1
|
Zhang Y, Xu Y, Chen Z, Zhang Z, Liu X, Xue Z, Tian X, Bai X, Wang X, Huang M, Zhu J, Jiang H, Zhu Y. Self-Assembled Controllable Cu-Based Perovskite/Calcium Oxide Hybrids with Strong Interfacial Interactions for Enhanced CH 4 Electrosynthesis. ACS NANO 2024; 18:31466-31477. [PMID: 39529576 DOI: 10.1021/acsnano.4c11459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cu-based perovskite oxide catalysts show promise for CO2 electromethanation, but suffer from unsatisfactory CH4 selectivity and poor stability. Here, we report self-assembled, controllable Cu-based perovskite/calcium oxide hybrids with strongly interacting interfaces for high-performance CH4 electrosynthesis. As proof-of-concept catalysts, the La2CuO4/(CaO)x (x from 0.2 to 1.2) series has tunable CaO phase concentrations and thus controllable interface sizes. The La2CuO4 and CaO components are intimately connected at the interface, leading to strong interfacial interactions mainly manifested by marked electron transfer from Ca2+ to Cu2+. In CH4 electrosynthesis, their activity and selectivity show a volcano-type dependence on the CaO phase concentrations and are positively correlated with the interface sizes. Among them, the La2CuO4/(CaO)0.8 delivers the optimal activity and selectivity for CH4, together with good stability, much better than those of a physical-mixture counterpart and most reported Cu-based perovskite oxides. Moreover, La2CuO4/(CaO)0.8 stands out as one of the most effective Cu-based catalysts for CH4 electrosynthesis, achieving a high CH4 selectivity of 77.6% at 300 mA cm-2. Our experiments and theoretical calculations highlight the significant role of self-assembly-induced strong interfacial interactions in promoting *CO adsorption/hydrogenation, intensifying resistance to structural degradation, and consequently underpinning the achievement of such optimized performance.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunze Xu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Zitao Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenbao Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xiangjian Liu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Zhen Xue
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xuezeng Tian
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xue Wang
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
| | - Minghua Huang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiawei Zhu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Heqing Jiang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Huang F, Chen X, Sun H, Zeng Q, Ma J, Wei D, Zhu J, Chen Z, Liang T, Yin X, Liu X, Xu J, He H. Atmosphere Induces Tunable Oxygen Vacancies to Stabilize Single-Atom Copper in Ceria for Robust Electrocatalytic CO 2 Reduction to CH 4. Angew Chem Int Ed Engl 2024:e202415642. [PMID: 39311690 DOI: 10.1002/anie.202415642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Indexed: 11/03/2024]
Abstract
Electrochemical carbon dioxide reduction (ECO2RR) shows great potential to create high-value carbon-based chemicals, while designing advanced catalysts at the atomic level remains challenging. The ECO2RR performance is largely dependent on the catalyst microelectronic structure that can be effectively modulated through surface defect engineering. Here, we provide an atmosphere-assisted low-temperature calcination strategy to prepare a series of single-atomic Cu/ceria catalysts with varied oxygen vacancy concentrations for robust electrolytic reduction of CO2 to methane. The obtained Cu/ceria catalyst under H2 environment (Cu/ceria-H2) exhibits a methane Faraday efficiency (FECH4) of 70.03 % with a turnover frequency (TOFCH4) of 9946.7 h-1 at an industrial-scale current density of 150 mA cm-2 in a flow cell. Detailed studies indicate the copious oxygen vacancies in the Cu/ceria-H2 are conducive to regulating the surface microelectronic structure with stabilized Cu+ active center. Furthermore, density functional theory calculations and operando ATR-SEIRAS demonstrate that the Cu/ceria-H2 can markedly enhance the activation of CO2, facilitate the adsorption of pivotal intermediates *COOH and *CO, thus ultimately enabling the high selectivity for CH4 production. This study presents deep insights into designing effective electrocatalysts for CO2 to CH4 conversion by controlling the surface microstructure via the reaction atmosphere.
Collapse
Affiliation(s)
- Fang Huang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR. China
| | - Xiangyu Chen
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR. China
| | - Huanhuan Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR. China
| | - Qingduo Zeng
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR. China
| | - Junjie Ma
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR. China
| | - Dong Wei
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR. China
| | - Jinliang Zhu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR. China
| | - Zhengjun Chen
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR. China
| | - Taoyuan Liang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR. China
| | - Xucai Yin
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR. China
| | - Xijun Liu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR. China
| | - Jing Xu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR. China
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, PR. China
| | - Huibing He
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR. China
| |
Collapse
|
3
|
Zhang Z, Li M, Yang S, Ma Q, Dang J, Feng R, Bai Z, Liu D, Feng M, Chen Z. Conductive Zeolite Supported Indium-Tin Alloy Nanoclusters for Selective and Scalable Formic Acid Electrosynthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407266. [PMID: 39082200 DOI: 10.1002/adma.202407266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/03/2024] [Indexed: 09/28/2024]
Abstract
Upgrading excess CO2 toward the electrosynthesis of formic acid is of significant research and commercial interest. However, simultaneously achieving high selectivity and industrially relevant current densities of CO2-to-formate conversion remains a grand challenge for practical implementations. Here, an electrically conductive zeolite support is strategically designed by implanting Sn ions into the skeleton structure of a zeolite Y, which impregnates ultrasmall In0.2Sn0.8 alloy nanoclusters into the supercages of the tailored 12-ring framework. The prominent electronic and geometric interactions between In0.2Sn0.8 nanoalloy and zeolite support lead to the delocalization of electron density that enhances orbital hybridizations between In active site and *OCHO intermediate. Thus, the energy barrier for the rate-limiting *OCHO formation step is reduced, facilitating the electrocatalytic hydrogenation of CO2 to formic acid. Accordingly, the developed zeolite electrocatalyst achieves an industrial-level partial current density of 322 mA cm-2 and remarkable Faradaic efficiency of 98.2% for formate production and stably maintains Faradaic efficiency above 93% at an industrially relevant current density for over 102 h. This work opens up new opportunities of conductive zeolite-based electrocatalysts for industrial-level formic acid electrosynthesis from CO2 electrolysis and toward practically accessible electrocatalysis and energy conversion.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Minzhe Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuwen Yang
- State Key Laboratory of Catalysis, Power Battery & Systems Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Qianyi Ma
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Jianan Dang
- State Key Laboratory of Catalysis, Power Battery & Systems Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Renfei Feng
- Canadian Light Source, Saskatoon, SK, S7N 2V3, Canada
| | - Zhengyu Bai
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Dianhua Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ming Feng
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- State Key Laboratory of Catalysis, Power Battery & Systems Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
4
|
Huang J, Liu Q, Huang J, Xu M, Lai W, Gu Z. Electrochemical CO 2 Reduction to Multicarbon Products on Non-Copper Based Catalysts. CHEMSUSCHEM 2024:e202401173. [PMID: 38982867 DOI: 10.1002/cssc.202401173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
Electrochemical CO2 reduction reaction (eCO2RR) to value-added multicarbon (C2+) products offers a promising approach for achieving carbon neutrality and storing intermittent renewable energy. Copper (Cu)-based electrocatalysts generally play the predominant role in this process. Yet recently, more and more non-Cu materials have demonstrated the capability to convert CO2 into C2+, which provides impressive production efficiency even exceeding those on Cu, and a wider variety of C2+ compounds not achievable with Cu counterparts. This motivates us to organize the present review to make a timely and tutorial summary of recent progresses on developing non-Cu based catalysts for CO2-to-C2+. We begin by elucidating the reaction pathways for C2+ formation, with an emphasis on the unique C-C coupling mechanisms in non-Cu electrocatalysts. Subsequently, we summarize the typical C2+-involved non-Cu catalysts, including ds-, d- and p-block metals, as well as metal-free materials, presenting the state-of-the-art design strategies to enhance C2+ efficiency. The system upgrading to promote C2+ productivity on non-Cu electrodes covering microbial electrosynthesis, electrolyte engineering, regulation of operational conditions, and synergistic co-electrolysis, is highlighted as well. Our review concludes with an exploration of the challenges and future opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Jiayi Huang
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Qianwen Liu
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Jianmei Huang
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Ming Xu
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Wenchuan Lai
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Zhiyuan Gu
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
5
|
Wang Z, Xu L, Zhou Y, Liang Y, Yang J, Wu D, Zhang S, Han X, Shi X, Li J, Yuan Y, Deng P, Tian X. Stabilizing the oxidation state of catalysts for effective electrochemical carbon dioxide conversion. Chem Soc Rev 2024; 53:6295-6321. [PMID: 38722208 DOI: 10.1039/d3cs00887h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
In the electrocatalytic CO2 reduction reaction (CO2RR), metal catalysts with an oxidation state generally demonstrate more favorable catalytic activity and selectivity than their corresponding metallic counterparts. However, the persistence of oxidative metal sites under reductive potentials is challenging since the transition to metallic states inevitably leads to catalytic degradation. Herein, a thorough review of research on oxidation-state stabilization in the CO2RR is presented, starting from fundamental concepts and highlighting the importance of oxidation state stabilization while revealing the relevance of dynamic oxidation states in product distribution. Subsequently, the functional mechanisms of various oxidation-state protection strategies are explained in detail, and in situ detection techniques are discussed. Finally, the prevailing and prospective challenges associated with oxidation-state protection research are discussed, identifying innovative opportunities for mechanistic insights, technology upgrades, and industrial platforms to enable the commercialization of the CO2RR.
Collapse
Affiliation(s)
- Zhitong Wang
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Lizhi Xu
- Hainan Provincial Ecological and Environmental Monitoring Centre, Haikou 571126, China
| | - Yansong Zhou
- State Key Laboratory of Photovoltaic Science and Technology, Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Ying Liang
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Jinlin Yang
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Daoxiong Wu
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Shuyu Zhang
- State Key Laboratory of Photovoltaic Science and Technology, Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Xingqi Han
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Xiaodong Shi
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Jing Li
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Yuliang Yuan
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Peilin Deng
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Xinlong Tian
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
6
|
Tang B, Fang Y, Zhu S, Bai Q, Li X, Wei L, Li Z, Zhu C. Tuning hydrogen bond network connectivity in the electric double layer with cations. Chem Sci 2024; 15:7111-7120. [PMID: 38756806 PMCID: PMC11095383 DOI: 10.1039/d3sc06904d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/07/2024] [Indexed: 05/18/2024] Open
Abstract
Hydrogen bond (H-bond) network connectivity in electric double layers (EDLs) is of paramount importance for interfacial HER/HOR electrocatalytic processes. However, it remains unclear whether the cation-specific effect on H-bond network connectivity in EDLs exists. Herein, we report simulation evidence from ab initio molecular dynamics that cations at Pt(111)/water interfaces can tune the structure and the connectivity of H-bond networks in EDLs. As the surface charge density σ becomes more negative, we show that the connectivity of the H-bond networks in EDLs of the Na+ and Ca2+ systems decreases markedly; in stark contrast, the connectivity of the H-bond networks in EDLs of the Mg2+ system increases slightly. Further analysis revealed that the interplay between the hydration of cations and the interfacial water structure plays a key role in the connectivity of H-bond networks in EDLs. These findings highlight the key roles of cations in EDLs and electrocatalysis.
