1
|
Wang Z, Jia Y, Wang X, Liu Y, Liu Q. Fe(II) Induced Porphyrin Nanoaggregates Assembled in the Liquid-Liquid Interface with Dual Enzyme-like Activity for Colorimetric Determination of Methimazole. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39467156 DOI: 10.1021/acs.langmuir.4c02842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The liquid-liquid interface offers a confined space to control the growth of nanomaterials. In this study, Fe(II) (water phase) induced Meso-tetra (4-carboxyphenyl) porphyrin (H2TCPP) (CHCl3, organic phase) into nanoaggregates (Fe-TCPP) in the liquid-liquid interface. By tuning the ratio of DMF in organic solvents, Fe(II) induced H2TCPP into two nanoaggregates (Fe-TCPP-1 and Fe-TCPP-2) with different morphologies via coordination interaction occurring at the water-CHCl3 interface. Interestingly, the Fe-TCPP nanoaggregates possess dual enzyme-like activity (peroxidase-like and oxidase-like activity). In particular, both Fe-TCPP-1 and Fe-TCPP-2 demonstrate a peroxidase-/oxidase-like activity under visible light irradiation that is higher than that in the dark. Comparatively, Fe-TCPP-2 exhibits enhanced peroxide-like (POD) activity together with oxidase-like (OXD) activity compared with that of Fe-TCPP-1 under the corresponding similar conditions. The excellent enzyme mimic activity of Fe-TCPP nanozymes is ascribed to the generated hydroxyl radicals (·OH) and superoxide anions (O2•-). Remarkably, the catalytic activity of Fe-TCPP-2 remains more than 90% even in the higher temperature range of 35-40 °C, which is significant for biological detection under physiological conditions. Based on the outstanding dual enzyme-like activity of Fe-TCPP-2, a colorimetric sensing platform for methimazole (an antithyroid medicine) has been developed, demonstrating a linear detection range of 10-100 μM and a detection limit of 4.44 μM.
Collapse
Affiliation(s)
- Zhiwei Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P R China
| | - Yuqi Jia
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P R China
| | - Xiajuan Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P R China
| | - Yanhong Liu
- Technical Institute of Physics and Chemistry, CAS, Beijing 100190, P R China
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P R China
| |
Collapse
|
2
|
Jyoti, Castillo AR, Jurado-Sánchez B, Pumera M, Escarpa A. Active Quantum Biomaterials-Enhanced Microrobots for Food Safety. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404248. [PMID: 39449211 DOI: 10.1002/smll.202404248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/22/2024] [Indexed: 10/26/2024]
Abstract
Timely disruptive tools for the detection of pathogens in foods are needed to face global health and economic challenges. Herein, the utilization of quantum biomaterials-enhanced microrobots (QBEMRs) as autonomous mobile sensors designed for the precise detection of endotoxins originating from Salmonella enterica (S. enterica) as an indicator species for food-borne contamination globally is presented. A fluorescent molecule-labeled affinity peptide functions as a specific probe, is quenched upon binding to the surface of QBEMRs. Owing to its selective affinity for endotoxin, in the presence of S. enterica the fluorescence is restored and easy to observe and quantifies optical color change to indicate the presence of Salmonella. The devised approach is designed to achieve highly sensitive detection of the S. enterica serovar Typhimurium endotoxin with exquisite selectivity through the utilization of QBEMRs. Notably, no fluorescence signal is observed in the presence of endotoxins bearing similar structural characteristics, highlighting the selectivity of the approach during food sample analysis. Technically, the strategy is implemented in microplate readers to extend microrobots-based approaches to the routine laboratory. This new platform can provide fast and anticipated results in food safety.
