1
|
Qi J, Zhao H, Wang W, Gao S, Huang J, Yan Y. Solid-Phase Molecular Self-Assembly Enabled Glue-Free Antifatigue Laminate Programmable Materials. SMALL METHODS 2024; 8:e2301114. [PMID: 38189584 DOI: 10.1002/smtd.202301114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/20/2023] [Indexed: 01/09/2024]
Abstract
Repeated programmability has emerged as a desired property in smart device engineering, but the programmability will fatigue upon repeated applications due to the unmatched mechanical property between the layer materials and the polymeric glue that is required to integrate the two individual oriented layers. It is reported here that glue-free antifatigue programmable laminate materials can be made with films resulted from solid-phase molecular self-assembly (SPMSA). The SPMSA films are created by squeezing the precipitates of oppositely charged polyelectrolytes and DTAB with a noodle machine, where the hydrophobic DTAB molecules self-assembled into wormlike micelles and oriented along the squeezing direction. The surface molecules in this film are endowed with sufficient mobility in the presence of hydration water, so that two such films are able to be pressed into a laminate material owing to the hydrophobic and electrostatic interactions between the molecules on the two adjacent surfaces. As the water evaporated gradually, the left laminate materials are glue-free with the same composition. When many of such films are integrated with specific designs, complicated shape programming is able to be achieved, and the programmability is reversible without fatigue. The current strategy is envisioned as a potent intriguing pathway leading to advanced programable materials.
Collapse
Affiliation(s)
- Jinwan Qi
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Pekingd University, Beijing, 100871, China
| | - Hongxin Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Pekingd University, Beijing, 100871, China
| | - Wenkai Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Pekingd University, Beijing, 100871, China
| | - Shuitao Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Pekingd University, Beijing, 100871, China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Pekingd University, Beijing, 100871, China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Pekingd University, Beijing, 100871, China
| |
Collapse
|
2
|
Sun Y, Men Y, Liu S, Wang X, Li C. Liquid crystalline elastomer self-oscillating fiber actuators fabricated from soft tubular molds. SOFT MATTER 2024; 20:4246-4256. [PMID: 38747973 DOI: 10.1039/d4sm00134f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The self-oscillation of objects that perform continuous and periodic motions upon unchanging and constant stimuli is highly important for intelligent actuators, advanced robotics, and biomedical machines. Liquid crystalline elastomer (LCE) materials are superior to traditional stimuli-responsive polymeric materials in the development of self-oscillators because of their reversible, large and anisotropic shape-changing ability, fast response ability and versatile structural design. In addition, fiber-shaped oscillators have attracted much interest due to their agility, flexibility and diverse oscillation modes. Herein, we present a strategy for fabricating fiber-shaped LCE self-oscillators using soft tubes as molds. Through the settlement of different configuration states of the soft tubes, the prepared fiber-shaped LCE oscillators can perform continuous rotational self-oscillation or up-and-down shifting self-oscillation under constant light stimuli, which are realized by photoinduced repetitive self-winding motion and self-waving motion, respectively. The mechanism of self-oscillating movements is attributed to the local temperature oscillation of LCE fibers caused by repetitive self-shadowing effects. LCE self-oscillators can operate stably over many oscillating cycles without obvious performance attenuation, revealing good robustness. Our work offers a versatile way by which LCE self-oscillators can be conveniently designed and fabricated in bulk and at low cost, and broadens the road for developing self-oscillating materials for biological robotics and health care machines.