Collapse
Affiliation(s)
- Bo Tang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Yeguang Fang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
| | - Shuang Zhu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Qi Bai
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Xiaojiao Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Laiyang Wei
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Zhenyu Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chongqin Zhu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| |
Collapse
|
7
|
Zhu J, Zhang Y, Chen Z, Zhang Z, Tian X, Huang M, Bai X, Wang X, Zhu Y, Jiang H. Superexchange-stabilized long-distance Cu sites in rock-salt-ordered double perovskite oxides for CO 2 electromethanation. Nat Commun 2024; 15:1565. [PMID: 38378629 PMCID: PMC10879110 DOI: 10.1038/s41467-024-45747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Cu-oxide-based catalysts are promising for CO2 electroreduction (CO2RR) to CH4, but suffer from inevitable reduction (to metallic Cu) and uncontrollable structural collapse. Here we report Cu-based rock-salt-ordered double perovskite oxides with superexchange-stabilized long-distance Cu sites for efficient and stable CO2-to-CH4 conversion. For the proof-of-concept catalyst of Sr2CuWO6, its corner-linked CuO6 and WO6 octahedral motifs alternate in all three crystallographic dimensions, creating sufficiently long Cu-Cu distances (at least 5.4 Å) and introducing marked superexchange interaction mainly manifested by O-anion-mediated electron transfer (from Cu to W sites). In CO2RR, the Sr2CuWO6 exhibits significant improvements (up to 14.1 folds) in activity and selectivity for CH4, together with well boosted stability, relative to a physical-mixture counterpart of CuO/WO3. Moreover, the Sr2CuWO6 is the most effective Cu-based-perovskite catalyst for CO2 methanation, achieving a remarkable selectivity of 73.1% at 400 mA cm-2 for CH4. Our experiments and theoretical calculations highlight the long Cu-Cu distances promoting *CO hydrogenation and the superexchange interaction stabilizing Cu sites as responsible for the superb performance.
Collapse
Affiliation(s)
- Jiawei Zhu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.
- Shandong Energy Institute, 266101, Qingdao, China.
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, China.
| | - Yu Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- Shandong Energy Institute, 266101, Qingdao, China
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zitao Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Zhenbao Zhang
- School of Chemistry and Chemical Engineering, Linyi University, 276005, Linyi, China
| | - Xuezeng Tian
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Minghua Huang
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xue Wang
- School of Energy and Environment, City University of Hong Kong, 999077, Hong Kong, China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Heqing Jiang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.
- Shandong Energy Institute, 266101, Qingdao, China.
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, China.
| |
Collapse
|
8
|
Pei J, Yang L, Lin J, Zhang Z, Sun Z, Wang D, Chen W. Integrating Host Design and Tailored Electronic Effects of Yolk-Shell Zn-Mn Diatomic Sites for Efficient CO 2 Electroreduction. Angew Chem Int Ed Engl 2024; 63:e202316123. [PMID: 37997525 DOI: 10.1002/anie.202316123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
Modulating the surface and spatial structure of the host is associated with the reactivity of the active site, and also enhances the mass transfer effect of the CO2 electroreduction process (CO2 RR). Herein, we describe the development of two-step ligand etch-pyrolysis to access an asymmetric dual-atomic-site catalyst (DASC) composed of a yolk-shell carbon framework (Zn1 Mn1 -SNC) derived from S,N-coordinated Zn-Mn dimers anchored on a metal-organic framework (MOF). In Zn1 Mn1 -SNC, the electronic effects of the S/N-Zn-Mn-S/N configuration are tailored by strong interactions between Zn-Mn dual sites and co-coordination with S/N atoms, rendering structural stability and atomic distribution. In an H-cell, the Zn1 Mn1 -SNC DASC shows a low onset overpotential of 50 mV and high CO Faraday efficiency of 97 % with a low applied overpotential of 343 mV, thus outperforming counterparts, and in a flow cell, it also reaches a high current density of 500 mA cm-2 at -0.85 V, benefitting from the high structure accessibility and active dual sites. DFT simulations showed that the S,N-coordinated Zn-Mn diatomic site with optimal adsorption strength of COOH* lowers the reaction energy barrier, thus boosting the intrinsic CO2 RR activity on DASC. The structure-property correlation found in this study suggests new ideas for the development of highly accessible atomic catalysts.
Collapse
Affiliation(s)
- Jiajing Pei
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Yang
- Institutes of Physical Science and Information Technology, Anhui University, Anhui, 230601, China
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Jie Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science, 1219 Zhongguan West Road, Ningbo, 315201, P. R. China
| | - Zedong Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhiyi Sun
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
9
|
Pei J, Shang H, Mao J, Chen Z, Sui R, Zhang X, Zhou D, Wang Y, Zhang F, Zhu W, Wang T, Chen W, Zhuang Z. A replacement strategy for regulating local environment of single-atom Co-S xN 4-x catalysts to facilitate CO 2 electroreduction. Nat Commun 2024; 15:416. [PMID: 38195701 PMCID: PMC10776860 DOI: 10.1038/s41467-023-44652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
The performances of single-atom catalysts are governed by their local coordination environments. Here, a thermal replacement strategy is developed for the synthesis of single-atom catalysts with precisely controlled and adjustable local coordination environments. A series of Co-SxN4-x (x = 0, 1, 2, 3) single-atom catalysts are successfully synthesized by thermally replacing coordinated N with S at elevated temperature, and a volcano relationship between coordinations and catalytic performances toward electrochemical CO2 reduction is observed. The Co-S1N3 catalyst has the balanced COOH*and CO* bindings, and thus locates at the apex of the volcano with the highest performance toward electrochemical CO2 reduction to CO, with the maximum CO Faradaic efficiency of 98 ± 1.8% and high turnover frequency of 4564 h-1 at an overpotential of 410 mV tested in H-cell with CO2-saturated 0.5 M KHCO3, surpassing most of the reported single-atom catalysts. This work provides a rational approach to control the local coordination environment of the single-atom catalysts, which is important for further fine-tuning the catalytic performance.
Collapse
Affiliation(s)
- Jiajing Pei
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huishan Shang
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Junjie Mao
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Zhe Chen
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024, China
| | - Rui Sui
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuejiang Zhang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Danni Zhou
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, 201204, China
| | - Fang Zhang
- Analysis and Testing Center, Beijing Institute of Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024, China.
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
- Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
10
|
Xu Q, Liu S, Longhin F, Kastlunger G, Chorkendorff I, Seger B. Impact of Anodic Oxidation Reactions in the Performance Evaluation of High-Rate CO 2 /CO Electrolysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306741. [PMID: 37880859 DOI: 10.1002/adma.202306741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Indexed: 10/27/2023]
Abstract
The membrane-electrode assembly (MEA) approach appears to be the most promising technique to realize the high-rate CO2 /CO electrolysis, however there are major challenges related to the crossover of ions and liquid products from cathode to anode via the membrane and the concomitant anodic oxidation reactions (AORs). In this perspective, by combining experimental and theoretical analyses, several impacts of anodic oxidation of liquid products in terms of performance evaluation are investigated. First, the crossover behavior of several typical liquid products through an anion-exchange membrane is analyzed. Subsequently, two instructive examples (introducing formate or ethanol oxidation during electrolysis) reveals that the dynamic change of the anolyte (i.e., pH and composition) not only brings a slight shift of anodic potentials (i.e., change of competing reactions), but also affects the chemical stability of the anode catalyst. Anodic oxidation of liquid products can also cause either over- or under-estimation of the Faradaic efficiency, leading to an inaccurate assessment of overall performance. To comprehensively understand fundamentals of AORs, a theoretical guideline with hierarchical indicators is further developed to predict and regulate the possible AORs in an electrolyzer. The perspective concludes by giving some suggestions on rigorous performance evaluations for high-rate CO2 /CO electrolysis in an MEA-based setup.
Collapse
Affiliation(s)
- Qiucheng Xu
- Surface Physics and Catalysis (Surf Cat) Section, Department of Physics, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Sihang Liu
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Francesco Longhin
- Surface Physics and Catalysis (Surf Cat) Section, Department of Physics, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Georg Kastlunger
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Ib Chorkendorff
- Surface Physics and Catalysis (Surf Cat) Section, Department of Physics, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Brian Seger
- Surface Physics and Catalysis (Surf Cat) Section, Department of Physics, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| |
Collapse
|
11
|
Zhang T, Knezevic J, Zhu M, Hong J, Zhou R, Song Q, Ding L, Sun J, Liu D, Ostrikov KK, Zhou R, Cullen PJ. Catalyst-Free Carbon Dioxide Conversion in Water Facilitated by Pulse Discharges. J Am Chem Soc 2023; 145:28233-28239. [PMID: 38103175 DOI: 10.1021/jacs.3c11102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
By inducing CO2-pulsed discharges within microchannel bubbles and regulating thus-forming plasma microbubbles, we observe high-performance, catalyst-free coformation of hydrogen peroxide (H2O2) and oxalate directly from CO2 and water. With isotope-labeled C18O2 as the feedstock, peaks of H218O16O and H216O2 observed by ex situ surface-enhanced Raman spectra indicate that single-atom oxygen (O) from CO2 dissociations and H2O-derived OH radicals both contribute to H2O2 formation. The global plasma chemistry modeling suggests that high-density, energy-intense electron supply enables high-density CO2- (aq) and HCO2- (aq) formation and their subsequent coupling to produce oxalate. The enhanced solvation of CO2, facilitated by the efficient transport of CxOy ionic species and CO, is demonstrated as a crucial benefit of spark discharges interacting with water at the bubble interface. We expect this plasma microbubble approach to provide a novel power-to-chemical avenue to convert CO2 into valuable H2O2 and oxalic acid platform chemicals, thus leveraging renewable energy resources.
