. Overall, agar-based formulations yielded highly stable emulsions with small droplet sizes, showing no evidence of drastic creaming, or phase separation after 1 month of storage. Moreover, agar-based formulations were able to maintain ~ 100% conidial viability of T720 after 3 months of storage, and over 70% viability after 6 months. We anticipate that the results demonstrated herein will lead to a new generation of significantly improved formulations for practical biological control applications. KEY POINTS: • Various biopolymers were evaluated for improving the stability of Trichoderma conidia • Oil in water emulsions was prepared using cellulose nanocrystals and agar as interface stabilizers • Agar-based emulsions showed ~ 100% viability for encapsulated conidia after 3 months of storage.
Collapse
|
29
|
Tavassoli M, Khezerlou A, Bangar SP, Bakhshizadeh M, Haghi PB, Moghaddam TN, Ehsani A. Functionality developments of Pickering emulsion in food packaging: Principles, applications, and future perspectives. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
Chen S, Li D, Song F, Wang XL, Wang YZ. Thermoformable and transparent one-component nanocomposites based on surface grafted cellulose nanofiber. Int J Biol Macromol 2022; 223:213-222. [PMID: 36347373 DOI: 10.1016/j.ijbiomac.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
Abstract
One-component nanocomposites based on poly(methyl methacrylate)(PMMA) and polystyrene (PS) grafted cellulose nanofiber (CNF) with high polymer graft percentage were fabricated. At relative ambient conditions, less active vinyl monomer, MMA, and styrene were grafted from CNF via surface-initiated Cu(0)-mediated reversible deactivation radical polymerizations (RDRP), and PMMA/PS grafted CNFs could reach a graft percentage as high as 7550 % and 3530 %, respectively. The one-component composite films were manufactured by simple hot-pressing subsequentially. Optical transparency, thermal stability, and glass transition temperature of one-component nanocomposites were enhanced dramatically in contrast with the bicomponent nanocomposite. The uniform fracture surface confirmed the uniform dispersity by morphological observation. Mechanical tests indicated that break elongation and tensile strength ascended notably, and tensile modulus slightly descended as the graft percentage increased for PS and PMMA grafted CNF one-component composite. It was concluded that for glassy graft chains, obtaining one-component nanocomposites with high enough graft chain length was essential to achieve moderated mechanical performance without compromising optical properties and thermal manufacturing ability.
Collapse
Affiliation(s)
- Sikai Chen
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Dong Li
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fei Song
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiu-Li Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yu-Zhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
31
|
Voronin D, Mendgaziev R, Sayfutdinova A, Kugai M, Rubtsova M, Cherednichenko K, Shchukin D, Vinokurov V. Phase-Change Microcapsules with a Stable Polyurethane Shell through the Direct Crosslinking of Cellulose Nanocrystals with Polyisocyanate at the Oil/Water Interface of Pickering Emulsion. MATERIALS (BASEL, SWITZERLAND) 2022; 16:29. [PMID: 36614367 PMCID: PMC9821122 DOI: 10.3390/ma16010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Phase-change materials (PCMs) attract much attention with regard to their capability of mitigating fossil fuel-based heating in in-building applications, due to the responsive accumulation and release of thermal energy as a latent heat of reversible phase transitions. Organic PCMs possess high latent heat storage capacity and thermal reliability. However, bare PCMs suffer from leakages in the liquid form. Here, we demonstrate a reliable approach to improve the shape stability of organic PCM n-octadecane by encapsulation via interfacial polymerization at an oil/water interface of Pickering emulsion. Cellulose nanocrystals are employed as emulsion stabilizers and branched oligo-polyol with high functionality to crosslink the polyurethane shell in reaction with polyisocyanate dissolved in the oil core. This gives rise to a rigid polyurethane structure with a high density of urethane groups. The formation of a polyurethane shell and successful encapsulation of n-octadecane is confirmed by FTIR spectroscopy, XRD analysis, and fluorescent confocal microscopy. Electron microscopy reveals the formation of non-aggregated capsules with an average size of 18.6 µm and a smooth uniform shell with the thickness of 450 nm. The capsules demonstrate a latent heat storage capacity of 79 J/g, while the encapsulation of n-octadecane greatly improves its shape and thermal stability compared with bulk paraffin.