Collapse
Affiliation(s)
- Yuying Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yanli Men
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Shiyu Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Xiuxiu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Chensha Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| |
Collapse
|
3
|
Xiao W, Yoo K, Kim J, Xu H. Breaking Barriers to High-Practical Li-S Batteries with Isotropic Binary Sulfiphilic Electrocatalyst: Creating a Virtuous Cycle for Favorable Polysulfides Redox Environments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303916. [PMID: 37867214 PMCID: PMC10667854 DOI: 10.1002/advs.202303916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/30/2023] [Indexed: 10/24/2023]
Abstract
Investigations into lithium-sulfur batteries (LSBs) has focused primarily on the initial conversion of lithium polysulfides (LiPSs) to Li2 S2 . However, the subsequent solid-solid reaction from Li2 S2 to Li2 S and the Li2 S decomposition process should be equally prioritized. Creating a virtuous cycle by balancing all three chemical reaction processes is crucial for realizing practical LSBs. Herein, amorphous Ni3 B in synergy with carbon nanotubes (aNi3 B@CNTs) is proposed to implement the consecutive catalysis of S8(solid) → LiPSs(liquid) → Li2 S(solid) →LiPSs(liquid) . Systematic theoretical simulations and experimental analyses reveal that aNi3 B@CNTs with an isotropic structure and abundant active sites can ensure rapid LiPSs adsorption-catalysis as well as uniform Li2 S precipitation. The uniform Li2 S deposition in synergy with catalysis of aNi3 B enables instant/complete oxidation of Li2 S to LiPSs. The produced LiPSs are again rapidly and uniformly adsorbed for the next sulfur evolution process, thus creating a virtuous cycle for sulfur species conversion. Accordingly, the aNi3 B@CNTs-based cell presents remarkable rate capability, long-term cycle life, and superior cyclic stability, even under high sulfur loading and extreme temperature environments. This study proposes the significance of creating a virtuous cycle for sulfur species conversion to realize practical LSBs.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Mechanical EngineeringYeungnam University280 Daehak‐roGyeongsan‐siGyeongsanbuk‐do38541South Korea
| | - Kisoo Yoo
- Department of Mechanical EngineeringYeungnam University280 Daehak‐roGyeongsan‐siGyeongsanbuk‐do38541South Korea
| | - Jong‐Hoon Kim
- Energy Storage and Conversion LaboratoryDepartment of Electrical EngineeringChungnam National UniversityDaejeon34134Republic of Korea
| | - Hengyue Xu
- Institute of Biopharmaceutical and Health EngineeringTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| |
Collapse
|
4
|
Dilly É, Neukirch S, Derr J, Zanchi D. Traveling Perversion as Constant Torque Actuator. PHYSICAL REVIEW LETTERS 2023; 131:177201. [PMID: 37955474 DOI: 10.1103/physrevlett.131.177201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/19/2023] [Accepted: 09/15/2023] [Indexed: 11/14/2023]
Abstract
Mechanical stress and conformation of helical elastic rods clamped at both ends were studied upon unwinding. By axial rotation of one end, the winding number was progressively changed from the natural one (n=n_{0}) to complete chirality inversion (n=-n_{0}) while keeping the total elongation fixed and monitoring the applied torque M and tension T. Along the unwinding process, the system crosses three distinct states: natural helix (+), mixed state (+/-), and inverted helix (-). The mixed state involves two helices with opposite chiralities spatially connected by a perversion (helicity inversion). Upon unwinding, the perversion is "injected" (nucleated) from one side and travels toward the opposite side where it is eventually "absorbed" (annihilated), leaving the system in the (-) state. In the mixed state, the profile of M(n) is almost flat: the system behaves as a constant torque actuator. The three states are quantitatively well described in the framework of a biphasic model which neglects the perversion energy and finite size effects. The latter are taken into account in a numerical simulation based on the Kirchhoff theory of elastic rods. The traveling perversion in helical elastic rods and related topological phenomena are universal, with applications from condensed matter to biological and bioinspired systems, including in particular mechanical engineering and soft robotics.
Collapse
Affiliation(s)
- Émilien Dilly
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Cité, CNRS, F-75205 Paris Cedex 13, France
| | - Sébastien Neukirch
- Institut Jean Le Rond d'Alembert, CNRS (UMR 7190), Sorbonne Université, 75005 Paris, France
| | - Julien Derr
- Laboratoire Reproduction et Développement des Plantes, École Normale Supérieure de Lyon, CNRS, INRAE, Inria, 69364 Lyon Cedex 07, France
| | - Dražen Zanchi
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Cité, CNRS, F-75205 Paris Cedex 13, France
| |
Collapse
|
5
|
Tang R, Gao W, Jia Y, Wang K, Datta BK, Zheng W, Zhang H, Xu Y, Lin Y, Weng W. Mechanochemically assisted morphing of shape shifting polymers. Chem Sci 2023; 14:9207-9212. [PMID: 37655017 PMCID: PMC10466301 DOI: 10.1039/d3sc02404k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
Morphing in creatures has inspired various synthetic polymer materials that are capable of shape shifting. The morphing of polymers generally relies on stimuli-active (typically heat and light active) units that fix the shape after a mechanical load-based shape programming. Herein, we report a strategy that uses a mechanochemically active 2,2'-bis(2-phenylindan-1,3-dione) (BPID) mechanophore as a switching unit for mechanochemical morphing. The mechanical load on the polymer triggers the dissociation of the BPID moiety into stable 2-phenylindan-1,3-dione (PID) radicals, whose subsequent spontaneous dimerization regenerates BPID and fixes the temporary shapes that can be effectively recovered to the permanent shapes by heating. A greater extent of BPID activation, through a higher BPID content or mechanical load, leads to higher mechanochemical shape fixity. By contrast, a relatively mechanochemically less active hexaarylbiimidazole (HABI) mechanophore shows a lower fixing efficiency when subjected to the same programing conditions. Another control system without a mechanophore shows a low fixing efficiency comparable to the HABI system. Additionally, the introduction of the BPID moiety also manifests remarkable mechanochromic behavior during the shape programing process, offering a visualizable indicator for the pre-evaluation of morphing efficiency. Unlike conventional mechanical mechanisms that simultaneously induce morphing, such as strain-induced plastic deformation or crystallization, our mechanochemical method allows for shape programming after the mechanical treatment. Our concept has potential for the design of mechanochemically programmable and mechanoresponsive shape shifting polymers.