Collapse
Affiliation(s)
- Jyoti
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Universidad de Alcala, Alcala de Henares, Madrid, E-28802, Spain
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology (CEITEC-BUT), Brno, 61200, Czech Republic
| | - Alberto-Rodríguez Castillo
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Universidad de Alcala, Alcala de Henares, Madrid, E-28802, Spain
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Universidad de Alcala, Alcala de Henares, Madrid, E-28802, Spain
- Chemical Research Institute "Andres M. Del Río,", Universidad de Alcala, Alcala de Henares, Madrid, E-28802, Spain
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology (CEITEC-BUT), Brno, 61200, Czech Republic
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Universidad de Alcala, Alcala de Henares, Madrid, E-28802, Spain
- Chemical Research Institute "Andres M. Del Río,", Universidad de Alcala, Alcala de Henares, Madrid, E-28802, Spain
| |
Collapse
|
3
|
Estifeeva TM, Nechaeva AM, Le-Deygen IM, Adelyanov AM, Grigoryan IV, Petrovskii VS, Potemkin II, Abramov AA, Prosvirnin AV, Sencha EA, Borozdenko DA, Barmin RA, Mezhuev YO, Gorin DA, Rudakovskaya PG. Ultrasound protein-copolymer microbubble library engineering through poly(vinylpyrrolidone-co-acrylic acid) structure. BIOMATERIALS ADVANCES 2024; 166:214074. [PMID: 39447238 DOI: 10.1016/j.bioadv.2024.214074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
HYPOTHESIS While albumin-coated microbubbles are routine contrast agents for ultrasound imaging, their short duration of contrast enhancement limits their use, yet can be improved by incorporating protein-copolymer hybrids into microbubble shells. The incorporation of N-vinyl-2-pyrrolidone and acrylic acid copolymer (P(VP-AA)) has been shown to enhance the performance of bovine serum albumin (BSA)-coated microbubbles. However, the impact of the copolymer structural properties on key microbubble characteristics (i.e., concentration, mean diameter and acoustic response) remains poorly understood. Therefore, we hypothesize that the copolymer structure affects its capacity to form micelle-like nanoaggregates, protein-copolymer hybrids, and microbubble shells, ultimately influencing the physicochemical and acoustic properties of the microbubbles. EXPERIMENTS Here we evaluate the production and performance of BSA@P(VP-AA) microbubbles synthesized using a series of P(VP-AA) copolymers with -C8H17 and -C18H37 end groups and molecular weight cutoffs between 3.5 and 15 kDa. Both simulation and experimental data demonstrate that interactions between BSA and the copolymers significantly influence the performance of the resulting microbubbles across the library of 60 formulations. FINDINGS The introduction of -C8H17 terminated copolymers into microbubble shells resulted in up to 200-fold higher concentration, 7-fold greater acoustic response, and 5-fold longer ultrasound contrast enhancement compared to plain BSA microbubbles. The enhanced acoustic performance was sustained during in vivo cardiac ultrasound imaging, without altering liver accumulation after copolymer introduction. These findings underscore how optimizing copolymer structure (specifically the terminal end group and molecular weight) can tailor the formation and performance of protein-copolymer-coated microbubbles, offering valuable insights for designing ultrasound contrast agents.
Collapse
Affiliation(s)
- Tatiana M Estifeeva
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Anna M Nechaeva
- Department of Biomaterials, Dmitry Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia
| | - Irina M Le-Deygen
- Chemical Enzymology Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Artem M Adelyanov
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ilya V Grigoryan
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | | | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander A Abramov
- Laboratory of Experimental Heart Pathology, Institute of Experimental Cardiology, Chazov National Medical Research Center for Cardiology, Ministry of Health of Russia, Moscow 121552, Russia
| | - Anton V Prosvirnin
- Laboratory of Experimental Heart Pathology, Institute of Experimental Cardiology, Chazov National Medical Research Center for Cardiology, Ministry of Health of Russia, Moscow 121552, Russia
| | - Ekaterina A Sencha
- Department of Clinical Ultrasound and Functional Diagnostics, M.F. Vladimirsky Moscow Regional Clinical Research Institute (MONIKI), Moscow 129110, Russia
| | - Denis A Borozdenko
