1
|
Sun Z, Lin X, Wang C, Tan Y, Dou W, Hu A, Cui J, Fan J, Yuan R, Zheng M, Dong Q. Constructing an Interlaced Catalytic Surface via Fluorine-Doped Bimetallic Oxides for Oxygen Electrode Processes in Li-O 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404319. [PMID: 38806164 DOI: 10.1002/adma.202404319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Lithium-oxygen (Li-O2) batteries, renowned for their high theoretical energy density, have garnered significant interest as prime candidates for future electric device development. However, their actual capacity is often unsatisfactory due to the passivation of active sites by solid-phase discharge products. Optimizing the growth and storage of these products is a crucial step in advancing Li-O2 batteries. Here, a fluorine-doped bimetallic cobalt-nickel oxide (CoNiO2- xFx/CC) with an interlaced catalytic surface (ICS) and a corncob-like structure is proposed as an oxygen electrode. Unlike conventional oxide electrodes with a "single adsorption catalytic mechanism," the ICS of CoNiO2- xFx/CC offers a "competitive adsorption catalytic mechanism," where oxygen sites facilitate oxygen conversion while fluorine sites contribute to the growth of Li2O2. This results in a change in Li2O2 morphology from a surface film to toroidal particles, effectively preventing the burial of active sites. Additionally, the unique open architecture aids in the capture and release of oxygen and the formation of well-contacted Li2O2/electrode interfaces, which benefits the complete decomposition of Li2O2 products. Consequently, the Li-O2 battery with a CoNiO2- xFx/CC cathode demonstrates a high specific capacity of up to 30923 mAh g-1 and a lifespan exceeding 580 cycles, surpassing most reported metal oxide-based cathodes.
Collapse
Affiliation(s)
- Zongqiang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaodong Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, B-1348, Belgium
| | - Chutao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yanyan Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wenjie Dou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ajuan Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jiaqing Cui
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jingmin Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ruming Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mingsen Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Quanfeng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
2
|
Xia J, Yin S, Cui K, Yang T, Yan Y, Zhang S, Xing Y, Yang P, Wang T, Zhou G. Self-Catalyzed Growth of Co 4N and N-Doped Carbon Nanotubes toward Bifunctional Cathode for Highly Safe and Flexible Li-Air Batteries. ACS NANO 2024; 18:10902-10911. [PMID: 38606667 DOI: 10.1021/acsnano.4c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The practical application of high-energy density lithium-oxygen (Li-O2) batteries is severely impeded by the notorious cycling stability and safety, which mainly comes from slow kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at cathodes, causing inferior redox overpotentials and reactive lithium metal in flammable liquid electrolyte. Herein, a bifunctional electrode, a safe gel polymer electrolyte (GPE), and a robust lithium anode are proposed to alleviate above problems. The bifunctional electrode is composed of N-doped carbon nanotubes (N-CNTs) and Co4N by in situ chemical vapor deposition self-catalyzed growth on carbon cloth (N-CNTs@Co4N@CC). The self-supporting, binder-free N-CNTs@Co4N@CC electrode has a strong and stable three-dimensional (3D) interconnected conductive structure, which provides interconnectivity between the active sites and the electrode to promote the transfer of electrons. Furthermore, the N-CNT-intertwined Co4N ensures efficient catalytic activity. Hence, the electrode demonstrates improved electrochemical properties even under a large current density (2000 mA g-1) and long cycling operation (250 cycles). Moreover, a highly safe and flexible rechargeable cell using the 3D N-CNTs@Co4N@CC electrode, GPE, and robust lithium anode design has been explored. The open circuit voltage is stable at ∼3.0 V even after 9800 cycles, which proves the mechanical durability of the integrated GPE cell. The stable cable-type Li-air battery was demonstrated to stably drive the light-emitting diodes (LEDs), highlighting the reliability for practical use.