Collapse
Affiliation(s)
- Denis Voronin
- Department of Physical and Colloid Chemistry, National University of Oil and Gas ”Gubkin University”, 119991 Moscow, Russia
| | - Rais Mendgaziev
- Department of Physical and Colloid Chemistry, National University of Oil and Gas ”Gubkin University”, 119991 Moscow, Russia
| | - Adeliya Sayfutdinova
- Department of Physical and Colloid Chemistry, National University of Oil and Gas ”Gubkin University”, 119991 Moscow, Russia
| | - Maria Kugai
- Department of Physical and Colloid Chemistry, National University of Oil and Gas ”Gubkin University”, 119991 Moscow, Russia
| | - Maria Rubtsova
- Department of Physical and Colloid Chemistry, National University of Oil and Gas ”Gubkin University”, 119991 Moscow, Russia
| | - Kirill Cherednichenko
- Department of Physical and Colloid Chemistry, National University of Oil and Gas ”Gubkin University”, 119991 Moscow, Russia
| | - Dmitry Shchukin
- Department of Chemistry, Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool L69 7ZD, UK
| | - Vladimir Vinokurov
- Department of Physical and Colloid Chemistry, National University of Oil and Gas ”Gubkin University”, 119991 Moscow, Russia
| |
Collapse
|
32
|
Sierra-Romero A, Novakovic K, Geoghegan M. Adhesive Interfaces toward a Zero-Waste Industry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15476-15493. [PMID: 36475727 PMCID: PMC9776538 DOI: 10.1021/acs.langmuir.2c02436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
Abstract
This Feature Article evaluates ongoing efforts to adapt adhesives toward the goal of zero-waste living and suggests the most promising future directions. Adhesives are not always considered in zero-waste manufacturing because they represent only a small fraction of a product and offer no additional functionality. However, their presence restricts the reintegration of constituent parts into a circular economy, so a new generation of adhesives is required. Furthermore, their production often leads to harmful pollutants. Here, two main approaches toward addressing these problems are considered: first, the use of natural materials that replace petroleum-based polymers from which conventional adhesives are made and second, the production of dismantlable adhesives capable of debonding on demand with the application of an external stimulus. These approaches, either individually or combined, offer a new paradigm in zero-waste industrial production and consumer applications.
Collapse
|
33
|
Gabriel VA, Dubé MA. Toward a Fully Biobased Pressure-Sensitive Adhesive. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Vida A. Gabriel
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Pvt, Ottawa, OntarioK1N 6N5, Canada
| | - Marc A. Dubé
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Pvt, Ottawa, OntarioK1N 6N5, Canada
| |
Collapse
|
34
|
Zhang X, Wang D, Liu S, Tang J. Bacterial Cellulose Nanofibril-Based Pickering Emulsions: Recent Trends and Applications in the Food Industry. Foods 2022; 11:foods11244064. [PMID: 36553806 PMCID: PMC9778365 DOI: 10.3390/foods11244064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The Pickering emulsion stabilized by food-grade colloidal particles has developed rapidly in recent decades and attracts extensive attention for potential applications in the food industry. Bacterial cellulose nanofibrils (BCNFs), as green and sustainable colloidal nanoparticles derived from bacterial cellulose, have various advantages for Pickering emulsion stabilization and applications due to their unique properties, such as good amphiphilicity, a nanoscale fibrous network, a high aspect ratio, low toxicity, excellent biocompatibility, and sustainability. This review provides a comprehensive overview of the recent advances in the Pickering emulsion stabilized by BCNF particles, including the classification, preparation method, and physicochemical properties of diverse BCNF-based particles as Pickering stabilizers, as well as surface modifications with other substances to improve their emulsifying performance and functionality. Additionally, this paper highlights the stabilization mechanisms and provides potential food applications of BCNF-based Pickering emulsions, such as nutrient encapsulation and delivery, edible coatings and films, fat substitutes, etc. Furthermore, the safety issues and future challenges for the development and food-related applications of BCNFs-based Pickering emulsions are also outlined. This work will provide new insights and more ideas on the development and application of nanofibril-based Pickering emulsions for researchers.