Collapse
Affiliation(s)
- Rui Tang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| | - Wenli Gao
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| | - Yulin Jia
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| | - Kai Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| | - Barun Kumar Datta
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| | - Wei Zheng
- College of Materials Science, Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| | - Huan Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| | - Yuanze Xu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| | - Yangju Lin
- Department of Chemical Engineering, Stanford University 443 Via Ortega, Stanford California 94305 USA
| | - Wengui Weng
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| |
Collapse
|
6
|
Zein HF, Sutthibutpong T. Roles of Tryptophan and Charged Residues on the Polymorphisms of Amyloids Formed by K-Peptides of Hen Egg White Lysozyme Investigated through Molecular Dynamics Simulations. Int J Mol Sci 2023; 24:ijms24032626. [PMID: 36768943 PMCID: PMC9916845 DOI: 10.3390/ijms24032626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/31/2023] Open
Abstract
Atomistic molecular dynamics simulations of amyloid models, consisting of the previously reported STDY-K-peptides and K-peptides from the hen egg white lysozyme (HEWL), were performed to address the effects of charged residues and pH observed in an in vitro study. Simulation results showed that amyloid models with antiparallel configurations possessed greater stability and compactness than those with parallel configurations. Then, peptide chain stretching and ordering were measured through the end-to-end distance and the order parameter, for which the amyloid models consisting of K-peptides and the STDY-K-peptides at pH 2 displayed a higher level of chain stretching and ordering. After that, the molecular mechanics energy decomposition and the radial distribution function (RDF) clearly displayed the importance of Trp62 to the K-peptide and the STDY-K-peptide models at pH 2. Moreover, the results also displayed how the negatively charged Asp52 disrupted the interaction networks and prevented the amyloid formation from STDY-K-peptide at pH 7. Finally, this study provided an insight into the interplay between pH conditions and molecular interactions underlying the formation of amyloid fibrils from short peptides contained within the HEWL. This served as a basis of understanding towards the design of other amyloids for biomaterial applications.
Collapse
Affiliation(s)
- Husnul Fuad Zein
- Nanoscience and Nanotechnology Program, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
- Department of Physics, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
| | - Thana Sutthibutpong
- Nanoscience and Nanotechnology Program, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
- Department of Physics, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
- Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
- Correspondence:
| |
Collapse
|
7
|
Dias AMGC, Cena C, Lutz-Bueno V, Mezzenga R, Marques A, Ferreira I, Roque ACA. Solvent modulation in peptide sub-microfibers obtained by solution blow spinning. Front Chem 2022; 10:1054347. [PMID: 36561144 PMCID: PMC9763608 DOI: 10.3389/fchem.2022.1054347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Peptides possess high chemical diversity at the amino acid sequence level, which further translates into versatile functions. Peptides with self-assembling properties can be processed into diverse formats giving rise to bio-based materials. Peptide-based spun fibers are an interesting format due to high surface-area and versatility, though the field is still in its infancy due to the challenges in applying the synthetic polymer spinning processes to protein fibers to peptides. In this work we show the use of solution blow-spinning to produce peptide fibers. Peptide fiber formation was assisted by the polymer poly (vinyl pyrrolidone) (PVP) in two solvent conditions. Peptide miscibility and further self-assembling propensity in the solvents played a major role in fiber formation. When employing acetic acid as solvent, peptide fibers (0.5 μm) are formed around PVP fibers (0.75 μm), whereas in isopropanol only one type of fibers are formed, consisting of mixed peptide and PVP (1 μm). This report highlights solvent modulation as a mean to obtain different peptide sub-microfibers via a single injection nozzle in solution blow spinning. We anticipate this strategy to be applied to other small peptides with self-assembly propensity to obtain multi-functional proteinaceous fibers.