Collapse
Affiliation(s)
- Tianqi Zhang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Josip Knezevic
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Mengying Zhu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Jungmi Hong
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rusen Zhou
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Qiang Song
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Luyao Ding
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jing Sun
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Renwu Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
12
|
Wang Z, Zhou Y, Qiu P, Xia C, Fang W, Jin J, Huang L, Deng P, Su Y, Crespo-Otero R, Tian X, You B, Guo W, Di Tommaso D, Pang Y, Ding S, Xia BY. Advanced Catalyst Design and Reactor Configuration Upgrade in Electrochemical Carbon Dioxide Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303052. [PMID: 37589167 DOI: 10.1002/adma.202303052] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Electrochemical carbon dioxide reduction reaction (CO2 RR) driven by renewable energy shows great promise in mitigating and potentially reversing the devastating effects of anthropogenic climate change and environmental degradation. The simultaneous synthesis of energy-dense chemicals can meet global energy demand while decoupling emissions from economic growth. However, the development of CO2 RR technology faces challenges in catalyst discovery and device optimization that hinder their industrial implementation. In this contribution, a comprehensive overview of the current state of CO2 RR research is provided, starting with the background and motivation for this technology, followed by the fundamentals and evaluated metrics. Then the underlying design principles of electrocatalysts are discussed, emphasizing their structure-performance correlations and advanced electrochemical assembly cells that can increase CO2 RR selectivity and throughput. Finally, the review looks to the future and identifies opportunities for innovation in mechanism discovery, material screening strategies, and device assemblies to move toward a carbon-neutral society.
Collapse
Affiliation(s)
- Zhitong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Yansong Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Peng Qiu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Chenfeng Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Wensheng Fang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Jian Jin
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Lei Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Peilin Deng
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Yaqiong Su
- School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Rd, Xi'an, 710049, China
| | - Rachel Crespo-Otero
- Department of Chemistry, University of College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Xinlong Tian
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Wei Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Devis Di Tommaso
- School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Yuanjie Pang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Shujiang Ding
- School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Rd, Xi'an, 710049, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| |
Collapse
|
13
|
Lai W, Qiao Y, Wang Y, Huang H. Stability Issues in Electrochemical CO 2 Reduction: Recent Advances in Fundamental Understanding and Design Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306288. [PMID: 37562821 DOI: 10.1002/adma.202306288] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Indexed: 08/12/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR) offers a promising approach to close the anthropogenic carbon cycle and store intermittent renewable energy in fuels or chemicals. On the path to commercializing this technology, achieving the long-term operation stability is a central requirement but still confronts challenges. This motivates to organize the present review to systematically discuss the stability issue of CO2 RR. This review starts from the fundamental understanding on the destabilization mechanisms of CO2 RR, with focus on the degradation of electrocatalyst and change of reaction microenvironment during continuous electrolysis. Subsequently, recent efforts on catalyst design to stabilize the active sites are summarized, where increasing atomic binding strength to resist surface reconstruction is highlighted. Next, the optimization of electrolysis system to enhance the operation stability by maintaining reaction microenvironment especially mitigating flooding and carbonate problems is demonstrated. The manipulation on operation conditions also enables to prolong CO2 RR lifespan through recovering catalytically active sites and mass transport process. This review finally ends up by indicating the challenges and future opportunities.
Collapse
Affiliation(s)
- Wenchuan Lai
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Yan Qiao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yanan Wang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
14
|
Lu T, Xu T, Zhu S, Li J, Wang J, Jin H, Wang X, Lv JJ, Wang ZJ, Wang S. Electrocatalytic CO 2 Reduction to Ethylene: From Advanced Catalyst Design to Industrial Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2310433. [PMID: 37931017 DOI: 10.1002/adma.202310433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/01/2023] [Indexed: 11/08/2023]
Abstract
The value-added chemicals, monoxide, methane, ethylene, ethanol, ethane, and so on, can be efficiently generated through the electrochemical CO2 reduction reaction (eCO2 RR) when equipped with suitable catalysts. Among them, ethylene is particularly important as a chemical feedstock for petrochemical manufacture. However, despite its high Faradaic efficiency achievable at relatively low current densities, the substantial enhancement of ethylene selectivity and stability at industrial current densities poses a formidable challenge. To facilitate the industrial implementation of eCO2 RR for ethylene production, it is imperative to identify key strategies and potential solutions through comprehending the recent advancements, remaining challenges, and future directions. Herein, the latest and innovative catalyst design strategies of eCO2 RR to ethylene are summarized and discussed, starting with the properties of catalysts such as morphology, crystalline, oxidation state, defect, composition, and surface engineering. The review subsequently outlines the related important state-of-the-art technologies that are essential in driving forward eCO2 RR to ethylene into practical applications, such as CO2 capture, product separation, and downstream reactions. Finally, a greenhouse model that integrates CO2 capture, conversion, storage, and utilization is proposed to present an ideal perspective direction of eCO2 RR to ethylene.
Collapse
Affiliation(s)
- Tianrui Lu
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Ting Xu
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Shaojun Zhu
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jun Li
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jichang Wang
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, M4Y1M7, Canada
| | - Huile Jin
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, 325035, China
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Jing-Jing Lv
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Zheng-Jun Wang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Shun Wang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
15
|
Wang X, Zhang Q, Zhang S, Wen M, Jin S. CO 2 electro-reduction reaction via a two-dimensional TM@TAP single-atom catalyst. RSC Adv 2023; 13:35231-35239. [PMID: 38053685 PMCID: PMC10694826 DOI: 10.1039/d3ra06989c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
In this study, the possibility of using TM atom anchored monolayer TAP as a class of electrocatalysts (TM@TAP, TM = 3d and 4d transition metal) toward carbon dioxide reduction reaction (CO2RR) was systematically investigated using first-principles calculations. During screening potential catalysts, the possibility that H and OH block the active site was considered. Then, the reaction mechanisms of screened catalysts were explored in detail. Interestingly, the different catalysts demonstrated different selectivities. Our results demonstrate that Cr@TAP, Zn@TAP, Mo@TAP, and Cd@TAP are selective toward the HCOOH product with a limiting potential in the range of -0.33 to -0.71 V. Mn@TAP and Rh@TAP promote CO production. The reduction products of Fe@TAP and Co@TAP were CH3OH and HCHO, respectively. Tc@TAP and Ru@TAP can catalyze CO2 to yield the deep reduction product, i.e. CH4. Among these catalysts, Cr@TAP and Rh@TAP are highly active due to their lower limiting potentials of -0.33 V and -0.28 V, respectively, and Fe@TAP can promote the production of the desired CH3OH with a limiting potential of -0.51 V, which allow them to be promising electrocatalysts for the CO2RR. We hope that our study will provide some insights into the rational design of electrocatalysts and useful guidance for experimental researchers.
Collapse
Affiliation(s)
- Xiaolin Wang
- School of Chemistry and Chemical Engineering, Ankang Research Centre of New Nano-materials Science and Technology, Qinba Chinese Medicine Resources R&D Center, Ankang University Ankang 725000 China
| | - Qing Zhang
- Department of Materials Chemistry, Huzhou University Huzhou 313000 China
| | - Shenghai Zhang
- School of Chemistry and Chemical Engineering, Ankang Research Centre of New Nano-materials Science and Technology, Qinba Chinese Medicine Resources R&D Center, Ankang University Ankang 725000 China
| | - Mengyu Wen
- School of Chemistry and Chemical Engineering, Ankang Research Centre of New Nano-materials Science and Technology, Qinba Chinese Medicine Resources R&D Center, Ankang University Ankang 725000 China
| | - Shaowei Jin
- National Supercomputing Center of China in ShenZhen Shenzhen 518000 China
| |
Collapse
|
16
|
Shang W, Zeng M, Tanvir ANM, Wang K, Saeidi-Javash M, Dowling A, Luo T, Zhang Y. Hybrid Data-Driven Discovery of High-Performance Silver Selenide-Based Thermoelectric Composites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212230. [PMID: 37493182 DOI: 10.1002/adma.202212230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/08/2023] [Indexed: 07/27/2023]
Abstract
Optimizing material compositions often enhances thermoelectric performances. However, the large selection of possible base elements and dopants results in a vast composition design space that is too large to systematically search using solely domain knowledge. To address this challenge, a hybrid data-driven strategy that integrates Bayesian optimization (BO) and Gaussian process regression (GPR) is proposed to optimize the composition of five elements (Ag, Se, S, Cu, and Te) in AgSe-based thermoelectric materials. Data is collected from the literature to provide prior knowledge for the initial GPR model, which is updated by actively collected experimental data during the iteration between BO and experiments. Within seven iterations, the optimized AgSe-based materials prepared using a simple high-throughput ink mixing and blade coating method deliver a high power factor of 2100 µW m-1 K-2 , which is a 75% improvement from the baseline composite (nominal composition of Ag2 Se1 ). The success of this study provides opportunities to generalize the demonstrated active machine learning technique to accelerate the development and optimization of a wide range of material systems with reduced experimental trials.
Collapse
Affiliation(s)
- Wenjie Shang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Minxiang Zeng
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - A N M Tanvir
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Ke Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Mortaza Saeidi-Javash
- Department of Mechanical and Aerospace Engineering, California State University Long Beach, Long Beach, CA, 90840, USA
| | - Alexander Dowling
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Tengfei Luo
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Yanliang Zhang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
17
|
Chen M, Chang K, Zhang Y, Zhang Z, Dong Y, Qiu X, Jiang H, Zhu Y, Zhu J. Cation-Radius-Controlled Sn-O Bond Length Boosting CO 2 Electroreduction over Sn-Based Perovskite Oxides. Angew Chem Int Ed Engl 2023; 62:e202305530. [PMID: 37533227 DOI: 10.1002/anie.202305530] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
Despite the intriguing potential shown by Sn-based perovskite oxides in CO2 electroreduction (CO2 RR), the rational optimization of their CO2 RR properties is still lacking. Here we report an effective strategy to promote CO2 -to-HCOOH conversion of Sn-based perovskite oxides by A-site-radius-controlled Sn-O bond lengths. For the proof-of-concept examples of Ba1-x Srx SnO3 , as the A-site cation average radii decrease from 1.61 to 1.44 Å, their Sn-O bonds are precisely shortened from 2.06 to 2.02 Å. Our CO2 RR measurements show that the activity and selectivity of these samples for HCOOH production exhibit volcano-type trends with the Sn-O bond lengths. Among these samples, the Ba0.5 Sr0.5 SnO3 features the optimal activity (753.6 mA ⋅ cm-2 ) and selectivity (90.9 %) for HCOOH, better than those of the reported Sn-based oxides. Such optimized CO2 RR properties could be attributed to favorable merits conferred by the precisely controlled Sn-O bond lengths, e.g., the regulated band center, modulated adsorption/activation of intermediates, and reduced energy barrier for *OCHO formation. This work brings a new avenue for rational design of advanced Sn-based perovskite oxides toward CO2 RR.