Collapse
Affiliation(s)
- Xingzhong Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Dan Wang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Shilin Liu
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (S.L.); (J.T.)
| | - Jie Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Correspondence: (S.L.); (J.T.)
| |
Collapse
|
35
|
Fabrication and characterization of sunflower oil-in-water emulsions stabilized with sunflower stem pith cellulose nanofibril. Int J Biol Macromol 2022; 224:919-926. [DOI: 10.1016/j.ijbiomac.2022.10.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
36
|
Zhang K, Ren T, Harper D, Li M. Development of antimicrobial films with cinnamaldehyde stabilized by ethyl lauroyl arginate and cellulose nanocrystals. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Nanoengineering and green chemistry-oriented strategies toward nanocelluloses for protein sensing. Adv Colloid Interface Sci 2022; 308:102758. [PMID: 36037672 DOI: 10.1016/j.cis.2022.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/31/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
As one of the most important functional organic macromolecules of life, proteins not only participate in the cell metabolism and gene regulation, they also earnestly protect the body's immunity system, leading to a powerful biological shield and homeostasis. Advances in nanomaterials are boosting the significant progress in various applications, including the sensing and examination of proteins in trace amount. Nanocellulose-oriented protein sensing is at the forefront of this revolution. The inherent feature of high biocompatibility, low cytotoxicity, high specific area, good durability and marketability endow nanocellulose with great superiority in protein sensing. Here, we highlight the recent progress of protein sensing using nanocellulose as the biosensor in trace amount. Besides, various kinds of construction strategies for nanocelluloses-based biosensors are discussed in detail, to enhance the agility and accuracy of clinical/medical diagnostics. Finally, several challenges in the approbatory identification of new approaches for the marketization of biomedical sensing that need further expedition in the future are highlighted.
Collapse
|
38
|
Zou R, Li B, Duan W, Lin G, Cui Y. Synthesis of 3-carene-derived nanocellulose/1,3,4-thiadiazole-amide complexes with antifungal activity for plant protection. PEST MANAGEMENT SCIENCE 2022; 78:3277-3286. [PMID: 35484724 DOI: 10.1002/ps.6952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Nanopesticides have been proved to be a powerful and promising tool to solve the issues in agriculture. The purpose of the present study was to develop ecofriendly nanopesticide systems by the strategy of comprehensive utilization of two natural biomass resources (bagasse and turpentine oil) because of their incomparable advantages. RESULTS In this research, a series of nanocellulose carriers ETOCN-1-ETOCN-4 (ETOCN, esterified TEMPO-oxidized cellulose nanofibers) with different degrees of substitution were prepared and characterized by Fourier-transform infrared (FTIR), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Then, 21 1,3,4-thiadiazole-amide compounds 8a-8u containing gem-dimethylcyclopropane ring were designed, synthesized and characterized. A preliminary bioassay indicated that compound 8i (R = p-Br Ph) exhibited broad-spectrum antifungal activity against the tested fungi. Furthermore, drug-loading complexes 8i/ETOCN-1-8i/ETOCN-4 were fabricated by integration of nanocellulose-based carriers ETOCN-1-ETOCN-4 with bioactive compound 8i, and the drug-loading capacities, microstructures and sustained-releasing performance of these complexes were also investigated. According to the observation of scanning electron microscopy (SEM) images of complex 8i/ETOCN-2, the small-molecule drug and the carrier formed a well-distributed and compact complex, which led to the excellent drug-loading capacity and sustained-releasing performance in the ethanol/water (1:1, v/v) system. CONCLUSIONS Complexes 8i/ETOCN-1-8i/ETOCN-4 deserved further study as the promising candidates for the development of nanopesticides. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Renxuan Zou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China
| | - Baoyu Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China
| | - Guishan Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China
| | - Yucheng Cui
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China
| |
Collapse
|
39
|
Cai Y, Zhang Y, Qu Q, Xiong R, Tang H, Huang C. Encapsulated Microstructures of Beneficial Functional Lipids and Their Applications in Foods and Biomedicines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8165-8187. [PMID: 35767840 DOI: 10.1021/acs.jafc.2c02248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Beneficial functional lipids are essential nutrients for the growth and development of humans and animals, which nevertheless possess poor chemical stability because of heat/light-sensitivity. Various encapsulation technologies have been developed to protect these nutrients against adverse factors. Different microstructures are exhibited through different encapsulation methods, which influence the encapsulation efficiency and release behavior at the same time. This review summarizes the effects of preparation methods and process parameters on the microstructures of capsules at first. The mechanisms of the different microstructures on encapsulation efficiency and controlled release behavior of core materials are analyzed. Next, a comprehensive overview on the beneficial functional lipids capsules in the latest food and biomedicine applications are provided as well as the matching relationship between the microstructures of the capsules and applications are discussed. Finally, the remaining challenges and future possible directions that have potential interest are outlined. The purpose of this review is to convey the construction of beneficial functional lipids capsules and the function mechanism, a critical analysis on its current status and challenges, and opinions on its future development. This review is believed to promote communication among the food, pharmacy, agronomy, engineering, and nutrition industries.