Collapse
Affiliation(s)
- Ana Margarida Gonçalves Carvalho Dias
- Associate Laboratory i4HB, Chemistry Department, NOVA School of Science and Technology, Institute for Health and Bioeconomy, Caparica, Portugal,UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal,*Correspondence: Ana Margarida Gonçalves Carvalho Dias, ; Ana Cecília Afonso Roque,
| | - Cícero Cena
- UFMS—Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Viviane Lutz-Bueno
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland,Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Ana Marques
- i3N, Materials Department, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal,Physics Department, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Isabel Ferreira
- i3N, Materials Department, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Ana Cecília Afonso Roque
- Associate Laboratory i4HB, Chemistry Department, NOVA School of Science and Technology, Institute for Health and Bioeconomy, Caparica, Portugal,UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal,*Correspondence: Ana Margarida Gonçalves Carvalho Dias, ; Ana Cecília Afonso Roque,
| |
Collapse
|
8
|
Zhang F, Yang M, Xu X, Liu X, Liu H, Jiang L, Wang S. Unperceivable motion mimicking hygroscopic geometric reshaping of pine cones. NATURE MATERIALS 2022; 21:1357-1365. [PMID: 36357689 DOI: 10.1038/s41563-022-01391-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The hygroscopic deformation of pine cones, featured by opening and closing their scales depending on the environmental humidity, is a well-known stimuli-responsive model system for artificial actuators. However, it has not been noted that the deformation of pine cones is an ultra-slow process. Here, we reveal that vascular bundles with unique parallelly arranged spring/square microtubular heterostructures dominate the hygroscopic movement, characterized as ultra-slow motion with the outer sclereids. The spring microtubes give a much larger hygroscopic deformation than that of the square microtubes along the longitudinal axis direction, which bends the vascular bundles and consequently drives the scales to move. The outer sclereids with good water retention enable the vascular-bundle-triggered deformation to proceed ultra-slowly. Drawing inspiration, we developed soft actuators enabling controllable yet unperceivable motion. The motion velocity is almost two orders of magnitude lower than that of the same-class actuators reported, which made the as-developed soft actuators applicable in camouflage and reconnaissance.
Collapse
Affiliation(s)
- Feilong Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
| | - Man Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
| | - Xuetao Xu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xi Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Huan Liu
- Research Institute for Frontier Science, Beihang University, Beijing, P. R. China.
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, P. R. China
- Research Institute for Frontier Science, Beihang University, Beijing, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, P. R. China.
| |
Collapse
|
9
|
Wireless Autonomous Soft Crawlers for Adjustable Climbing Actuation. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Xu Y, Zhu H, Denduluri A, Ou Y, Erkamp NA, Qi R, Shen Y, Knowles TPJ. Recent Advances in Microgels: From Biomolecules to Functionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200180. [PMID: 35790106 DOI: 10.1002/smll.202200180] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The emerging applications of hydrogel materials at different length scales, in areas ranging from sustainability to health, have driven the progress in the design and manufacturing of microgels. Microgels can provide miniaturized, monodisperse, and regulatable compartments, which can be spatially separated or interconnected. These microscopic materials provide novel opportunities for generating biomimetic cell culture environments and are thus key to the advances of modern biomedical research. The evolution of the physical and chemical properties has, furthermore, highlighted the potentials of microgels in the context of materials science and bioengineering. This review describes the recent research progress in the fabrication, characterization, and applications of microgels generated from biomolecular building blocks. A key enabling technology allowing the tailoring of the properties of microgels is their synthesis through microfluidic technologies, and this paper highlights recent advances in these areas and their impact on expanding the physicochemical parameter space accessible using microgels. This review finally discusses the emerging roles that microgels play in liquid-liquid phase separation, micromechanics, biosensors, and regenerative medicine.
Collapse
Affiliation(s)
- Yufan Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Hongjia Zhu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Akhila Denduluri
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yangteng Ou
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nadia A Erkamp
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Runzhang Qi
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yi Shen
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| |
Collapse
|
11
|
Palit S, Kreplak L, Frampton JP. Formation of Core-Sheath Polymer Fibers by Free Surface Spinning of Aqueous Two-Phase Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4617-4624. [PMID: 35390253 DOI: 10.1021/acs.langmuir.1c03472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Core-sheath fibers have numerous applications ranging from composite materials for advanced manufacturing to materials for drug delivery and regenerative medicine. Here, a simple and tunable approach for the generation of core-sheath fibers from immiscible solutions of dextran and polyethylene oxide is described. This approach exploits the entanglement of polymer molecules within the dextran and polyethylene oxide phases for free surface spinning into dry fibers. The mechanism by which these core-sheath fibers are produced after contact with a solid substrate (such as a microneedle) involves complex flows of the phase-separating polymer solutions, giving rise to a liquid-liquid core-sheath flow that is drawn into a liquid bridge. This liquid bridge then elongates into a core-sheath fiber through extensional flow as the contacting substrate is withdrawn. The core-sheath structure of the fibers produced by this approach is confirmed by attenuated total reflection Fourier-transform infrared spectroscopy and confocal microscopy. Tuning of the core diameter is also demonstrated by varying the weight percentage of dextran added to the reservoir from which the fibers are formed.