Collapse
Affiliation(s)
- Mingfa Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Kuan Chang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Yu Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- Shandong Energy Institute, 266101, Qingdao, China
| | - Zhenbao Zhang
- School of Chemistry and Chemical Engineering, Linyi University, 276005, Linyi, China
| | - Yuming Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Xiaoyu Qiu
- School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Heqing Jiang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- Shandong Energy Institute, 266101, Qingdao, China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Jiawei Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- Shandong Energy Institute, 266101, Qingdao, China
| |
Collapse
|
18
|
Zhang MD, Huang JR, Shi W, Liao PQ, Chen XM. Self-Accelerating Effect in a Covalent-Organic Framework with Imidazole Groups Boosts Electroreduction of CO 2 to CO. Angew Chem Int Ed Engl 2023; 62:e202308195. [PMID: 37656139 DOI: 10.1002/anie.202308195] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/02/2023]
Abstract
Solvent effect plays an important role in catalytic reaction, but there is little research and attention on it in electrochemical CO2 reduction reaction (eCO2 RR). Herein, we report a stable covalent-organic framework (denoted as PcNi-im) with imidazole groups as a new electrocatalyst for eCO2 RR to CO. Interestingly, compared with neutral conditions, PcNi-im not only showed high Faraday efficiency of CO product (≈100 %) under acidic conditions (pH ≈ 1), but also the partial current density was increased from 258 to 320 mA cm-2 . No obvious degradation was observed over 10 hours of continuous operation at the current density of 250 mA cm-2 . The mechanism study shows that the imidazole group on the framework can be protonated to form an imidazole cation in acidic media, hence reducing the surface work function and charge density of the active metal center. As a result, CO poisoning effect is weakened and the key intermediate *COOH is also stabilized, thus accelerating the catalytic reaction rate.
Collapse
Affiliation(s)
- Meng-Di Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jia-Run Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wen Shi
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
19
|
Zhang F, Luo J, Chen J, Luo H, Jiang M, Yang C, Zhang H, Chen J, Dong A, Yang J. Interfacial Assembly of Nanocrystals on Nanofibers with Strong Interaction for Electrocatalytic Nitrate Reduction. Angew Chem Int Ed Engl 2023; 62:e202310383. [PMID: 37550249 DOI: 10.1002/anie.202310383] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
One-dimensional fiber architecture serves as an excellent catalyst support. The orderly arrangement of active materials on such a fiber substrate can enhance catalytic performance by exposing more active sites and facilitating mass diffusion; however, this remains a challenge. We developed an interfacial assembly strategy for the orderly distribution of metal nanocrystals on different fiber substrates to optimize their electrocatalytic performance. Using electrochemical nitrate reduction reaction (NO3 - RR) as a representative reaction, the iron-based nanofibers (Fe/NFs) assembly structure achieved an excellent nitrate removal capacity of 2317 mg N/g Fe and N2 selectivity up to 97.2 %. This strategy could promote the rational design and synthesis of fiber-based electrocatalysts.
Collapse
Affiliation(s)
- Fangzhou Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jiamei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Junliang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Hongxia Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Miaomiao Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Chenxi Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Hui Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute (IPRI), Australian Institute of Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW 2522, Australia
| | - Angang Dong
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
20
|
Hao Y, Hu F, Zhu S, Sun Y, Wang H, Wang L, Wang Y, Xue J, Liao YF, Shao M, Peng S. MXene-Regulated Metal-Oxide Interfaces with Modified Intermediate Configurations Realizing Nearly 100% CO 2 Electrocatalytic Conversion. Angew Chem Int Ed Engl 2023; 62:e202304179. [PMID: 37405836 DOI: 10.1002/anie.202304179] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/11/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
Electrocatalytic CO2 reduction via renewable electricity provides a sustainable way to produce valued chemicals, while it suffers from low activity and selectivity. Herein, we constructed a novel catalyst with unique Ti3 C2 Tx MXene-regulated Ag-ZnO interfaces, undercoordinated surface sites, as well as mesoporous nanostructures. The designed Ag-ZnO/Ti3 C2 Tx catalyst achieves an outstanding CO2 conversion performance of a nearly 100% CO Faraday efficiency with high partial current density of 22.59 mA cm-2 at -0.87 V versus reversible hydrogen electrode. The electronic donation of Ag and up-shifted d-band center relative to Fermi level within MXene-regulated Ag-ZnO interfaces contributes the high selectivity of CO. The CO2 conversion is highly correlated with the dominated linear-bonded CO intermediate confirmed by in situ infrared spectroscopy. This work enlightens the rational design of unique metal-oxide interfaces with the regulation of MXene for high-performance electrocatalysis beyond CO2 reduction.
Collapse
Affiliation(s)
- Yanan Hao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, 999077, Kowloon, Hong Kong, China
| | - Yajie Sun
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Hui Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Luqi Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Ying Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jianjun Xue
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yen-Fa Liao
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, 999077, Kowloon, Hong Kong, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
21
|
An H, de Ruiter J, Wu L, Yang S, Meirer F, van der Stam W, Weckhuysen BM. Spatiotemporal Mapping of Local Heterogeneities during Electrochemical Carbon Dioxide Reduction. JACS AU 2023; 3:1890-1901. [PMID: 37502158 PMCID: PMC10369669 DOI: 10.1021/jacsau.3c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 07/29/2023]
Abstract
The activity and selectivity of a copper electrocatalyst during the electrochemical CO2 reduction reaction (eCO2RR) are largely dominated by the interplay between local reaction environment, the catalyst surface, and the adsorbed intermediates. In situ characterization studies have revealed many aspects of this intimate relationship between surface reactivity and adsorbed species, but these investigations are often limited by the spatial and temporal resolution of the analytical technique of choice. Here, Raman spectroscopy with both space and time resolution was used to reveal the distribution of adsorbed species and potential reaction intermediates on a copper electrode during eCO2RR. Principal component analysis (PCA) of the in situ Raman spectra revealed that a working electrocatalyst exhibits spatial heterogeneities in adsorbed species, and that the electrode surface can be divided into CO-dominant (mainly located at dendrite structures) and C-C dominant regions (mainly located at the roughened electrode surface). Our spectral evaluation further showed that in the CO-dominant regions, linear CO was observed (as characterized by a band at ∼2090 cm-1), accompanied by the more classical Cu-CO bending and stretching vibrations located at ∼280 and ∼360 cm-1, respectively. In contrast, in the C-C directing region, these three Raman bands are suppressed, while at the same time a band at ∼495 cm-1 and a broad Cu-CO band at ∼2050 cm-1 dominate the Raman spectra. Furthermore, PCA revealed that anodization creates more C-C dominant regions, and labeling experiments confirmed that the 495 cm-1 band originates from the presence of a Cu-C intermediate. These results indicate that a copper electrode at work is very dynamic, thereby clearly displaying spatiotemporal heterogeneities, and that in situ micro-spectroscopic techniques are crucial for understanding the eCO2RR mechanism of working electrocatalyst materials.
Collapse
|
22
|
Du H, Liu LX, Li P, Min Q, Guo S, Zhu W. Enriching Reaction Intermediates in Multishell Structured Copper Catalysts for Boosted Propanol Electrosynthesis from Carbon Monoxide. ACS NANO 2023; 17:8663-8670. [PMID: 37068124 DOI: 10.1021/acsnano.3c01516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Fine-tuned catalysts that alter the diffusion kinetics of reaction intermediates is of great importance for achieving high-performance multicarbon (C2+) product generation in carbon monoxide (CO) reduction. Herein, we conduct a structural design based on Cu2O nanoparticles and present an effective strategy for enhancing propanol electrosynthesis from CO. The electrochemical characterization, operando Raman monitoring, and finite-element method simulations reveal that the multishell structured catalyst can realize the enrichment of C1 and C2 intermediates by nanoconfinement space, leading to the possibility of further coupling. Consequently, the multishell copper catalyst realizes a high Faraday efficiency of 22.22 ± 0.38% toward propanol at the current density of 50 mA cm-2.
Collapse
Affiliation(s)
| | | | | | | | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | | |
Collapse
|
23
|
Du R, Wu Q, Zhang S, Wang P, Li Z, Qiu Y, Yan K, Waterhouse GIN, Wang P, Li J, Zhao Y, Zhao WW, Wang X, Chen G. CuC(O) Interfaces Deliver Remarkable Selectivity and Stability for CO 2 Reduction to C 2+ Products at Industrial Current Density of 500 mA cm -2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301289. [PMID: 36974590 DOI: 10.1002/smll.202301289] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Indexed: 06/18/2023]
Abstract
The electrocatalytic CO2 reduction reaction (CO2 RR) is an attractive technology for CO2 valorization and high-density electrical energy storage. Achieving a high selectivity to C2+ products, especially ethylene, during CO2 RR at high current densities (>500 mA cm-2 ) is a prized goal of current research, though remains technically very challenging. Herein, it is demonstrated that the surface and interfacial structures of Cu catalysts, and the solid-gas-liquid interfaces on gas-diffusion electrode (GDE) in CO2 reduction flow cells can be modulated to allow efficient CO2 RR to C2+ products. This approach uses the in situ electrochemical reduction of a CuO nanosheet/graphene oxide dots (CuOC(O)) hybrid. Owing to abundant CuOC interfaces in the CuOC(O) hybrid, the CuO nanosheets are topologically and selectively transformed into metallic Cu nanosheets exposing Cu(100) facets, Cu(110) facets, Cu[n(100) × (110)] step sites, and Cu+ /Cu0 interfaces during the electroreduction step, the faradaic efficiencie (FE) to C2+ hydrocarbons was reached as high as 77.4% (FEethylene ≈ 60%) at 500 mA cm-2 . In situ infrared spectroscopy and DFT simulations demonstrate that abundant Cu+ species and Cu0 /Cu+ interfaces in the reduced CuOC(O) catalyst improve the adsorption and surface coverage of *CO on the Cu catalyst, thus facilitating CC coupling reactions.