Collapse
Affiliation(s)
- Yixin Cai
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Yingying Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Qingli Qu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Hu Tang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, P. R. China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| |
Collapse
|
40
|
Ma T, Lu S, Hu X, Song Y, Hu X. Effects of lipid type and toxicological properties on the digestion of cellulose nanocrystals in simulated gastrointestinal tract. Food Chem 2022; 396:133653. [PMID: 35830836 DOI: 10.1016/j.foodchem.2022.133653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/16/2022] [Accepted: 07/05/2022] [Indexed: 11/04/2022]
Abstract
This study aimed to understand the impact of different oil types on the cellulose nanocrystals (CNCs) to modulate lipid digestion and the in vitro gastrointestinal toxicity of CNCs in food systems. We explored the ability of CNCs to modulate lipid digestion in a simulated gastrointestinal system and monitored the gastrointestinal fate of CNC-based emulsions with different oil types. Finally, a small intestine epithelial model was used to evaluate the influence of cytotoxicity. The results suggested that the addition of 0.6 wt% CNCs in the high-fat food model reduced the hydrolysis of free fatty acids (FFAs) from triglycerides by 37.8% after the small intestine phase. CNCs showed the best effect in reducing lipid digestion in emulsions with high unsaturation triglycerides. In addition, the toxicology results suggest that 0.6 wt% CNCs had only a slight effect on reactive oxygen species and cytotoxicity, and no significant change in cell-layer integrity.
Collapse
Affiliation(s)
- Tao Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100193, China
| | - Shuyu Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100193, China
| | - Xinna Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yi Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100193, China.
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100193, China
| |
Collapse
|
41
|
Zhang Y, Yang S, Tang H, Wan S, Qin W, Zeng Q, Huang J, Yu G, Feng Y, Li J. Depletion stabilization of emulsions based on bacterial cellulose/carboxymethyl chitosan complexes. Carbohydr Polym 2022; 297:119904. [DOI: 10.1016/j.carbpol.2022.119904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 11/28/2022]
|
42
|
Rai R, Dhar P. Biomedical engineering aspects of nanocellulose: a review. NANOTECHNOLOGY 2022; 33:362001. [PMID: 35576914 DOI: 10.1088/1361-6528/ac6fef] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Cellulose is one of the most abundant renewable biopolymer in nature and is present as major constituent in both plant cell walls as well as synthesized by some microorganisms as extracellular products. In both the systems, cellulose self-assembles into a hierarchical ordered architecture to form micro to nano-fibrillated structures, on basis of which it is classified into various forms. Nanocellulose (NCs) exist as rod-shaped highly crystalline cellulose nanocrystals to high aspect ratio cellulose nanofibers, micro-fibrillated cellulose and bacterial cellulose (BC), depending upon the origin, structural and morphological properties. Moreover, NCs have been processed into diversified products ranging from composite films, coatings, hydrogels, aerogels, xerogels, organogels, rheological modifiers, optically active birefringent colored films using traditional-to-advanced manufacturing techniques. With such versatility in structure-property, NCs have profound application in areas of healthcare, packaging, cosmetics, energy, food, electronics, bioremediation, and biomedicine with promising commercial potential. Herein this review, we highlight the recent advancements in synthesis, fabrication, processing of NCs, with strategic chemical modification routes to tailor its properties for targeted biomedical applications. We also study the basic mechanism and models for biosynthesis of cellulose in both plant and microbial systems and understand the structural insights of NC polymorphism. The kinetics study for both enzymatic/chemical modifications of NCs and microbial growth behavior of BC under various reactor configurations are studied. The challenges associated with the commercial aspects as well as industrial scale production of pristine and functionalized NCs to meet the growing demands of market are discussed and prospective strategies to mitigate them are described. Finally, post chemical modification evaluation of biological and inherent properties of NC are important to determine their efficacy for development of various products and technologies directed for biomedical applications.