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, Ministry of Health of Russia, Moscow 117997, Russia
| | - Roman A Barmin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | - Yaroslav O Mezhuev
- Department of Biomaterials, Dmitry Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia; A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow 119334, Russia
| | - Dmitry A Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Polina G Rudakovskaya
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| |
Collapse
|
4
|
Xiong Y, Mi B, Liu G, Zhao Y. Microenvironment-sensitive nanozymes for tissue regeneration. Biomaterials 2024; 309:122585. [PMID: 38692147 DOI: 10.1016/j.biomaterials.2024.122585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Tissue defect is one of the significant challenges encountered in clinical practice. Nanomaterials, including nanoparticles, nanofibers, and metal-organic frameworks, have demonstrated an extensive potential in tissue regeneration, offering a promising avenue for future clinical applications. Nonetheless, the intricate landscape of the inflammatory tissue microenvironment has engendered challenges to the efficacy of nanomaterial-based therapies. This quandary has spurred researchers to pivot towards advanced nanotechnological remedies for overcoming these therapeutic constraints. Among these solutions, microenvironment-sensitive nanozymes have emerged as a compelling instrument with the capacity to reshape the tissue microenvironment and enhance the intricate process of tissue regeneration. In this review, we summarize the microenvironmental characteristics of damaged tissues, offer insights into the rationale guiding the design and engineering of microenvironment-sensitive nanozymes, and explore the underlying mechanisms that underpin these nanozymes' responsiveness. This analysis includes their roles in orchestrating cellular signaling, modulating immune responses, and promoting the delicate process of tissue remodeling. Furthermore, we discuss the diverse applications of microenvironment-sensitive nanozymes in tissue regeneration, including bone, soft tissue, and cartilage regeneration. Finally, we shed our sights on envisioning the forthcoming milestones in this field, prospecting a future where microenvironment-sensitive nanozymes contribute significantly to the development of tissue regeneration and improved clinical outcomes.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Bobin Mi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore; Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
5
|
Huang S, Shang M, Guo L, Sun X, Xiao S, Shi D, Meng D, Zhao Y, Wang X, Liu R, Li J. Hydralazine loaded nanodroplets combined with ultrasound-targeted microbubble destruction to induce pyroptosis for tumor treatment. J Nanobiotechnology 2024; 22:193. [PMID: 38643134 PMCID: PMC11031971 DOI: 10.1186/s12951-024-02453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/01/2024] [Indexed: 04/22/2024] Open
Abstract
Pyroptosis, a novel type of programmed cell death (PCD), which provides a feasible therapeutic option for the treatment of tumors. However, due to the hypermethylation of the promoter, the critical protein Gasdermin E (GSDME) is lacking in the majority of cancer cells, which cannot start the pyroptosis process and leads to dissatisfactory therapeutic effects. Additionally, the quick clearance, systemic side effects, and low concentration at the tumor site of conventional pyroptosis reagents restrict their use in clinical cancer therapy. Here, we described a combination therapy that induces tumor cell pyroptosis via the use of ultrasound-targeted microbubble destruction (UTMD) in combination with DNA demethylation. The combined application of UTMD and hydralazine-loaded nanodroplets (HYD-NDs) can lead to the rapid release of HYD (a demethylation drug), which can cause the up-regulation of GSDME expression, and produce reactive oxygen species (ROS) by UTMD to cleave up-regulated GSDME, thereby inducing pyroptosis. HYD-NDs combined with ultrasound (US) group had the strongest tumor inhibition effect, and the tumor inhibition rate was 87.15% (HYD-NDs group: 51.41 ± 3.61%, NDs + US group: 32.73%±7.72%), indicating that the strategy had a more significant synergistic anti-tumor effect. In addition, as a new drug delivery carrier, HYD-NDs have great biosafety, tumor targeting, and ultrasound imaging performance. According to the results, the combined therapy reasonably regulated the process of tumor cell pyroptosis, which offered a new strategy for optimizing the therapy of GSDME-silenced solid tumors.