Collapse
Affiliation(s)
- Jun Xia
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Shuai Yin
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Kai Cui
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Tian Yang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Yiyuan Yan
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Shichao Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Yalan Xing
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Puheng Yang
- State Key Lab Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, POB 353, Beijing 100190, P. R. China
| | - Tianshuai Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Guangmin Zhou
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| |
Collapse
|
3
|
Mohamed SIGP, Namvar S, Zhang T, Shahbazi H, Jiang Z, Rappe AM, Salehi-Khojin A, Nejati S. Vapor-Phase Synthesis of Electrocatalytic Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309302. [PMID: 38145558 DOI: 10.1002/adma.202309302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/14/2023] [Indexed: 12/27/2023]
Abstract
The inability to process many covalent organic frameworks (COFs) as thin films plagues their widespread utilization. Herein, a vapor-phase pathway for the bottom-up synthesis of a class of porphyrin-based COFs is presented. This approach allows integrating electrocatalysts made of metal-ion-containing COFs into the electrodes' architectures in a single-step synthesis and deposition. By precisely controlling the metal sites at the atomic level, remarkable electrocatalytic performance is achieved, resulting in unprecedentedly high mass activity values. How the choice of metal atoms, i.e., cobalt and copper, can determine the catalytic activities of POR-COFs is demonstrated. The theoretical data proves that the Cu site is highly active for nitrate conversion to ammonia on the synthesized COFs.
Collapse
Affiliation(s)
| | - Shahriar Namvar
- Department of Mechanical and Industrial Engineering University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Tan Zhang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104-6323, USA
| | - Hessam Shahbazi
- Department of Mechanical and Industrial Engineering University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Zhen Jiang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104-6323, USA
| | - Andrew M Rappe
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104-6323, USA
| | - Amin Salehi-Khojin
- Department of Mechanical and Industrial Engineering University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Siamak Nejati
- Department of Chemical and Biomolecular Engineering, University of Nebraska Lincoln, Lincoln, NE, 68588-8286, USA
| |
Collapse
|
4
|
Long Y, Li Q, Zhang Z, Zeng Q, Liu D, Zhao L, Liu Y, Li Y, Zhang Y, Ji K, Zhou Z, Han X, Wang J. Coupling MoSe 2 with Non-Stoichiometry Ni 0.85 Se in Carbon Hollow Nanoflowers for Efficient Electrocatalytic Synergistic Effect on Li-O 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304882. [PMID: 37890468 DOI: 10.1002/smll.202304882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Li-O2 batteries could deliver ultra-high theoretical energy density compared to current Li-ion batteries counterpart. The slow cathode reaction kinetics in Li-O2 batteries, however, limits their electrocatalytic performance. To this end, MoSe2 and Ni0.85 Se nanoflakes were decorated in carbon hollow nanoflowers, which were served as the cathode catalysts for Li-O2 batteries. The hexagonal Ni0.85 Se and MoSe2 show good structural compatibility with the same space group, resulting in a stable heterogeneous structure. The synergistic interaction of the unsaturated atoms and the built-in electric fields on the heterogeneous structure exposes abundant catalytically active sites, accelerating ion and charge transport and imparting superior electrochemical activity, including high specific capacities and stable cycling performance. More importantly, the lattice distances of the Ni0.85 Se (101) plane and MoSe2 (100) plane at the heterogeneous interfaces are highly matched to that of Li2 O2 (100) plane, facilitating epitaxial growth of Li2 O2 , as well as the formation and decomposition of discharge products during the cycles. This strategy of employing nonstoichiometric compounds to build heterojunctions and improve Li-O2 battery performance is expected to be applied to other energy storage or conversion systems.