Collapse
Affiliation(s)
- Rohit Rai
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India
| | - Prodyut Dhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India
| |
Collapse
|
43
|
Wang J, Zhang K, Zhang L, Song Z, Shang S, Liu H, Wang D. Preparation and stabilization of Pickering emulsions by cationic cellulose nanocrystals synthesized from deep eutectic solvent. Int J Biol Macromol 2022; 209:1900-1913. [PMID: 35487379 DOI: 10.1016/j.ijbiomac.2022.04.164] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
In this work, short rod-like cationic cellulose nanocrystals (AH-CNCs) were prepared by sodium periodate oxidation combined with deep eutectic solvent method. The effects of different content AH-CNCs on the properties of the emulsion were studied. With the increase of AH-CNCs content, the diameter of emulsion droplets decreased and the stabilization time prolonged. The electrostatic attraction between the negative charge accumulated at the oil-water interface and AH-CNCs with positive charge improved the stability of the emulsion. Then, the rheological properties showed the interaction of nanocellulose in the continuous phase increased the viscosity of the emulsion. In addition, the droplet diameter of emulsion of 120 s was smaller at different ultrasonic time, the particle size distribution of emulsion changed from monodisperse to polydisperse with the increase of oil volume, the salt concentration had little effect on the droplet size of emulsion, and the preparation of emulsion under acidic conditions was more stable.
Collapse
Affiliation(s)
- Jin Wang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Key and Open Lab. of Forest Chemical Engineering, SFA, National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Kaitao Zhang
- Fiber and Particle Engineering Research Unit University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland
| | - Lei Zhang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Key and Open Lab. of Forest Chemical Engineering, SFA, National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Zhanqian Song
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Key and Open Lab. of Forest Chemical Engineering, SFA, National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Shibin Shang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Key and Open Lab. of Forest Chemical Engineering, SFA, National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - He Liu
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Key and Open Lab. of Forest Chemical Engineering, SFA, National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Dan Wang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Key and Open Lab. of Forest Chemical Engineering, SFA, National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China.
| |
Collapse
|
44
|
Kiriakou M, Pakdel AS, Berry RM, Hoare T, Dubé MA, Cranston ED. Incorporation of Polymer-Grafted Cellulose Nanocrystals into Latex-Based Pressure-Sensitive Adhesives. ACS MATERIALS AU 2022; 2:176-189. [PMID: 36855757 PMCID: PMC9888609 DOI: 10.1021/acsmaterialsau.1c00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
While the improvement of water-based adhesives with renewable additives is important as industry shifts toward more sustainable practices, a complete understanding of how the compatibility between additives and polymers affects adhesive performance is currently lacking. To elucidate these links, cellulose nanocrystals (CNCs) were first functionalized via surface-initiated atom-transfer radical polymerization with the hydrophobic polymers poly(butyl acrylate) (PBA) and poly(methyl methacrylate) (PMMA) to facilitate their incorporation into latex-based pressure-sensitive adhesives (PSAs). Next, PBA latexes were synthesized using seeded semibatch emulsion polymerization with unmodified or polymer-grafted CNCs added in situ at a loading of 0.5 or 1 phm (parts per hundred parts of monomer). Viscosity and electron microscopy suggested that the polymer-grafted CNCs were incorporated inside or on the latex particles. PSAs containing any CNC type had one or more improved properties (compared to the no-CNC "base case"); CNCs with a low degree of polymerization (DP) grafts exhibited improved tack (up to 2.5-fold higher) and peel strength (up to 6-fold higher) relative to PSAs with unmodified CNCs. The best performing PSA contained the low DP PMMA-grafted CNCs, which is attributed to the higher glass transition temperature and the higher wettability of the PMMA grafts compared to PBA, and the more uniform dispersion of polymer-grafted CNCs throughout the PSA film. In contrast, PSAs containing CNCs with high DP grafts resulted in reduced tack and peel strength (compared to low DP grafts) due to enhanced CNC aggregation. Unfortunately, all PSAs containing polymer-grafted CNCs exhibited inferior shear strength relative to PSAs with unmodified CNCs (and comparable shear strength to the no-CNC "base case"). Collectively, these results provide guidelines for future optimization of more sustainable latex-based PSAs.