Collapse
Affiliation(s)
- Ruian Du
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Qiqi Wu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Shiyi Zhang
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Peng Wang
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhengjian Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Yongcai Qiu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Keyou Yan
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Geoffrey I N Waterhouse
- School of Chemical Sciences, The University of Auckland, Auckland 1142, Auckland, 510640, New Zealand
| | - Pei Wang
- College of Science, Huazhong Agricultural University, Wuhan, 430074, P. R. China
| | - Jia Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Yun Zhao
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Wei-Wei Zhao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, P. R. China
| | - Xue Wang
- School of Energy and Environment, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| |
Collapse
|
24
|
Li XY, Wang T, Cai YC, Meng ZD, Nan JW, Ye JY, Yi J, Zhan DP, Tian N, Zhou ZY, Sun SG. Mechanism of Cations Suppressing Proton Diffusion Kinetics for Electrocatalysis. Angew Chem Int Ed Engl 2023; 62:e202218669. [PMID: 36762956 DOI: 10.1002/anie.202218669] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/11/2023]
Abstract
Proton transfer is crucial for electrocatalysis. Accumulating cations at electrochemical interfaces can alter the proton transfer rate and then tune electrocatalytic performance. However, the mechanism for regulating proton transfer remains ambiguous. Here, we quantify the cation effect on proton diffusion in solution by hydrogen evolution on microelectrodes, revealing the rate can be suppressed by more than 10 times. Different from the prevalent opinions that proton transport is slowed down by modified electric field, we found water structure imposes a more evident effect on kinetics. FTIR test and path integral molecular dynamics simulation indicate that proton prefers to wander within the hydration shell of cations rather than to hop rapidly along water wires. Low connectivity of water networks disrupted by cations corrupts the fast-moving path in bulk water. This study highlights the promising way for regulating proton kinetics via a modified water structure.
Collapse
Affiliation(s)
- Xiao-Yu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Tao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yu-Chen Cai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhao-Dong Meng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jing-Wen Nan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jin-Yu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jun Yi
- School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Dong-Ping Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Na Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhi-You Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
25
|
Hua W, Sun H, Hou Z, Li Y, Wei B, Wang JG. Boosting large-current-density water oxidation activity and stability by phytic acid-assisted rapid electrochemical corrosion. J Colloid Interface Sci 2023; 633:24-31. [PMID: 36434932 DOI: 10.1016/j.jcis.2022.11.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
Corrosion engineering is an efficient strategy to achieve durable oxygen evolution reaction (OER) catalysts at high current densities beyond 500 mA cm-2. However, the spontaneous electrochemical corrosion has a slow reaction rate, and most of them need to add large amounts of salts (such as NaCl) to accelerate the corrosion process. In this report, a novel and effective phytic acid (PA)-assisted in situ electrochemical corrosion strategy is demonstrated to accelerate the the corrosion process and form bimetallic active catalysts to show excellent OER performance at large current densities. In situ rapid electrochemical corrosion of nickel foam substrate and PA ligands etching realize localized high concentrations of Ni and Fe ions. High concentrations of metal ions will combine with hydroxyl to effectively form defects-enriched NiFe layered double hydroxides porous nanosheets tightly anchoring on the underneath substrate. Remarkably, the activated electrode exhibits excellent OER catalytic activities with ultralow overpotentials of 289 and 315 mV to reach high current densities of 500 and 1000 mA cm-2, respectively. When coupled with Ni-Mo-N hydrogen evolution reaction catalysts, the two-electrode cell merely requires 1.87 V to deliver 1000 mA cm-2. The ligands-assisted rapid electrochemical corrosion strategy provides a fresh perspective for facile, cost-effective, and scale-up production of superior OER catalysts at large current densities.
Collapse
Affiliation(s)
- Wei Hua
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an 710072, China
| | - Huanhuan Sun
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an 710072, China
| | - Zhidong Hou
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an 710072, China
| | - Yueying Li
- New Energy (Photovoltaic) Industry Research Center, Qinghai University, Xining 810016, China
| | - Bingqing Wei
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States.
| | - Jian-Gan Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an 710072, China.
| |
Collapse
|
26
|
Zhai J, Hu Y, Su M, Shi J, Li H, Qin Y, Gao F, Lu Q. One-Step Phase Separation for Core-Shell Carbon@Indium Oxide@Bismuth Microspheres with Enhanced Activity for CO 2 Electroreduction to Formate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206440. [PMID: 36650934 DOI: 10.1002/smll.202206440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
It is a substantial challenge to construct electrocatalysts with high activity, good selectivity, and long-term stability for electrocatalytic reduction of carbon dioxide to formic acid. Herein, bismuth and indium species are innovatively integrated into a uniform heterogeneous spherical structure by a neoteric quasi-microemulsion method, and a novel C@In2 O3 @Bi50 core-shell structure is constructed through a subsequent one-step phase separation strategy due to melting point difference and Kirkendall effect with the nano-limiting effect of the carbon structure. This core-shell C@In2 O3 @Bi50 catalyst can selectively reduce CO2 to formate with high selectivity (≈90% faradaic efficiency), large partial current density (24.53 mA cm-2 at -1.36 V), and long-term stability (up to 14.5 h), superior to most of the Bi-based catalysts. The hybrid Bi/In2 O3 interfaces of core-shell C@In2 O3 @Bi will stabilize the key intermediate HCOO* and suppress CO poisoning, benefiting the CO2 RR selectivity and stability, while the internal cavity of core-shell structure will improve the reaction kinetics because of the large specific surface area and the enhancement of ion shuttle and electron transfer. Furthermore, the nano-limited domain effect of outmost carbon prevent active components from oxidation and agglomeration, helpful for stabilizing the catalyst. This work offers valuable insights into core-shell structure engineering to promote practical CO2 conversion technology.
Collapse
Affiliation(s)
- Jingrong Zhai
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ye Hu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Mengfei Su
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jiangwei Shi
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hang Li
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yezhi Qin
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Feng Gao
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Qingyi Lu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
27
|
Kim S, Shin D, Park J, Jung J, Song H. Grain Boundary-Rich Copper Nanocatalysts Generated from Metal-Organic Framework Nanoparticles for CO 2 -to-C 2+ Electroconversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207187. [PMID: 36683171 PMCID: PMC10037986 DOI: 10.1002/advs.202207187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Due to severe contemporary energy issues, generating C2+ products from electrochemical carbon dioxide reduction reactions (eCO2 RRs) gains much interest. It is known that the catalyst morphology and active surface structures are critical for product distributions and current densities. Herein, a synthetic protocol of nanoparticle morphology on copper metal-organic frameworks (n-Cu MOFs) is developed by adjusting growth kinetics with termination ligands. Nanoscale copper oxide aggregates composed of small particulates are yielded via calcining the Cu-MOF nanoparticles at a specific temperature. The resulting nanosized MOF-derived catalyst (n-MDC) exhibits Faradaic efficiencies toward ethylene and C2+ products of 63% and 81% at -1.01 V versus reversible hydrogen electrode (RHE) in neutral electrolytes. The catalyst also shows prolonged stability for up to 10 h. A partial current density toward C2+ products is significantly boosted to -255 mA cm-2 in an alkaline flow cell system. Comprehensive analyses reveal that the nanoparticle morphology of pristine Cu MOFs induces homogeneous decomposition of organic frameworks at a lower calcination temperature. It leads to evolving grain boundaries in a high density and preventing severe agglomeration of copper domains, the primary factors for improving eCO2 RR activity toward C2+ production.
Collapse
Affiliation(s)
- Sungjoo Kim
- Department of ChemistryKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Dongwoo Shin
- Department of ChemistrySeoul National UniversitySeoul08826Republic of Korea
| | - Jonghyeok Park
- Department of ChemistryKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Jong‐Yeong Jung
- Department of ChemistryKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Hyunjoon Song
- Department of ChemistryKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| |
Collapse
|
28
|
Rutkowska IA, Chmielnicka A, Krzywiecki M, Kulesza PJ. Toward Effective CO 2 Reduction in an Acid Medium: Electrocatalysis at Cu 2O-Derived Polycrystalline Cu Sites Immobilized within the Network of WO 3 Nanowires. ACS MEASUREMENT SCIENCE AU 2022; 2:553-567. [PMID: 36785776 PMCID: PMC9885951 DOI: 10.1021/acsmeasuresciau.2c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A hybrid catalytic system composed of copper (I)-oxide-derived copper nanocenters immobilized within the network of tungsten oxide nanowires has exhibited electrocatalytic activity toward CO2 reduction in an acid medium (0.5 mol dm-3 H2SO4). The catalytic system facilitates conversion of CO2 to methanol and is fairly selective with respect to the competing hydrogen evolution. The preparative procedure has involved voltammetric electroreduction of Cu2O toward the formation and immobilization of catalytic Cu sites within the hexagonal structures of WO3 nanowires which are simultaneously partially reduced to mixed-valence hydrogen tungsten (VI, V) oxide bronzes, H x WO3, coexisting with sub-stoichiometric tungsten (VI, IV) oxides, WO3-y . After the initial loss of Cu through its dissolution to Cu2+ during positive potential scanning up to 1 V (vs RHE), the remaining copper is not electroactive and seems to be trapped within in the network of hexagonal WO3. Using the ultramicroelectrode-based probe, evidence has also been provided that partially reduced nonstoichiometric tungsten oxides induce reduction of CO2 to the CO-type reaction intermediates. The chronocoulometric data are consistent with the view that existence of copper sites dispersed in WO3 improves electron transfers and charge propagation within the hybrid catalytic layer. The enhanced tolerance of the catalyst to the competitive hydrogen evolution during CO2R should be explained in terms of the ability of H x WO3 to consume protons and absorb hydrogen as well as to shift the proton discharge at Cu toward more negative potentials. However, the capacity of WO3 to interact with catalytic copper and to adsorb CO-type reaction intermediates is expected to facilitate removal of the poisoning CO-type adsorbates from Cu sites.