Collapse
Affiliation(s)
- Shuting Huang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Mengmeng Shang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Lu Guo
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiao Sun
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Shan Xiao
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Dandan Shi
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Dong Meng
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yading Zhao
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoxuan Wang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Rui Liu
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Department of Ultrasound, Qilu Hospital (Qingdao) of Shandong University, Qingdao, Shandong, 266035, China.
| |
Collapse
|
6
|
Gusliakova OI, Kurochkin MA, Barmin RA, Prikhozhdenko ES, Estifeeva TM, Rudakovskaya PG, Sindeeva OA, Galushka VV, Vavaev ES, Komlev AS, Lyubin EV, Fedyanin AA, Dey KK, Gorin DA. Magnetically navigated microbubbles coated with albumin/polyarginine and superparamagnetic iron oxide nanoparticles. BIOMATERIALS ADVANCES 2024; 158:213759. [PMID: 38227987 DOI: 10.1016/j.bioadv.2024.213759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024]
Abstract
While microbubbles (MB) are routinely used for ultrasound (US) imaging, magnetic MB are increasingly explored as they can be guided to specific sites of interest by applied magnetic field gradient. This requires the MB shell composition tuning to prolong MB stability and provide functionalization capabilities with magnetic nanoparticles. Hence, we developed air-filled MB stabilized by a protein-polymer complex of bovine serum albumin (BSA) and poly-L-arginine (pArg) of different molecular weights, showing that pArg of moderate molecular weight distribution (15-70 kDa) enabled MB with greater stability and acoustic response while preserving MB narrow diameters and the relative viability of THP-1 cells after 48 h of incubation. After MB functionalization with superparamagnetic iron oxide nanoparticles (SPION), magnetic moment values provided by single MB confirmed the sufficient SPION deposition onto BSA + pArg MB shells. During MB magnetic navigation in a blood vessel mimicking phantom with magnetic tweezers and in a Petri dish with adherent mouse renal carcinoma cell line, we demonstrated the effectiveness of magnetic MB localization in the desired area by magnetic field gradient. Magnetic MB co-localization with cells was further exploited for effective doxorubicin delivery with drug-loaded MB. Taken together, these findings open new avenues in control over albumin MB properties and magnetic navigation of SPION-loaded MB, which can envisage their applications in diagnostic and therapeutic needs.
Collapse
Affiliation(s)
- Olga I Gusliakova
- Science Medical Center, Saratov State University, Saratov 410012, Russia; Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | - Maxim A Kurochkin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Roman A Barmin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | | | - Tatyana M Estifeeva
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Polina G Rudakovskaya
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Olga A Sindeeva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Victor V Galushka
- Education and Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov 410012, Russia
| | - Evgeny S Vavaev
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Aleksei S Komlev
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Evgeny V Lyubin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrey A Fedyanin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Krishna Kanti Dey
- Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382055, India
| | - Dmitry A Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| |
Collapse
|
7
|
Barmin RA, Moosavifar M, Zhang R, Rütten S, Thoröe-Boveleth S, Rama E, Ojha T, Kiessling F, Lammers T, Pallares RM. Hybrid ultrasound and photoacoustic contrast agent designs combining metal phthalocyanines and PBCA microbubbles. J Mater Chem B 2024; 12:2511-2522. [PMID: 38334758 PMCID: PMC10916536 DOI: 10.1039/d3tb02950f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Photoacoustic (PA) imaging is an emerging diagnostic technology that combines the penetration depth of ultrasound (US) imaging and the contrast resolution of optical imaging. Although PA imaging can visualize several endogenous chromophores to obtain clinically-relevant information, multiple applications require the administration of external contrast agents. Metal phthalocyanines have strong PA properties and chemical stability, but their extreme hydrophobicity requires their encapsulation in delivery systems for biomedical applications. Hence, we developed hybrid US/PA contrast agents by encapsulating metal phthalocyanines in poly(butyl cyanoacrylate) microbubbles (PBCA MB), which display acoustic response and ability to efficiently load hydrophobic drugs. Six different metal chromophores were loaded in PBCA MB, showing greater encapsulation efficiency with higher chromophore hydrophobicity. Notably, while the US response of the MB was unaffected by the loading of the chromophores, the PA characteristics varied greatly. Among the different formulations, MB loaded with zinc and cobalt naphthalocyanines showed the strongest PA contrast, as a result of high encapsulation efficiencies and tunable optical properties. The strong US and PA contrast signals of the formulations were preserved in biological environment, as demonstrated by in vitro imaging in serum and whole blood, and ex vivo imaging in deceased mice. Taken together, these findings highlight the advantages of combining highly hydrophobic PA contrast agents and polymeric MB for the development of contrast agents for hybrid US/PA imaging, where different types of information (structural, functional, or potentially molecular) can be acquired by combining both imaging modalities.