Collapse
Affiliation(s)
- Swomitra Palit
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Laurent Kreplak
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - John P Frampton
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
12
|
Li R, Li D, Wang H, Chen K, Wang S, Xu J, Ji P. Exosomes from adipose-derived stem cells regulate M1/M2 macrophage phenotypic polarization to promote bone healing via miR-451a/MIF. Stem Cell Res Ther 2022; 13:149. [PMID: 35395782 PMCID: PMC8994256 DOI: 10.1186/s13287-022-02823-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/11/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Bone defects caused by diseases and trauma are usually accompanied by inflammation, and the implantation of biomaterials as a common repair method has also been found to cause inflammatory reactions, which affect bone metabolism and new bone formation. This study investigated whether exosomes from adipose-derived stem cells (ADSC-Exos) plays an immunomodulatory role in traumatic bone defects and elucidated the underlying mechanisms. METHODS ADSC-Exos were loaded by a biomaterial named gelatine nanoparticles (GNPs), physical and chemical properties were analysed by zeta potential, surface topography and rheology. A rat model of skull defect was used for our in vivo studies, and micro-CT and histological staining were used to analyse histological changes in the bone defect area. RT-qPCR and western blotting were performed to verify that ADSC-Exos could regulate M1/M2 macrophage polarization. MicroRNA (miRNA) array analysis was conducted to determine the miRNA expression profiles of ADSC-Exos. After macrophages were treated with a miR-451a mimic, miR-451a inhibitor and ISO-1, the relative expression of genes and proteins was measured by RT-qPCR and western blotting. RESULTS In vivo, micro-CT and histological staining showed that exosome-loaded GNPs (GNP-Exos) hydrogel, with good biocompatibility and strong mechanical adaptability, exhibited immunomodulatory effect mainly by regulating macrophage immunity and promoting bone tissue healing. Immunofluorescence further indicated that ADSC-Exos reduced M1 marker (iNOS) expression and increased M2 marker (CD206) expression. Moreover, in vitro studies, western blotting and RT-qPCR showed that ADSC-Exos inhibited M1 macrophage marker expression and upregulated M2 macrophage marker expression. MiR-451a was enriched in ADSC-Exos and targeted macrophage migration inhibitory factor (MIF). Macrophages treated with the miR-451a mimic showed lower expression of M1 markers. In contrast, miR-451a inhibitor treatment upregulated the expression of M1 markers and downregulated the expression of M2 markers, while ISO-1 (a MIF inhibitor) treatment upregulated miR-451a expression and downregulated M1 macrophage marker expression. CONCLUSION GNP-Exos can effectively regulate bone immune metabolism and further promote bone healing partly through immune regulation of miR-451a, which may provide a therapeutic direction for bone repair.
Collapse
Affiliation(s)
- Rui Li
- Department of Pediatric Dentistry, The College of Stomatology, Chongqing Medical University, No. 426, North Songshi Road, Yubei District, Chongqing, 401147, People's Republic of China
- Department of Oral and Maxillofacial Surgery, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Dize Li
- Department of Pediatric Dentistry, The College of Stomatology, Chongqing Medical University, No. 426, North Songshi Road, Yubei District, Chongqing, 401147, People's Republic of China
- Department of Oral and Maxillofacial Surgery, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Huanan Wang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, 116023, People's Republic of China
| | - Kaiwen Chen
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, 116023, People's Republic of China
| | - Si Wang
- Department of Pediatric Dentistry, The College of Stomatology, Chongqing Medical University, No. 426, North Songshi Road, Yubei District, Chongqing, 401147, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China.
| | - Jie Xu
- Department of Pediatric Dentistry, The College of Stomatology, Chongqing Medical University, No. 426, North Songshi Road, Yubei District, Chongqing, 401147, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China.
| | - Ping Ji
- Department of Pediatric Dentistry, The College of Stomatology, Chongqing Medical University, No. 426, North Songshi Road, Yubei District, Chongqing, 401147, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China.