Collapse
Affiliation(s)
- Michael
V. Kiriakou
- Department
of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S
4L7, Canada
| | - Amir Saeid Pakdel
- Department
of Chemical and Biological Engineering, Center for Catalysis Research
and Innovation, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, ON K1N
6N5, Canada
| | - Richard M. Berry
- CelluForce
Inc., 625 President-Kennedy
Avenue, Montreal, QC H3A 1K2, Canada
| | - Todd Hoare
- Department
of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S
4L7, Canada
| | - Marc A. Dubé
- Department
of Chemical and Biological Engineering, Center for Catalysis Research
and Innovation, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, ON K1N
6N5, Canada
| | - Emily D. Cranston
- Department
of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S
4L7, Canada
- Departments
of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Department
of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
45
|
Yang X, Yang S, Wang L. Cellulose or chitin nanofibril-stabilized latex for medical adhesion via tailoring colloidal interactions. Carbohydr Polym 2022; 278:118916. [PMID: 34973735 DOI: 10.1016/j.carbpol.2021.118916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/24/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
The objective of this research is to develop a functional medical adhesive from natural nanofibril-stabilized latex through an aqueous process. Surface charged cellulose or chitin nanofibrils are used to form Pickering emulsions of acrylic monomers, followed by in situ polymerization. Charged initiators are selected to tailor the interactions between them and nanofibrils, and it is found that the repulsive electrostatic interactions play a key role in stabilizing the heterogeneous system. As a result, poly(2-ethylhexyl acrylate-co-methyl methacrylate) latexes are successfully prepared for surfactant-free adhesives with a high shear strength of 72.0 ± 6.5 kPa. In addition, drug can be easily incorporated in the nanopaper substrate or adhesive layer to form a medical tape, exhibiting long-term drug release and antibacterial behaviors. We managed developing a facile method to integrate green synthesis, versatile functionalities and excellent adhesion into one adhesive, which remains a great challenge.
Collapse
Affiliation(s)
- Xianpeng Yang
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Shuang Yang
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Lei Wang
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
46
|
Nanocellulose in Heterogeneous Water-Based Polymerization for Wood Adhesives. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The interest in the development of biobased adhesives has increased due to environmental concerns. Moreover, as the production of engineered wood products (EWPs) is expected to grow, the wood adhesives market needs to transit toward formaldehyde-free products. Cellulose nanoparticles (CNPs) are a material with unique properties and advantages for producing hybrid materials as biobased wood adhesives. Besides their traditional use as reinforcing additives, CNPs can be incorporated at the beginning of the polymerization reaction to form in situ polymerized hybrid adhesives with better mechanical and physicochemical properties than the neat adhesive. Despite their outstanding characteristics, CNPs are still an emerging nanomaterial in the wood adhesive field, and the studies are incipient. This review explores the utilization of CNPs in heterogeneous polymerization for the production of polyvinyl acetate, polymeric isocyanates, waterborne polyurethane systems, and other waterborne polymer latexes. The main challenges are discussed, and some recommendations are set down for the manufacture of these novel hybrid nanocomposites.