Collapse
Affiliation(s)
- Roman A Barmin
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - MirJavad Moosavifar
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Rui Zhang
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Stephan Rütten
- Electron Microscope Facility, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Sven Thoröe-Boveleth
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Elena Rama
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Tarun Ojha
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| |
Collapse
|
8
|
Amiri Z, Hasani A, Abedini F, Malek M, Madaah Hosseini HR. Urease-Powered Black TiO 2 Micromotors for Photothermal Therapy of Bladder Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3019-3030. [PMID: 38217858 DOI: 10.1021/acsami.3c11772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Urease-powered nano/micromotors can move at physiological urea concentrations, making them useful for biomedical applications, such as treating bladder cancer. However, their movement in biological environments is still challenging. Herein, Janus micromotors based on black TiO2 with urease asymmetric catalytic coating were designed to take benefit of the optical properties of black TiO2 under near-infrared light and the movement capability in simulated bladder environments (urea). The black TiO2 microspheres were half-coated with a thin layer of Au, and l-Cysteine was utilized to attach the urease enzyme to the Au surface using its thiol group. Biocatalytic hydrolysis of urea through urease at biologically relevant concentrations provided the driving force for micromotors. A variety of parameters, such as urea fuel concentration, viscosity, and ionic character of the environment, were used to investigate how micromotors moved in different concentrations of urea in water, PBS, NaCl, and urine. The results indicate that micromotors are propelled through ionic self-diffusiophoresis caused by urea enzymatic catalysis. Due to their low toxicity and in vitro anticancer effect, micromotors are effective agents for photothermal therapy, which can help kill bladder cancer cells. These promising results suggest that biocompatible micromotors hold great potential for improving cancer treatment and facilitating diagnosis.
Collapse
Affiliation(s)
- Zahra Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, P. C. 1458889694 Tehran, Iran
| | - Atefeh Hasani
- Department of Materials Science and Engineering, Sharif University of Technology, P. C. 1458889694 Tehran, Iran
| | - Fatemeh Abedini
- Department of Mechanical Engineering, Faculty of Engineering, University of Hormozgan, P. C. 7916193145 Bandar Abbas, Iran
| | - Mahrooz Malek
- Department of Radiology, Medical Imaging Center, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Imam Khomeini Hospital, P. C. 1416634793 Tehran, Iran
| | - Hamid Reza Madaah Hosseini
- Department of Materials Science and Engineering, Sharif University of Technology, P. C. 1458889694 Tehran, Iran
- Institute for Convergence Science and Technology (ICST), Sharif University of Technology, P. C. 1458889694 Tehran, Iran
| |
Collapse
|
9
|
Sun Z, Zhang B, Tu H, Pan C, Chai Y, Chen W. Advances in colorimetric biosensors of exosomes: novel approaches based on natural enzymes and nanozymes. NANOSCALE 2024; 16:1005-1024. [PMID: 38117141 DOI: 10.1039/d3nr05459d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Exosomes are 30-150 nm vesicles derived from diverse cell types, serving as one of the most important biomarkers for early diagnosis and prognosis of diseases. However, the conventional detection method for exosomes faces significant challenges, such as unsatisfactory sensitivity, complicated operation, and the requirement of complicated devices. In recent years, colorimetric exosome biosensors with a visual readout underwent rapid development due to the advances in natural enzyme-based assays and the integration of various types of nanozymes. These synthetic nanomaterials show unique physiochemical properties and catalytic abilities, enabling the construction of exosome colorimetric biosensors with novel principles. This review will illustrate the reaction mechanisms and properties of natural enzymes and nanozymes, followed by a detailed introduction of the recent advances in both types of enzyme-based colorimetric biosensors. A comparison between natural enzymes and nanozymes is made to provide insights into the research that improves the sensitivity and convenience of assays. Finally, the advantages, challenges, and future directions of enzymes as well as exosome colorimetric biosensors are highlighted, aiming at improving the overall performance from different approaches.