| |
Collapse
|
13
|
Teng J, Peydayesh M, Lu J, Zhou J, Benedek P, Schäublin RE, You S, Mezzenga R. Amyloid-Templated Palladium Nanoparticles for Water Purification by Electroreduction. Angew Chem Int Ed Engl 2022; 61:e202116634. [PMID: 35040240 PMCID: PMC9306645 DOI: 10.1002/anie.202116634] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Electrocatalysis offers great promise for water purification but is limited by low active area and high uncontrollability of electrocatalysts. To overcome these constraints, we propose hybrid bulk electrodes by synthesizing and binding a Pd nanocatalyst (nano-Pd) to the electrodes via amyloid fibrils (AFs). The AFs template is effective for controlling the nucleation, growth, and assembly of nano-Pd on the electrode. In addition, the three-dimensional hierarchically porous nanostructure of AFs is beneficial for loading high-density nano-Pd with a large active area. The novel hybrid cathodes exhibit superior electroreduction performance for the detoxification of hexavalent chromium (Cr6+ ), 4-chlorophenol, and trichloroacetic acid in wastewater and drinking water. This study provides a proof-of-concept design of an AFs-templated nano-Pd-based hybrid electrode, which constitutes a paradigm shift in electrocatalytic water purification, and broadens the horizon of its potential engineered applications.
Collapse
Affiliation(s)
- Jie Teng
- State Key Laboratory of Urban Water Resource and EnvironmentSchool of EnvironmentHarbin Institute of TechnologyNo. 73, Huanghe RoadNangang District, Harbin150090P. R. China
- Department of Health Sciences & TechnologyETH ZurichSchmelzbergstrasse 98092ZurichSwitzerland
| | - Mohammad Peydayesh
- Department of Health Sciences & TechnologyETH ZurichSchmelzbergstrasse 98092ZurichSwitzerland
| | - Jiandong Lu
- State Key Laboratory of Urban Water Resource and EnvironmentSchool of EnvironmentHarbin Institute of TechnologyNo. 73, Huanghe RoadNangang District, Harbin150090P. R. China
| | - Jiangtao Zhou
- Department of Health Sciences & TechnologyETH ZurichSchmelzbergstrasse 98092ZurichSwitzerland
| | - Peter Benedek
- Department of Information Technology and Electrical EngineeringETH Zurich8092ZurichSwitzerland
| | - Robin E. Schäublin
- Scientific Center for Optical and Electron Microscopy (ScopeM)ETH ZurichOtto-Stern-Weg 38093ZurichSwitzerland
| | - Shijie You
- State Key Laboratory of Urban Water Resource and EnvironmentSchool of EnvironmentHarbin Institute of TechnologyNo. 73, Huanghe RoadNangang District, Harbin150090P. R. China
| | - Raffaele Mezzenga
- Department of Health Sciences & TechnologyETH ZurichSchmelzbergstrasse 98092ZurichSwitzerland
- Department of MaterialsETH ZurichWolfgang Pauli Strasse 108093ZurichSwitzerland
| |
Collapse
|
14
|
Teng J, Peydayesh M, Lu J, Zhou J, Benedek P, Schäublin R, You S, Mezzenga R. Amyloid‐Templated Palladium Nanoparticles for Water Purification by Electroreduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jie Teng
- ETH Zurich: Eidgenossische Technische Hochschule Zurich HEST SWITZERLAND
| | - Mohammad Peydayesh
- ETH Zurich: Eidgenossische Technische Hochschule Zurich HEST SWITZERLAND
| | - Jiandong Lu
- Harbin Institute of Technology school of environment CHINA
| | - Jiangtao Zhou
- ETH Zurich: Eidgenossische Technische Hochschule Zurich HEST SWITZERLAND
| | - Peter Benedek
- ETH Zurich: Eidgenossische Technische Hochschule Zurich Information Technology and Electrical Engineering SWITZERLAND
| | - Robin Schäublin
- ETH Zurich: Eidgenossische Technische Hochschule Zurich scopeM SWITZERLAND
| | - Shijie You
- Harbin Institute of Technology School of Environment CHINA
| | - Raffaele Mezzenga
- ETH Zurich Food & Soft Materials Science Schmelzbergstrasse 9, LFO, E23 8092 Zürich SWITZERLAND
| |
Collapse
|
15
|
Li C, Zhang Y, Han Y, Zhao X, Tian F. Freeze–thaw enhanced stability and mechanical strength of polysaccharide‐based sodium alginate/hyaluronic acid films. J Food Saf 2021. [DOI: 10.1111/jfs.12958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Cai‐Yun Li
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Yu‐Bin Zhang
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Yun Han
- Jianyou Science and Technology Park Hangzhou China
| | - Xi‐Ya Zhao
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Fa‐Dong Tian
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| |
Collapse
|
16
|
Yuan Y, Solin N. Mechanochemical Preparation and Self-Assembly of Protein:Dye Hybrids for White Luminescence. ACS APPLIED POLYMER MATERIALS 2021; 3:4825-4836. [PMID: 34661113 PMCID: PMC8506585 DOI: 10.1021/acsapm.1c00382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 05/17/2023]
Abstract
Protein nanofibrils (PNFs) functionalized with multiple dyes are prepared by a combination of mechanochemistry and liquid-phase self-assembly. The three employed dyes are Fluorescent Brightener 378 (F378), 2-butyl-6-(butylamino)-1H-benzo[de]isoquinoline-1,3(2H)-dione (Fluorol 555), and Nile red (NR). F378 acts as the donor with Fluorol 555 as the acceptor. F555 in turn acts as the donor and NR as the acceptor. This enables a FRET cascade that enables conversion of UV light to white light. The efficiency of FRET can be influenced by the details of the self-assembly process. If proteins milled with different dyes are mixed prior to self-assembly, nanofibrils are formed containing all three dyes, thus favoring FRET processes. By tuning the ratio of the three luminescent dyes, PNF dispersions are obtained that display bright white light emission. Moreover, the PNF dispersions can be converted into white luminescent films and gels where the PNFs may help to organize dye molecules. Additionally, the PNF materials can be employed as coatings on commercial LEDs, enabling emission of white light.