Collapse
Affiliation(s)
- Yuxin Long
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Qiang Li
- Shandong Tianhou New Material Technology Co. Ltd., Heze, 274051, China
| | - Zidong Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Qingxi Zeng
- Shandong Tianhou New Material Technology Co. Ltd., Heze, 274051, China
| | - Dong Liu
- Shandong Tianhou New Material Technology Co. Ltd., Heze, 274051, China
| | - Lanling Zhao
- School of Physics, Shandong University, Jinan, 250061, China
| | - Yao Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yebing Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yiming Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhaorui Zhou
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Xue Han
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Jun Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
- Shandong Tianhou New Material Technology Co. Ltd., Heze, 274051, China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518063, China
| |
Collapse
|
5
|
Zhou Z, Zhao L, Wang J, Zhang Y, Li Y, Shoukat S, Han X, Long Y, Liu Y. Optimizing E g Orbital Occupancy of Transition Metal Sulfides by Building Internal Electric Fields to Adjust the Adsorption of Oxygenated Intermediates for Li-O 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302598. [PMID: 37283475 DOI: 10.1002/smll.202302598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Li-O2 batteries are acknowledged as one of the most promising energy systems due to their high energy density approaching that of gasoline, but the poor battery efficiency and unstable cycling performance still hinder their practical application. In this work, hierarchical NiS2 -MoS2 heterostructured nanorods are designed and successfully synthesized, and it is found that heterostructure interfaces with internal electric fields between NiS2 and MoS2 optimized eg orbital occupancy, effectively adjusting the adsorption of oxygenated intermediates to accelerate reaction kinetics of oxygen evolution reaction and oxygen reduction reaction. Structure characterizations coupled with density functional theory calculations reveal that highly electronegative Mo atoms on NiS2 -MoS2 catalyst can capture more eg electrons from Ni atoms, and induce lower eg occupancy enabling moderate adsorption strength toward oxygenated intermediates. It is evident that hierarchical NiS2 -MoS2 nanostructure with fancy built-in electric fields significantly boosted formation and decomposition of Li2 O2 during cycling, which contributed to large specific capacities of 16528/16471 mAh g-1 with 99.65% coulombic efficiency and excellent cycling stability of 450 cycles at 1000 mA g-1 . This innovative heterostructure construction provides a reliable strategy to rationally design transition metal sulfides by optimizing eg orbital occupancy and modulating adsorption toward oxygenated intermediates for efficient rechargeable Li-O2 batteries.
Collapse
Affiliation(s)
- Zhaorui Zhou
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Lanling Zhao
- School of Physics, Shandong University, Jinan, 250061, China
| | - Jun Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yiming Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yebing Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Sana Shoukat
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Xue Han
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yuxin Long
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yao Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| |
Collapse
|
6
|
Abstract
A solid-state electrolyte enables a lithium-air battery to operate at 25°C.
Collapse
Affiliation(s)
- Dejian Dong
- Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yi-Chun Lu
- Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Kondori A, Esmaeilirad M, Harzandi AM, Amine R, Saray MT, Yu L, Liu T, Wen J, Shan N, Wang HH, Ngo AT, Redfern PC, Johnson CS, Amine K, Shahbazian-Yassar R, Curtiss LA, Asadi M. A room temperature rechargeable Li 2O-based lithium-air battery enabled by a solid electrolyte. Science 2023; 379:499-505. [PMID: 36730408 DOI: 10.1126/science.abq1347] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A lithium-air battery based on lithium oxide (Li2O) formation can theoretically deliver an energy density that is comparable to that of gasoline. Lithium oxide formation involves a four-electron reaction that is more difficult to achieve than the one- and two-electron reaction processes that result in lithium superoxide (LiO2) and lithium peroxide (Li2O2), respectively. By using a composite polymer electrolyte based on Li10GeP2S12 nanoparticles embedded in a modified polyethylene oxide polymer matrix, we found that Li2O is the main product in a room temperature solid-state lithium-air battery. The battery is rechargeable for 1000 cycles with a low polarization gap and can operate at high rates. The four-electron reaction is enabled by a mixed ion-electron-conducting discharge product and its interface with air.