Collapse
Affiliation(s)
- Zhonghao Sun
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Binmao Zhang
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Hangjia Tu
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Chuye Pan
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China.
| | - Yujuan Chai
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Wenwen Chen
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Hajam MI, Khan MM. Microfluidics: a concise review of the history, principles, design, applications, and future outlook. Biomater Sci 2024; 12:218-251. [PMID: 38108438 DOI: 10.1039/d3bm01463k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Microfluidic technologies have garnered significant attention due to their ability to rapidly process samples and precisely manipulate fluids in assays, making them an attractive alternative to conventional experimental methods. With the potential for revolutionary capabilities in the future, this concise review provides readers with insights into the fascinating world of microfluidics. It begins by introducing the subject's historical background, allowing readers to familiarize themselves with the basics. The review then delves into the fundamental principles, discussing the underlying phenomena at play. Additionally, it highlights the different aspects of microfluidic device design, classification, and fabrication. Furthermore, the paper explores various applications, the global market, recent advancements, and challenges in the field. Finally, the review presents a positive outlook on trends and draws lessons to support the future flourishing of microfluidic technologies.
Collapse
Affiliation(s)
- Mohammad Irfan Hajam
- Department of Mechanical Engineering, National Institute of Technology Srinagar, India.
| | - Mohammad Mohsin Khan
- Department of Mechanical Engineering, National Institute of Technology Srinagar, India.
| |
Collapse
|
11
|
Barmin RA, Dasgupta A, Rix A, Weiler M, Appold L, Rütten S, Padilla F, Kuehne AJC, Pich A, De Laporte L, Kiessling F, Pallares RM, Lammers T. Enhanced Stable Cavitation and Nonlinear Acoustic Properties of Poly(butyl cyanoacrylate) Polymeric Microbubbles after Bioconjugation. ACS Biomater Sci Eng 2024; 10:75-81. [PMID: 36315422 DOI: 10.1021/acsbiomaterials.2c01021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microbubbles (MB) are used as ultrasound (US) contrast agents in clinical settings because of their ability to oscillate upon exposure to acoustic pulses and generate nonlinear responses with a stable cavitation profile. Polymeric MB have recently attracted increasing attention as molecular imaging probes and drug delivery agents based on their tailorable acoustic responses, high drug loading capacity, and surface functionalization capabilities. While many of these applications require MB to be functionalized with biological ligands, the impact of bioconjugation on polymeric MB cavitation and acoustic properties remains poorly understood. Hence, we here evaluated the effects of MB shell hydrolysis and subsequent streptavidin conjugation on the acoustic behavior of poly(butyl cyanoacrylate) (PBCA) MB. We show that upon biofunctionalization, MB display higher acoustic stability, stronger stable cavitation, and enhanced second harmonic generation. Furthermore, functionalized MB preserve the binding capabilities of streptavidin conjugated on their surface. These findings provide insights into the effects of bioconjugation chemistry on polymeric MB acoustic properties, and they contribute to improving the performance of polymer-based US imaging and theranostic agents.
Collapse
Affiliation(s)
- Roman A Barmin
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Anshuman Dasgupta
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Anne Rix
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Marek Weiler
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Lia Appold
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Stephan Rütten
- Electron Microscope Facility, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Frederic Padilla
- Focused Ultrasound Foundation, Charlottesville, Virginia 22903, United States
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, Lyon F-69003, France
- Department of Radiology, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Alexander J C Kuehne
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Andrij Pich
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University Hospital, Aachen 52074, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52074, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, 6167 RD Geleen, The Netherlands
| | - Laura De Laporte
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University Hospital, Aachen 52074, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52074, Germany
- Institute of Applied Medical Engineering, Department of Advanced Materials for Biomedicine, RWTH Aachen University, Aachen 52074, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| |
Collapse
|
12
|
Seo S, Kim T. Gas transport mechanisms through gas-permeable membranes in microfluidics: A perspective. BIOMICROFLUIDICS 2023; 17:061301. [PMID: 38025658 PMCID: PMC10656118 DOI: 10.1063/5.0169555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Gas-permeable membranes (GPMs) and membrane-like micro-/nanostructures offer precise control over the transport of liquids, gases, and small molecules on microchips, which has led to the possibility of diverse applications, such as gas sensors, solution concentrators, and mixture separators. With the escalating demand for GPMs in microfluidics, this Perspective article aims to comprehensively categorize the transport mechanisms of gases through GPMs based on the penetrant type and the transport direction. We also provide a comprehensive review of recent advancements in GPM-integrated microfluidic devices, provide an overview of the fundamental mechanisms underlying gas transport through GPMs, and present future perspectives on the integration of GPMs in microfluidics. Furthermore, we address the current challenges associated with GPMs and GPM-integrated microfluidic devices, taking into consideration the intrinsic material properties and capabilities of GPMs. By tackling these challenges head-on, we believe that our perspectives can catalyze innovative advancements and help meet the evolving demands of microfluidic applications.