Collapse
|
17
|
Amyloids as Building Blocks for Macroscopic Functional Materials: Designs, Applications and Challenges. Int J Mol Sci 2021; 22:ijms221910698. [PMID: 34639037 PMCID: PMC8508955 DOI: 10.3390/ijms221910698] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
Amyloids are self-assembled protein aggregates that take cross-β fibrillar morphology. Although some amyloid proteins are best known for their association with Alzheimer’s and Parkinson’s disease, many other amyloids are found across diverse organisms, from bacteria to humans, and they play vital functional roles. The rigidity, chemical stability, high aspect ratio, and sequence programmability of amyloid fibrils have made them attractive candidates for functional materials with applications in environmental sciences, material engineering, and translational medicines. This review focuses on recent advances in fabricating various types of macroscopic functional amyloid materials. We discuss different design strategies for the fabrication of amyloid hydrogels, high-strength materials, composite materials, responsive materials, extracellular matrix mimics, conductive materials, and catalytic materials.
Collapse
|
18
|
Peng W, Zhang G, Zhao Q, Xie T. Autonomous Off-Equilibrium Morphing Pathways of a Supramolecular Shape-Memory Polymer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102473. [PMID: 34278623 DOI: 10.1002/adma.202102473] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Indexed: 06/13/2023]
Abstract
The diverse morphing behaviors of living creatures arise from their unlimited pathways. In contrast, the equilibrium-driven morphing pathways of common synthetic shape-shifting materials are very limited. For a shape-memory polymer (SMP), its recovery from the temporary shape(s) to the permanent shape typically requires external stimulation and follows a single fixed route. Herein, a covalently crosslinked SMP is designed with ample ureidopyrimidinone (UPy) supramolecular moieties in the network. The UPy units endow the SMP with strong time-temperature dependency, which is explored as a mechanism for spatio-temporal programming of autonomous shape-shifting pathways. In particular, the use of digitally controlled photothermal heating provides versatility in control via an off-equilibrium mechanism. In addition, cooling/heating across its glass transition introduces a locking/unlocking mechanism for its temporal morphing. The benefits of these unique features are demonstrated by multi-shape-transformation, an "invisible"-color-based clock, a time-temperature indicator, and sequence-programmable 4D printing.
Collapse
Affiliation(s)
- Wenjun Peng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Guogao Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| |
Collapse
|
19
|
Xu Y, Qi R, Zhu H, Li B, Shen Y, Krainer G, Klenerman D, Knowles TPJ. Liquid-Liquid Phase-Separated Systems from Reversible Gel-Sol Transition of Protein Microgels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008670. [PMID: 34235786 PMCID: PMC11468722 DOI: 10.1002/adma.202008670] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/12/2021] [Indexed: 06/13/2023]
Abstract
Liquid-liquid phase-separated biomolecular systems are increasingly recognized as key components in the intracellular milieu where they provide spatial organization to the cytoplasm and the nucleoplasm. The widespread use of phase-separated systems by nature has given rise to the inspiration of engineering such functional systems in the laboratory. In particular, reversible gelation of liquid-liquid phase-separated systems could confer functional advantages to the generation of new soft materials. Such gelation processes of biomolecular condensates have been extensively studied due to their links with disease. However, the inverse process, the gel-sol transition, has been less explored. Here, a thermoresponsive gel-sol transition of an extracellular protein in microgel form is explored, resulting in an all-aqueous liquid-liquid phase-separated system with high homogeneity. During this gel-sol transition, elongated gelatin microgels are demonstrated to be converted to a spherical geometry due to interfacial tension becoming the dominant energetic contribution as elasticity diminishes. The phase-separated system is further explored with respect to the diffusion of small particles for drug-release scenarios. Together, this all-aqueous system opens up a route toward size-tunable and monodisperse synthetic biomolecular condensates and controlled liquid-liquid interfaces, offering possibilities for applications in bioengineering and biomedicine.