Collapse
Affiliation(s)
- Iwona A. Rutkowska
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw PL-02-093, Poland
| | - Anna Chmielnicka
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw PL-02-093, Poland
| | - Maciej Krzywiecki
- Institute
of Physics−CSE, Silesian University
of Technology, Konarskiego
22B, Gliwice PL-44-100, Poland
| | - Pawel J. Kulesza
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw PL-02-093, Poland
| |
Collapse
|
29
|
Ma Z, Yang Z, Lai W, Wang Q, Qiao Y, Tao H, Lian C, Liu M, Ma C, Pan A, Huang H. CO 2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment. Nat Commun 2022; 13:7596. [PMID: 36494381 PMCID: PMC9734127 DOI: 10.1038/s41467-022-35415-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Electrochemical CO2 reduction to multicarbon products faces challenges of unsatisfactory selectivity, productivity, and long-term stability. Herein, we demonstrate CO2 electroreduction in strongly acidic electrolyte (pH ≤ 1) on electrochemically reduced porous Cu nanosheets by combining the confinement effect and cation effect to synergistically modulate the local microenvironment. A Faradaic efficiency of 83.7 ± 1.4% and partial current density of 0.56 ± 0.02 A cm-2, single-pass carbon efficiency of 54.4%, and stable electrolysis of 30 h in a flow cell are demonstrated for multicarbon products in a strongly acidic aqueous electrolyte consisting of sulfuric acid and KCl with pH ≤ 1. Mechanistically, the accumulated species (e.g., K+ and OH-) on the Helmholtz plane account for the selectivity and activity toward multicarbon products by kinetically reducing the proton coverage and thermodynamically favoring the CO2 conversion. We find that the K+ cations facilitate C-C coupling through local interaction between K+ and the key intermediate *OCCO.
Collapse
Affiliation(s)
- Zesong Ma
- grid.67293.39College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 China
| | - Zhilong Yang
- grid.67293.39College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 China
| | - Wenchuan Lai
- grid.67293.39College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 China
| | - Qiyou Wang
- grid.216417.70000 0001 0379 7164State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, Changsha, Hunan 410083 China
| | - Yan Qiao
- grid.67293.39College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 China
| | - Haolan Tao
- grid.28056.390000 0001 2163 4895State Key Laboratory of Chemical Engineering and Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Cheng Lian
- grid.28056.390000 0001 2163 4895State Key Laboratory of Chemical Engineering and Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Min Liu
- grid.216417.70000 0001 0379 7164State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, Changsha, Hunan 410083 China
| | - Chao Ma
- grid.67293.39College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 China
| | - Anlian Pan
- grid.67293.39College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 China
| | - Hongwen Huang
- grid.67293.39College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 China ,grid.67293.39Shenzhen Research Institute of Hunan University, Shenzhen, Guangdong 518055 China
| |
Collapse
|
30
|
Study on photoelectrochemical CO2 reduction over Cu2O. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Recent Advances in Non-Precious Metal–Nitrogen–Carbon Single-Site Catalysts for CO2 Electroreduction Reaction to CO. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
32
|
Cao Y, Meng Y, Wu Y, Shen Z, Xia Q, Huang H, Lang JP, Gu H, Wang Y, Li X. Regulation of the Coordination Structures of Transition Metals on Nitrogen-Doped Carbon Nanotubes for Electrochemical CO 2 Reduction. Inorg Chem 2022; 61:18957-18969. [DOI: 10.1021/acs.inorgchem.2c03221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yongyong Cao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Yuxiao Meng
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Yuting Wu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Zhangfeng Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Qineng Xia
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Hong Huang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Hongwei Gu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yangang Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Xi Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| |
Collapse
|
33
|
Wang X, Hu Q, Li G, Yang H, He C. Recent Advances and Perspectives of Electrochemical CO2 Reduction Toward C2+ Products on Cu-Based Catalysts. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Li Y, Liu F, Chen Z, Shi L, Zhang Z, Gong Y, Zhang Y, Tian X, Zhang Y, Qiu X, Ding X, Bai X, Jiang H, Zhu Y, Zhu J. Perovskite-Socketed Sub-3 nm Copper for Enhanced CO 2 Electroreduction to C 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206002. [PMID: 36070620 DOI: 10.1002/adma.202206002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/05/2022] [Indexed: 06/15/2023]
Abstract
In situ socketing metal nanoparticles onto perovskite oxides has shown great potential in heterogeneous catalysis, but its employment in boosting ambient CO2 electroreduction (CER) is unexplored. Here, a CER catalyst of perovskite-socketed sub-3 nm Cu equipped with strong metal-support interactions (SMSIs) is constructed to promote efficient and stable CO2 -to-C2+ conversion. For such a catalyst, plentiful sub-3 nm ellipsoid Cu particles are homogeneously and epitaxially anchored on the perovskite backbones, with concomitant creation of significant SMSIs. These SMSIs are able to not only modulate electronic structure of active Cu and facilitate adsorption/activation of key intermediates, but also to strengthen perovskite-Cu adhesion and intensify resistance to structural degradation. Beneficial from these advantageous merits, when evaluated in CER, it performs comparably to or better than most reported Cu-based heteronanostructures. Relative to a physical-mixture counterpart, it features marked improvements (up to 6.2 folds) in activity and selectivity for C2+ , together with greatly boosted stability (>80 h). This work gives a new avenue to rationally design more advanced Cu-based heteronanostructures for CER.
Collapse
Affiliation(s)
- Yuxi Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Fuzhu Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zitao Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Shi
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenbao Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Yue Gong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yu Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Xuezeng Tian
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoyu Qiu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xiangdong Ding
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Heqing Jiang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiawei Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
35
|
Jiang X, Li X, Kong Y, Deng C, Li X, Hu Q, Yang H, He C. Oxidation State Modulation of Bimetallic Tin-Copper Oxide Nanotubes for Selective CO 2 Electroreduction to Formate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204148. [PMID: 36220344 DOI: 10.1002/smll.202204148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/20/2022] [Indexed: 06/16/2023]
Abstract
In this work, the oxidation state of Sn and Cu active sites for CO2 electroreduction via constructing a Sn-Cun bimetallic oxide composite with a nanotube structure (SnCu-CNS) is successfully modulated. Compared to a single SnO2 or CuOx component, the SnCu-CNS composite holds reinforced electronegativity to generate unique extra Snδ+ centers and higher CuO centers with enhanced oxidation effect. Based on density functional theory calculations, the enlarged energy difference between Snδ+ /CuO centers and the reactants accelerates the electron transfer and decreases the energy barrier for the key intermediates to gain higher formate selectivity. Furthermore, the hollow structure and abundant micropores of SnCu-CNS are also conducive to the reactant transport and availability of active sites during CO2 electroreduction. In a conventional H-type cell, SnCu-CNS catalyst exhibits a maximum 95.1% faradaic efficiency for formate production. Switching to a flow cell configuration, SnCu-CNS can further deliver partial current densities exceeding 200 mA cm-2 and over 90% faradaic efficiencies for the formate, superior to most of the reported Sn-based electrocatalysts. This strategy of electronic modulation and morphology engineering in bimetallic oxides can have wide applications to raise electrocatalytic performance.
Collapse
Affiliation(s)
- Xingxing Jiang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xuan Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yan Kong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chen Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiaojie Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
36
|
Wang J, Chen Y, Zhang S, Yang C, Zhang JY, Su Y, Zheng G, Fang X. Controllable States and Porosity of Cu-Carbon for CO 2 Electroreduction to Hydrocarbons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202238. [PMID: 35973948 DOI: 10.1002/smll.202202238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/24/2022] [Indexed: 06/15/2023]
Abstract
The electrocatalytic carbon dioxide reduction reaction (CO2 RR) to value-added chemical products is an effective strategy for both greenhouse effect mitigation and high-density energy storage. However, controllable manipulation of the oxidation state and porous structure of Cu-carbon based catalysts to achieve high selectivity and current density for a particular product remains very challenging. Herein, a strategy derived from Cu-based metal-organic frameworks (MOFs) for the synthesis of controllable oxidation states and porous structure of Cu-carbon (Cu-pC, Cu2 O-pC, and Cu2 O/Cu-pC) is demonstrated. By regulating oxygen partial pressure during the annealing process, the valence state of the Cu and mesoporous structures of surrounding carbon are changed, leads to the different selectivity of products. Cu2 O/CuO-pC with the higher oxidation state exhibits FEC2H4 of 65.12% and a partial current density of -578 mA cm-2 , while the Cu2 O-pC shows the FECH4 over 55% and a partial current density exceeding -438 mA cm-2 . Experimental and theoretical studies indicate that porous carbon-coated Cu2 O structures favor the CH4 pathway and inhibit the hydrogen evolution reaction. This work provides an effective strategy for exploring the influence of the various valence states of Cu and mesoporous carbon structures on the selectivity of CH4 and C2 H4 products in CO2 RR.
Collapse
Affiliation(s)
- Jing Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yangshen Chen
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Shishi Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chao Yang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jun-Ye Zhang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yaqiong Su
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
37
|
Wei H, Tan A, Xiang Z, Zhang J, Piao J, Liang Z, Wan K, Fu Z. Modulating p-Orbital of Bismuth Nanosheet by Nickel Doping for Electrocatalytic Carbon Dioxide Reduction Reaction. CHEMSUSCHEM 2022; 15:e202200752. [PMID: 35618698 DOI: 10.1002/cssc.202200752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Electrochemical reduction of CO2 (CO2 RR) to value-added chemicals is an effective way to harvest renewable energy and utilize carbon dioxide. However, the electrocatalysts for CO2 RR suffer from insufficient activity and selectivity due to the limitation of CO2 activation. In this work, a Ni-doped Bi nanosheet (Ni@Bi-NS) electrocatalyst is synthesized for the electrochemical reduction of CO2 to HCOOH. Physicochemical characterization methods are extensively used to investigate the composition and structure of the materials. Electrochemical results reveal that for the production of HCOOH, the obtained Ni@Bi-NS exhibits an equivalent current density of 51.12 mA cm-2 at -1.10 V, which is much higher than the pure Bi-NS (18.00 mA cm-2 at -1.10 V). A high Faradaic efficiency over 92.0 % for HCOOH is achieved in a wide potential range from -0.80 to -1.10 V, and particularly, the highest efficiency of 98.4 % is achieved at -0.90 V. Both experimental and theoretical results reveal that the superior activity and selectivity are attributed to the doping effect of Ni on the Bi nanosheet. The density functional theory calculation reveals that upon doping, the charge is transferred from Ni to the adjacent Bi atoms, which shifts the p-orbital electronic density states towards the Fermi level. The resultant strong orbital hybridization between Bi and the π* orbitals of CO2 facilitates the formation of *OCHO intermediates and favors its activation. This work provides an effective strategy to develop active and selective electrocatalysts for CO2 RR by modulating the electronic density state.