Collapse
Affiliation(s)
- Alireza Kondori
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Mohammadreza Esmaeilirad
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Ahmad Mosen Harzandi
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Rachid Amine
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Mahmoud Tamadoni Saray
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Lei Yu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Tongchao Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Nannan Shan
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.,Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hsien-Hau Wang
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Anh T Ngo
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.,Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Paul C Redfern
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Christopher S Johnson
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.,Material Science and Engineering, Stanford University, Stanford, CA 94305, USA.,Institute for Research&Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Reza Shahbazian-Yassar
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Larry A Curtiss
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Mohammad Asadi
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
8
|
Jiang Z, Rappe AM. Uncovering the Electrolyte-Dependent Transport Mechanism of LiO 2 in Lithium-Oxygen Batteries. J Am Chem Soc 2022; 144:22150-22158. [PMID: 36442495 DOI: 10.1021/jacs.2c09700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lithium-oxygen batteries (LOBs) offer extremely high theoretical energy density and are therefore strong contenders for bringing conventional batteries into the next generation. To avoid deactivation and passivation of the electrode due to the gradual covering of the surface by discharge products, electrolytes with high donor number (DN) are becoming increasingly popular in LOBs. However, the mechanism of this electrolyte-assisted discharge process remains unclear in many aspects, including the lithium superoxide (LiO2) intermediate transportation mechanism and stability at both electrode/electrolyte interfaces and in bulk electrolytes. Here, we performed a systematic Born-Oppenheimer molecular dynamics (BOMD)-level investigation of the LiO2 solvation reactions at two interfaces with high- or low-DN electrolytes (dimethyl sulfoxide (DMSO) or acetonitrile (CH3CN), respectively), followed by examinations of stability and condensation once the LiO2 monomers are solvated. Release of partial discharge product LiO2 is found to be energetically favorable into DMSO from the Co3O4 cathode with a small energy barrier. However, in the presence of CH3CN electrolyte, the release of LiO2 from the electrode surface is found to be energetically unfavorable. Dissolved LiO2(sol) clusters in bulk DMSO solvents are found to be more favorable to dimerize and agglomerate into a toroidal shape rather than to decompose, which avoids the emergence of strong oxidant ions (O2-) and preserves the system stability. This study provides two complete molecular-level pathways (solution and surface) from first-principles understanding of LOBs, offering guidance for future selection and design of electrode catalysts and solvents.
Collapse
Affiliation(s)
- Zhen Jiang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania19104-6323, United States
| | - Andrew M Rappe
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania19104-6323, United States
| |
Collapse
|
9
|
Shi C, Zhang L, Wang X, Sun T, Jiang Z, Zhao J. Ion Flux Self-Regulation Strategy with a Volume-Responsive Separator for Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51931-51940. [PMID: 36373960 DOI: 10.1021/acsami.2c15101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lithium metal batteries (LMBs) are regarded as one of the most promising next-generation energy storage devices due to their high energy density. However, the conversion of LMBs from laboratory to factory is hindered by the formation of lithium dendrites and volume change during lithium stripping and deposition processes. In this work, a volume-responsive separator with core/shell structure thermoplastic polyurethane (TPU)/polyvinylidene fluoride (PVDF) fibers and SiO2 coating layers is designed to restrict dendrite growth. The TPU/PVDF-SiO2 separator can accommodate the volume change like an artificial lung and keep intimate contact with the electrodes, which leads to the formation of a uniform and high-density solid-electrolyte interphase. Meanwhile, the separator can regulate the transport channels and diffusion coefficients (D) of lithium ions with the change of porosity from both experimental and ab initio molecular dynamic analysis. The Li symmetric cells assembled with the TPU/PVDF-SiO2 can run for 1000 h at the current of 1.0 mA cm-2 without a short circuit. Moreover, the low melting point of PVDF can shut the ionic conduction down at 170 °C, guaranteeing the thermal safety of the batteries. With the above advantages, the TPU/PVDF-SiO2 separator presents great potential to promote the commercial and industrial application of LMBs.
Collapse
Affiliation(s)
- Chuan Shi
- College of Physics, Qingdao University, 266071Qingdao, China
| | - Lei Zhang
- College of Physics, Qingdao University, 266071Qingdao, China
| | - Xiuting Wang
- College of Physics, Qingdao University, 266071Qingdao, China
| | - Tong Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao266071, China
| | - Zhen Jiang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Jinbao Zhao
- State Key Lab of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, P. R. China
| |
Collapse
|
10
|
Zheng J, Peng X, Xu Z, Gong J, Wang Z. Cationic Defect Engineering in Spinel NiCo 2O 4 for Enhanced Electrocatalytic Oxygen Evolution. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jingxuan Zheng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiangfeng Peng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhao Xu
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junbo Gong
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhao Wang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Jaradat A, Zhang C, Singh SK, Ahmed J, Ahmadiparidari A, Majidi L, Rastegar S, Hemmat Z, Wang S, Ngo AT, Curtiss LA, Daly M, Subramanian A, Salehi-Khojin A. High Performance Air Breathing Flexible Lithium-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102072. [PMID: 34528359 DOI: 10.1002/smll.202102072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Lithium-oxygen (Li-O2 ) batteries possess the highest theoretical energy density (3500 Wh kg-1 ), which makes them attractive candidates for modern electronics and transportation applications. In this work, an inexpensive, flexible, and wearable Li-O2 battery based on the bifunctional redox mediator of InBr3 , MoS2 cathode catalyst, and Fomblin-based oxygen permeable membrane that enable long-cycle-life operation of the battery in pure oxygen, dry air, and ambient air is designed, fabricated, and tested. The battery operates in ambient air with an open system air-breathing architecture and exhibits excellent cycling up to 240 at the high current density of 1 A g-1 with a relative humidity of 75%. The electrochemical performance of the battery including deep-discharge capacity, and rate capability remains almost identical after 1000 cycle in a bending fatigue test. This finding opens a new direction for utilizing high performance Li-O2 batteries for applications in the field of flexible and wearable electronics.