Collapse
Affiliation(s)
- Yufan Xu
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Runzhang Qi
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Hongjia Zhu
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Bing Li
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Yi Shen
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNew South Wales2006Australia
| | - Georg Krainer
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - David Klenerman
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
- Cavendish LaboratoryUniversity of CambridgeCambridgeCB3 0HEUK
| |
Collapse
|
20
|
Hu Z, Li Y, Lv JA. Phototunable self-oscillating system driven by a self-winding fiber actuator. Nat Commun 2021; 12:3211. [PMID: 34050179 PMCID: PMC8163889 DOI: 10.1038/s41467-021-23562-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Self-oscillating systems that enable autonomous, continuous motions driven by an unchanging, constant stimulus would have significant applications in intelligent machines, advanced robotics, and biomedical devices. Despite efforts to gain self-oscillations have been made through artificial systems using responsive soft materials of gels or liquid crystal polymers, these systems are plagued with problems that restrict their practical applicability: few available oscillation modes due to limited degrees of freedom, inability to control the evolution between different modes, and failure under loading. Here we create a phototunable self-oscillating system that possesses a broad range of oscillation modes, controllable evolution between diverse modes, and loading capability. This self-oscillating system is driven by a photoactive self-winding fiber actuator designed and prepared through a twistless strategy inspired by the helix formation of plant-tendrils, which endows the system with high degrees of freedom. It enables not only controllable generation of three basic self-oscillations but also production of diverse complex oscillatory motions. Moreover, it can work continuously over 1270000 cycles without obvious fatigue, exhibiting high robustness. We envision that this system with controllable self-oscillations, loading capability, and mechanical robustness will be useful in autonomous, self-sustained machines and devices with the core feature of photo-mechanical transduction. Self-oscillating systems that enable autonomous motions driven by a constant stimulus find applications in numerous fields but these systems are plagued with problems that restrict their practical applicability. Here, the authors create a photoactive self-winding fiber actuator that possesses a broad range of oscillation modes, controllable evolution between diverse modes, and loading capability.
Collapse
Affiliation(s)
- Zhiming Hu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China.,Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Yunlong Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China.,Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Jiu-An Lv
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China. .,Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
21
|
Shen Y, Levin A, Kamada A, Toprakcioglu Z, Rodriguez-Garcia M, Xu Y, Knowles TPJ. From Protein Building Blocks to Functional Materials. ACS NANO 2021; 15:5819-5837. [PMID: 33760579 PMCID: PMC8155333 DOI: 10.1021/acsnano.0c08510] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/16/2021] [Indexed: 05/03/2023]
Abstract
Proteins are the fundamental building blocks for high-performance materials in nature. Such materials fulfill structural roles, as in the case of silk and collagen, and can generate active structures including the cytoskeleton. Attention is increasingly turning to this versatile class of molecules for the synthesis of next-generation green functional materials for a range of applications. Protein nanofibrils are a fundamental supramolecular unit from which many macroscopic protein materials are formed. In this Review, we focus on the multiscale assembly of such protein nanofibrils formed from naturally occurring proteins into new supramolecular architectures and discuss how they can form the basis of material systems ranging from bulk gels, films, fibers, micro/nanogels, condensates, and active materials. We review current and emerging approaches to process and assemble these building blocks in a manner which is different to their natural evolutionarily selected role but allows the generation of tailored functionality, with a focus on microfluidic approaches. We finally discuss opportunities and challenges for this class of materials, including applications that can be involved in this material system which consists of fully natural, biocompatible, and biodegradable feedstocks yet has the potential to generate materials with performance and versatility rivalling that of the best synthetic polymers.
Collapse
Affiliation(s)
- Yi Shen
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- School
of Chemical and Biomolecular Engineering, The University of Sydney, 2006 Sydney, New South Wales, Australia
| | - Aviad Levin
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Ayaka Kamada
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Zenon Toprakcioglu
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Marc Rodriguez-Garcia
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Xampla, the BioInnovation Building, 25 Cambridge
Science Park Road, Cambridge CB4 0FW, U.K.
| | - Yufan Xu
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Tuomas P. J. Knowles
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| |
Collapse
|