Collapse
|
47
|
Gabriel VA, Tousignant MN, Wilson SM, Faure MD, Cranston ED, Cunningham MF, Lessard BH, Dubé MA. Improving Latex‐Based Pressure‐Sensitive Adhesive Properties Using Carboxylated Cellulose Nanocrystals. MACROMOL REACT ENG 2022. [DOI: 10.1002/mren.202100051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vida A. Gabriel
- Department of Chemical and Biological Engineering Centre for Catalysis Research and Innovation University of Ottawa Ottawa Ontario Canada
| | - Mathieu N. Tousignant
- Department of Chemical and Biological Engineering Centre for Catalysis Research and Innovation University of Ottawa Ottawa Ontario Canada
| | | | - Marie D.M. Faure
- Department of Chemical and Biological Engineering Centre for Catalysis Research and Innovation University of Ottawa Ottawa Ontario Canada
| | - Emily D. Cranston
- Department of Wood Science University of British Columbia British Columbia Canada
- Department of Chemical and Biological Engineering University of British Columbia Canada
| | | | - Benoît H. Lessard
- Department of Chemical and Biological Engineering Centre for Catalysis Research and Innovation University of Ottawa Ottawa Ontario Canada
| | - Marc A. Dubé
- Department of Chemical and Biological Engineering Centre for Catalysis Research and Innovation University of Ottawa Ottawa Ontario Canada
| |
Collapse
|
48
|
Recent development in food emulsion stabilized by plant-based cellulose nanoparticles. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101512] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Rigg A, Champagne P, Cunningham MF. Polysaccharide-Based Nanoparticles as Pickering Emulsifiers in Emulsion Formulations and Heterogenous Polymerization Systems. Macromol Rapid Commun 2021; 43:e2100493. [PMID: 34841604 DOI: 10.1002/marc.202100493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Bio-based Pickering emulsifiers are a nontoxic alternative to surfactants in emulsion formulations and heterogenous polymerizations. Recent demand for biocompatible and sustainable formulations has accelerated academic interest in polysaccharide-based nanoparticles as Pickering emulsifiers. Despite the environmental advantages, the inherent hydrophilicity of polysaccharides and their nanoparticles limits efficiency and application range. Modification of the polysaccharide surface is often required in the development of ultrastable, functional, and water-in-oil (W/O) systems. Complex surface modification calls into question the sustainability of polysaccharide-based nanoparticles and is identified as a significant barrier to commercialization. This review summarizes the use of nanocelluloses, -starches, and -chitins as Pickering emulsifiers, highlights trends and best practices in surface modification, and provides recommendations to expedite commercialization.
Collapse
Affiliation(s)
- Amanda Rigg
- Department of Chemical Engineering, 19 Division Street, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Pascale Champagne
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, ON, K7L 3N6, Canada.,Institut National de la Recherche Scientifique (INRS), 490 rue de la Couronne, Quebec City, Quebec, G1K 9A9, Canada
| | - Michael F Cunningham
- Department of Chemical Engineering, 19 Division Street, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Chemistry, 90 Bader Lane, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
50
|
Song M, Jiang J, Zhu J, Zheng Y, Yu Z, Ren X, Jiang F. Lightweight, strong, and form-stable cellulose nanofibrils phase change aerogel with high latent heat. Carbohydr Polym 2021; 272:118460. [PMID: 34420720 DOI: 10.1016/j.carbpol.2021.118460] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Phase change material (PCM) is promising for energy storage and release. However, the deformation and leaking during phase change generally limit its application. Herein, a lightweight, strong, and form-stable PCM aerogel was fabricated using Pickering emulsion templating technique. Cellulose nanofibrils (CNFs) were used to stabilize PCM into Pickering emulsion, which was further integrated into a 3D interconnected CNF network forming CNF/PCM composite aerogel. The composite aerogel is strong that can support over 5000 times of its own weight, and demonstrates exceptional form stability at 80 °C, showing no leakage after 20 heating/cooling cycles. The latent heat of CNF/PCM composite aerogel could reach 173.59 J·g-1, approximately 84.4% of the paraffin. The CNF/PCM composite aerogel showed relatively low thermal conductivity of 32.0-37.7 mW·m-1·K-1. The sustainability and impressive thermal regulating properties of the CNF/PCM composite aerogel make it an ideal candidate for applications in smart textile, smart building, batteries, and electronic devices.
Collapse
Affiliation(s)
- Mingyao Song
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jungang Jiang
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jiaying Zhu
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Yi Zheng
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Zhengyang Yu
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Xueyong Ren
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|