Collapse
Affiliation(s)
- Helei Wei
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Aidong Tan
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- Institute of Energy Power Innovation, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhipeng Xiang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Jinhua Piao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Zhenxing Liang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Kai Wan
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Zhiyong Fu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| |
Collapse
|
38
|
Yao K, Li J, Wang H, Lu R, Yang X, Luo M, Wang N, Wang Z, Liu C, Jing T, Chen S, Cortés E, Maier SA, Zhang S, Li T, Yu Y, Liu Y, Kang X, Liang H. Mechanistic Insights into OC-COH Coupling in CO 2 Electroreduction on Fragmented Copper. J Am Chem Soc 2022; 144:14005-14011. [PMID: 35904545 DOI: 10.1021/jacs.2c01044] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The carbon-carbon (C-C) bond formation is essential for the electroconversion of CO2 into high-energy-density C2+ products, and the precise coupling pathways remain controversial. Although recent computational investigations have proposed that the OC-COH coupling pathway is more favorable in specific reaction conditions than the well-known CO dimerization pathway, the experimental evidence is still lacking, partly due to the separated catalyst design and mechanistic/spectroscopic exploration. Here, we employ density functional theory calculations to show that on low-coordinated copper sites, the *CO bindings are strengthened, and the adsorbed *CO coupling with their hydrogenation species, *COH, receives precedence over CO dimerization. Experimentally, we construct a fragmented Cu catalyst with abundant low-coordinated sites, exhibiting a 77.8% Faradaic efficiency for C2+ products at 300 mA cm-2. With a suite of in situ spectroscopic studies, we capture an *OCCOH intermediate on the fragmented Cu surfaces, providing direct evidence to support the OC-COH coupling pathway. The mechanistic insights of this research elucidate how to design materials in favor of OC-COH coupling toward efficient C2+ production from CO2 reduction.
Collapse
Affiliation(s)
- Kaili Yao
- School of Materials Science and Engineering and Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University, Tianjin 300350, People's Republic of China.,School of Chemical Engineering, Kunming University of Science and Technology, Kunmin 650500, People's Republic of China
| | - Jun Li
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Haibin Wang
- School of Materials Science and Engineering and Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University, Tianjin 300350, People's Republic of China
| | - Ruihu Lu
- School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Xiaotao Yang
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, People's Republic of China
| | - Mingchuan Luo
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Ning Wang
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Ziyun Wang
- School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Changxu Liu
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, United Kingdom.,Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig Maximilians University of Munich, 80539 Munich, Germany
| | - Tan Jing
- College of Chemistry and Material Science, Longyan University, Longyan 364012, People's Republic of China
| | - Songhua Chen
- College of Chemistry and Material Science, Longyan University, Longyan 364012, People's Republic of China
| | - Emiliano Cortés
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig Maximilians University of Munich, 80539 Munich, Germany
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig Maximilians University of Munich, 80539 Munich, Germany.,Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom.,School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Sheng Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Tieliang Li
- School of Science, Tianjin University, Tianjin 300350, People's Republic of China
| | - Yifu Yu
- School of Science, Tianjin University, Tianjin 300350, People's Republic of China
| | - Yongchang Liu
- State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, People's Republic of China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hongyan Liang
- School of Materials Science and Engineering and Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University, Tianjin 300350, People's Republic of China
| |
Collapse
|
39
|
Ma Y, Yu J, Sun M, Chen B, Zhou X, Ye C, Guan Z, Guo W, Wang G, Lu S, Xia D, Wang Y, He Z, Zheng L, Yun Q, Wang L, Zhou J, Lu P, Yin J, Zhao Y, Luo Z, Zhai L, Liao L, Zhu Z, Ye R, Chen Y, Lu Y, Xi S, Huang B, Lee CS, Fan Z. Confined Growth of Silver-Copper Janus Nanostructures with {100} Facets for Highly Selective Tandem Electrocatalytic Carbon Dioxide Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110607. [PMID: 35275439 DOI: 10.1002/adma.202110607] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Electrocatalytic carbon dioxide reduction reaction (CO2 RR) holds significant potential to promote carbon neutrality. However, the selectivity toward multicarbon products in CO2 RR is still too low to meet practical applications. Here the authors report the delicate synthesis of three kinds of Ag-Cu Janus nanostructures with {100} facets (JNS-100) for highly selective tandem electrocatalytic reduction of CO2 to multicarbon products. By controlling the surfactant and reduction kinetics of Cu precursor, the confined growth of Cu with {100} facets on one of the six equal faces of Ag nanocubes is realized. Compared with Cu nanocubes, Ag65 -Cu35 JNS-100 demonstrates much superior selectivity for both ethylene and multicarbon products in CO2 RR at less negative potentials. Density functional theory calculations reveal that the compensating electronic structure and carbon monoxide spillover in Ag65 -Cu35 JNS-100 contribute to the enhanced CO2 RR performance. This study provides an effective strategy to design advanced tandem catalysts toward the extensive application of CO2 RR.
Collapse
Affiliation(s)
- Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Jinli Yu
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Chenliang Ye
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhiqiang Guan
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Weihua Guo
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Shiyao Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Dongsheng Xia
- Institute of Materials Research and Shenzhen Geim Graphene Research Centre, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhen He
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Long Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Liqiang Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Jinwen Yin
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yifei Zhao
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhongbin Luo
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Lingwen Liao
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Ruquan Ye
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, A*STAR, Singapore, 627833, Singapore
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Chun-Sing Lee
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
40
|
Zhang Z, Bian L, Tian H, Liu Y, Bando Y, Yamauchi Y, Wang ZL. Tailoring the Surface and Interface Structures of Copper-Based Catalysts for Electrochemical Reduction of CO 2 to Ethylene and Ethanol. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107450. [PMID: 35128790 DOI: 10.1002/smll.202107450] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Electrochemical CO2 reduction to valuable ethylene and ethanol offers a promising strategy to lower CO2 emissions while storing renewable electricity. Cu-based catalysts have shown the potential for CO2 -to-ethylene/ethanol conversion, but still suffer from low activity and selectivity. Herein, the effects of surface and interface structures in Cu-based catalysts for CO2 -to-ethylene/ethanol production are systematically discussed. Both reactions involve three crucial steps: formation of CO intermediate, CC coupling, and hydrodeoxygenation of C2 intermediates. For ethylene, the key step is CC coupling, which can be enhanced by tailoring the surface structures of catalyst such as step sites on facets, Cu0 /Cuδ+ species and nanopores, as well as the optimized molecule-catalyst and electrolyte-catalyst interfaces further promoting the higher ethylene production. While the controllable hydrodeoxygenation of C2 intermediate is important for ethanol, which can be achieved by tuning the stability of oxygenate intermediates through the metallic cluster induced special atomic configuration and bimetallic synergy induced the double active sites on catalyst surface. Additionally, constraining CO coverage by the complex-catalyst interface and stabilizing CO bond by N-doped carbon/Cu interface can also enhance the ethanol selectivity. The structure-performance relationships will provide the guidance for the design of Cu-based catalysts for highly efficient reduction of CO2 .
Collapse
Affiliation(s)
- Ziyang Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Lei Bian
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Hao Tian
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuan Liu
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yoshio Bando
- Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Zhong-Li Wang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
41
|
Jiang S, D'Amario L, Dau H. Copper Carbonate Hydroxide as Precursor of Interfacial CO in CO 2 Electroreduction. CHEMSUSCHEM 2022; 15:e202102506. [PMID: 35289108 PMCID: PMC9314821 DOI: 10.1002/cssc.202102506] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Copper electrodes are especially effective in catalysis of C2 and further multi-carbon products in the CO2 reduction reaction (CO2 RR) and therefore of major technological interest. The reasons for the unparalleled Cu performance in CO2 RR are insufficiently understood. Here, the electrode-electrolyte interface was highlighted as a dynamic physical-chemical system and determinant of catalytic events. Exploiting the intrinsic surface-enhanced Raman effect of previously characterized Cu foam electrodes, operando Raman experiments were used to interrogate structures and molecular interactions at the electrode-electrolyte interface at subcatalytic and catalytic potentials. Formation of a copper carbonate hydroxide (CuCarHyd) was detected, which resembles the mineral malachite. Its carbonate ions could be directly converted to CO at low overpotential. These and further experiments suggested a basic mode of CO2 /carbonate reduction at Cu electrodes interfaces that contrasted previous mechanistic models: the starting point in carbon reduction was not CO2 but carbonate ions bound to the metallic Cu electrode in form of CuCarHyd structures. It was hypothesized that Cu oxides residues could enhance CO2 RR indirectly by supporting formation of CuCarHyd motifs. The presence of CuCarHyd patches at catalytic potentials might result from alkalization in conjunction with local electrical potential gradients, enabling the formation of metastable CuCarHyd motifs over a large range of potentials.
Collapse
Affiliation(s)
- Shan Jiang
- Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Luca D'Amario
- Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
- Department of ChemistryÅngström LaboratoryUppsala UniversityBox 52375120UppsalaSweden
| | - Holger Dau
- Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| |
Collapse
|
42
|
CO2 Electroreduction over Metallic Oxide, Carbon-Based, and Molecular Catalysts: A Mini-Review of the Current Advances. Catalysts 2022. [DOI: 10.3390/catal12050450] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Electrochemical CO2 reduction reaction (CO2RR) is one of the most challenging targets of current energy research. Multi-electron reduction with proton-coupled reactions is more thermodynamically favorable, leading to diverse product distribution. This requires the design of stable electroactive materials having selective product generation and low overpotentials. In this review, we have explored different CO2RR electrocatalysts in the gas phase and H-cell configurations. Five groups of electrocatalysts ranging from metals and metal oxide, single atom, carbon-based, porphyrins, covalent, metal–organic frameworks, and phthalocyanines-based electrocatalysts have been reviewed. Finally, conclusions and prospects have been elaborated.
Collapse
|
43
|
Sun Y, Wang F, Liu F, Zhang S, Zhao S, Chen J, Huang Y, Liu X, Wu Y, Chen Y. Accelerating Pd Electrocatalysis for CO 2-to-Formate Conversion across a Wide Potential Window by Optimized Incorporation of Cu. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8896-8905. [PMID: 35148060 DOI: 10.1021/acsami.1c19847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrochemical reduction of carbon dioxide (CO2) to formate is a viable way to reduce CO2 emissions and realize a carbon-neutral energy cycle. Although Pd can convert CO2 to formate with a high Faradaic efficiency at minimal overpotentials, it suffers from a limited and narrow potential window. Alloying is an important strategy for the catalyst design and tuning the electronic structures. Here, we report a series of PdCu bimetallic alloy catalysts with tunable compositions based on dendritic architectures. Optimal introduction of Cu atoms into the Pd matrix facilitates formate production and suppresses CO generation. In 0.1 M KHCO3 aqueous solution, our best candidate, Pd82Cu18 catalyst, delivered a high formate Faradaic efficiency of 96.0% at -0.3 V versus RHE. More interestingly, the high selectivity (>90%) toward formate maintained an enlarged electrochemical potential window of 600 mV. The ensemble effect with electronic coupling between Pd and Cu upon alloying and its induced moderate surface O-containing configuration were found to enhance the formate formation and suppress CO poisoning during CO2 reduction.