Collapse
Affiliation(s)
- Ahmad Jaradat
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Chengji Zhang
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Sachin Kumar Singh
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Junaid Ahmed
- Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Alireza Ahmadiparidari
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Leily Majidi
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Sina Rastegar
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Zahra Hemmat
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Shuxi Wang
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
- Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Anh T Ngo
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, 60608, USA
| | - Larry A Curtiss
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Matthew Daly
- Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Arunkumar Subramanian
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Amin Salehi-Khojin
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
12
|
Esmaeilirad M, Baskin A, Kondori A, Sanz-Matias A, Qian J, Song B, Tamadoni Saray M, Kucuk K, Belmonte AR, Delgado PNM, Park J, Azari R, Segre CU, Shahbazian-Yassar R, Prendergast D, Asadi M. Gold-like activity copper-like selectivity of heteroatomic transition metal carbides for electrocatalytic carbon dioxide reduction reaction. Nat Commun 2021; 12:5067. [PMID: 34417447 PMCID: PMC8379264 DOI: 10.1038/s41467-021-25295-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/06/2021] [Indexed: 11/09/2022] Open
Abstract
An overarching challenge of the electrochemical carbon dioxide reduction reaction (eCO2RR) is finding an earth-abundant, highly active catalyst that selectively produces hydrocarbons at relatively low overpotentials. Here, we report the eCO2RR performance of two-dimensional transition metal carbide class of materials. Our results indicate a maximum methane (CH4) current density of −421.63 mA/cm2 and a CH4 faradic efficiency of 82.7% ± 2% for di-tungsten carbide (W2C) nanoflakes in a hybrid electrolyte of 3 M potassium hydroxide and 2 M choline-chloride. Powered by a triple junction photovoltaic cell, we demonstrate a flow electrolyzer that uses humidified CO2 to produce CH4 in a 700-h process under one sun illumination with a CO2RR energy efficiency of about 62.3% and a solar-to-fuel efficiency of 20.7%. Density functional theory calculations reveal that dissociation of water, chemisorption of CO2 and cleavage of the C-O bond—the most energy consuming elementary steps in other catalysts such as copper—become nearly spontaneous at the W2C surface. This results in instantaneous formation of adsorbed CO—an important reaction intermediate—and an unlimited source of protons near the tungsten surface sites that are the main reasons for the observed superior activity, selectivity, and small potential. It is of high interests to develop new catalysts for selective CO2 electroreduction. Here the authors investigate two-dimensional transition metal carbides for CO2 to methane conversion with superior activity, selectivity and low overpotentials.
Collapse
Affiliation(s)
- Mohammadreza Esmaeilirad
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Artem Baskin
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alireza Kondori
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Ana Sanz-Matias
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jin Qian
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Boao Song
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Mahmoud Tamadoni Saray
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Kamil Kucuk
- Department of Physics & CSRRI, Illinois Institute of Technology, Chicago, IL, USA
| | - Andres Ruiz Belmonte
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | | | - Junwon Park
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Rahman Azari
- Department of Architecture, Pennsylvania State University, University Park, PA, USA
| | - Carlo U Segre
- Department of Physics & CSRRI, Illinois Institute of Technology, Chicago, IL, USA
| | - Reza Shahbazian-Yassar
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - David Prendergast
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Mohammad Asadi
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA.
| |
Collapse
|