Collapse
Affiliation(s)
- Yidan Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science & Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Fenfen Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science & Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Fang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science & Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Shukang Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science & Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Shulin Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science & Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Juan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science & Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yan Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science & Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xiaojing Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science & Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yuping Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science & Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yuhui Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science & Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| |
Collapse
|
44
|
Zhu J, Wang Y, Zhi A, Chen Z, Shi L, Zhang Z, Zhang Y, Zhu Y, Qiu X, Tian X, Bai X, Zhang Y, Zhu Y. Cation‐Deficiency‐Dependent CO
2
Electroreduction over Copper‐Based Ruddlesden–Popper Perovskite Oxides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiawei Zhu
- School of Chemical and Material Engineering Jiangnan University Wuxi Jiangsu 214122 China
| | - Yanying Wang
- School of Chemical and Material Engineering Jiangnan University Wuxi Jiangsu 214122 China
| | - Aomiao Zhi
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Zitao Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Lei Shi
- College of Materials Science and Engineering Nanjing Forestry University Nanjing 210037 China
| | - Zhenbao Zhang
- Department of Chemistry College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Yu Zhang
- School of Mechanical and Power Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yinlong Zhu
- Department of Chemical Engineering Monash University Clayton Victoria 3800 Australia
| | - Xiaoyu Qiu
- School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Xuezeng Tian
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Ying Zhang
- School of Chemical and Material Engineering Jiangnan University Wuxi Jiangsu 214122 China
| | - Yongfa Zhu
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
45
|
Wang H, Bi X, Zhao Y, Yang Z, Wang Z, Wu M. Cu3N Nanoparticles with Both (100) and (111) Facets for Enhancing the Selectivity and Activity of CO2 Electroreduction to Ethylene. NEW J CHEM 2022. [DOI: 10.1039/d2nj02175g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CO2 electroreduction to high value-added chemicals is a prospective approach to realize the utilization of CO2 resources and mitigate the greenhouse effect. Ethylene (C2H4), as an important chemical materials, is...
Collapse
|
46
|
Kim JY, Kim G, Won H, Gereige I, Jung WB, Jung HT. Synergistic Effect of Cu 2 O Mesh Pattern on High-Facet Cu Surface for Selective CO 2 Electroreduction to Ethanol. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106028. [PMID: 34658080 DOI: 10.1002/adma.202106028] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Although the electroconversion of carbon dioxide (CO2 ) into ethanol is considered to be one of the most promising ways of using CO2 , the ethanol selectivity is less than 50% because of difficulties in designing an optimal catalyst that arise from the complicated pathways for the electroreduction of CO2 to ethanol. Several approaches including the fabrication of oxide-derived structures, atomic surface control, and the Cu+ /Cu interfaces have been primarily used to produce ethanol from CO2 . Here, a combined structure with Cu+ and high-facets as electrocatalysts is constructed by creating high-facets of wrinkled Cu surrounded by Cu2 O mesh patterns. Using chemical vapor deposition graphene growth procedures, the insufficiently grown graphene is used as an oxidation-masking material, and the high-facet wrinkled Cu is simultaneously generated during the graphene growth synthesis. The resulting electrocatalyst shows an ethanol selectivity of 43% at -0.8 V versus reversible hydrogen electrode, which is one of the highest ethanol selectivity values reported thus far. This is attributed to the role of Cu+ in enhancing CO binding strength, and the high-facets, which favor C-C coupling and the ethanol pathway. This method for generating the combined structure can be widely applicable not only for electrochemical catalysts but also in various fields.
Collapse
Affiliation(s)
- Ju Ye Kim
- Department of Chemical and Biomolecular Engineering (BK-21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- Chemical and Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Gukbo Kim
- Department of Chemical and Biomolecular Engineering (BK-21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Hyeonsik Won
- Department of Chemical and Biomolecular Engineering (BK-21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Issam Gereige
- Saudi Aramco, Research and Development Center, Dhahran, 31311, Saudi Arabia
| | - Woo-Bin Jung
- Department of Chemical and Biomolecular Engineering (BK-21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering (BK-21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| |
Collapse
|
47
|
Zhang S, Wang J, Wang J, Wang KY, Zhao M, Zhang L, Wang C. A gradient Sn 4+@Sn 2+ core@shell structure induced by a strong metal oxide–support interaction for enhanced CO 2 electroreduction. Dalton Trans 2022; 51:16135-16144. [DOI: 10.1039/d2dt02788g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A gradient Sn4+@Sn2+ core@shell structure induced by a strong tin oxide–g-C3N4 support interaction enhanced the adsorption and stabilization of CO2˙−, and hence the CO2RR performances.
Collapse
Affiliation(s)
- Shun Zhang
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Center for Electron Microscopy, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Juan Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Center for Electron Microscopy, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jie Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Center for Electron Microscopy, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Kai-Yao Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Center for Electron Microscopy, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Linlin Zhang
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Center for Electron Microscopy, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Cheng Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Center for Electron Microscopy, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
48
|
Deng B, Huang M, Li K, Zhao X, Geng Q, Chen S, Xie H, Dong X, Wang H, Dong F. The Crystal Plane is not the Key Factor for CO
2
‐to‐Methane Electrosynthesis on Reconstructed Cu
2
O Microparticles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202114080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Bangwei Deng
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P.R. China
| | - Ming Huang
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P.R. China
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive 637457 Singapore Singapore
| | - Kanglu Li
- College of Architecture and Environment Sichuan University Chengdu 610065 P.R. China
| | - Xiaoli Zhao
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
| | - Qin Geng
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P.R. China
| | - Si Chen
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P.R. China
| | - Hongtao Xie
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P.R. China
| | - Xing'an Dong
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
| | - Hong Wang
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P.R. China
| |
Collapse
|
49
|
Chen Z, Zhang G, Wen Y, Chen N, Chen W, Regier T, Dynes J, Zheng Y, Sun S. Atomically Dispersed Fe-Co Bimetallic Catalysts for the Promoted Electroreduction of Carbon Dioxide. NANO-MICRO LETTERS 2021; 14:25. [PMID: 34889998 PMCID: PMC8664923 DOI: 10.1007/s40820-021-00746-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/08/2021] [Indexed: 05/05/2023]
Abstract
The electroreduction reaction of CO2 (ECO2RR) requires high-performance catalysts to convert CO2 into useful chemicals. Transition metal-based atomically dispersed catalysts are promising for the high selectivity and activity in ECO2RR. This work presents a series of atomically dispersed Co, Fe bimetallic catalysts by carbonizing the Fe-introduced Co-zeolitic-imidazolate-framework (C-Fe-Co-ZIF) for the syngas generation from ECO2RR. The synergistic effect of the bimetallic catalyst promotes CO production. Compared to the pure C-Co-ZIF, C-Fe-Co-ZIF facilitates CO production with a CO Faradaic efficiency (FE) boost of 10%, with optimal FECO of 51.9%, FEH2 of 42.4% at - 0.55 V, and CO current density of 8.0 mA cm-2 at - 0.7 V versus reversible hydrogen electrode (RHE). The H2/CO ratio is tunable from 0.8 to 4.2 in a wide potential window of - 0.35 to - 0.8 V versus RHE. The total FECO+H2 maintains as high as 93% over 10 h. The proper adding amount of Fe could increase the number of active sites and create mild distortions for the nanoscopic environments of Co and Fe, which is essential for the enhancement of the CO production in ECO2RR. The positive impacts of Cu-Co and Ni-Co bimetallic catalysts demonstrate the versatility and potential application of the bimetallic strategy for ECO2RR.
Collapse
Affiliation(s)
- Zhangsen Chen
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC, J3X 1P7, Canada
| | - Gaixia Zhang
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC, J3X 1P7, Canada.
| | - Yuren Wen
- School of Materials Science and Engineering, University of Science and Technology, 100083, Beijing, People's Republic of China
| | - Ning Chen
- Canadian Light Source, University of Saskatchewan, Saskatoon, SK, S7N 2V3, Canada
| | - Weifeng Chen
- Canadian Light Source, University of Saskatchewan, Saskatoon, SK, S7N 2V3, Canada
| | - Tom Regier
- Canadian Light Source, University of Saskatchewan, Saskatoon, SK, S7N 2V3, Canada
| | - James Dynes
- Canadian Light Source, University of Saskatchewan, Saskatoon, SK, S7N 2V3, Canada
| | - Yi Zheng
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, People's Republic of China.
| | - Shuhui Sun
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC, J3X 1P7, Canada.
| |
Collapse
|
50
|
Deng B, Huang M, Li K, Zhao X, Geng Q, Chen S, Xie H, Dong X, Wang H, Dong F. The Crystal Plane is not the Key Factor for CO 2 -to-Methane Electrosynthesis on Reconstructed Cu 2 O Microparticles. Angew Chem Int Ed Engl 2021; 61:e202114080. [PMID: 34882934 DOI: 10.1002/anie.202114080] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 02/04/2023]
Abstract
Cu2 O microparticles with controllable crystal planes and relatively high stability have been recognized as a good platform to understand the mechanism of the electrocatalytic CO2 reduction reaction (CO2 RR). Herein, we demonstrate that the in situ generated Cu2 O/Cu interface plays a key role in determining the selectivity of methane formation, rather than the initial crystal plane of the reconstructed Cu2 O microparticles. Experimental results indicate that the methane evolution is dominated on all three different crystal planes with similar Tafel slopes and long-term stabilities. Density functional theory (DFT) calculations further reveal that *CO is protonated via a similar bridge configuration at the Cu2 O/Cu interface, regardless of the initial crystal planes of Cu2 O. The Gibbs free energy changes (ΔG) of *CHO on different reconstructed Cu2 O planes are close and more negative than that of *OCCOH, indicating the methane formation is more favorable than ethylene on all Cu2 O crystal planes.
Collapse
Affiliation(s)
- Bangwei Deng
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China
| | - Ming Huang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China.,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore, Singapore
| | - Kanglu Li
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, P.R. China
| | - Xiaoli Zhao
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Qin Geng
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China
| | - Si Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China
| | - Hongtao Xie
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China
| | - Xing'an Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Hong Wang
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China
| |
Collapse
|