Collapse
Affiliation(s)
- Sangjin Seo
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Taesung Kim
- Author to whom correspondence should be addressed:. Tel.: +82-52-217-2313. Fax: +82-52-217-2409
| |
Collapse
|
13
|
Barmin RA, Moosavifar M, Dasgupta A, Herrmann A, Kiessling F, Pallares RM, Lammers T. Polymeric materials for ultrasound imaging and therapy. Chem Sci 2023; 14:11941-11954. [PMID: 37969594 PMCID: PMC10631124 DOI: 10.1039/d3sc04339h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/11/2023] [Indexed: 11/17/2023] Open
Abstract
Ultrasound (US) is routinely used for diagnostic imaging and increasingly employed for therapeutic applications. Materials that act as cavitation nuclei can improve the resolution of US imaging, and facilitate therapeutic US procedures by promoting local drug delivery or allowing temporary biological barrier opening at moderate acoustic powers. Polymeric materials offer a high degree of control over physicochemical features concerning responsiveness to US, e.g. via tuning chain composition, length and rigidity. This level of control cannot be achieved by materials made of lipids or proteins. In this perspective, we present key engineered polymeric materials that respond to US, including microbubbles, gas-stabilizing nanocups, microcapsules and gas-releasing nanoparticles, and discuss their formulation aspects as well as their principles of US responsiveness. Focusing on microbubbles as the most common US-responsive polymeric materials, we further evaluate the available chemical toolbox to engineer polymer shell properties and enhance their performance in US imaging and US-mediated drug delivery. Additionally, we summarize emerging applications of polymeric microbubbles in molecular imaging, sonopermeation, and gas and drug delivery, based on refinement of MB shell properties. Altogether, this manuscript provides new perspectives on US-responsive polymeric designs, envisaging their current and future applications in US imaging and therapy.
Collapse
Affiliation(s)
- Roman A Barmin
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - MirJavad Moosavifar
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Anshuman Dasgupta
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Andreas Herrmann
- DWI - Leibniz Institute for Interactive Materials Aachen 52074 Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Aachen 52074 Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| |
Collapse
|
14
|
Kumar P, Chakrabarti R. Escape dynamics of a self-propelled nanorod from circular confinements with narrow openings. SOFT MATTER 2023; 19:6743-6753. [PMID: 37623699 DOI: 10.1039/d3sm00723e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
We perform computer simulations to explore the escape dynamics of a self-propelled (active) nanorod from circular confinements with narrow opening(s). Our results clearly demonstrate how the persistent and directed motion of the nanorod helps it to escape. Such escape events are absent if the nanorod is passive. To quantify the escape dynamics, we compute the radial probability density function (RPDF) and mean first escape time (MFET) and show how the activity is responsible for the bimodality of RPDF, which is clearly absent if the nanorod is passive. Broadening of displacement distributions with activity has also been observed. The computed mean first escape time decreases with activity. In contrast, the fluctuations of the first escape times vary in a non-monotonic way. This results in high values of the coefficient of variation and indicates the presence of multiple timescales in first escape time distributions and multimodality in uniformity index distributions. We hope our study will help in differentiating activity-driven escape dynamics from purely thermal passive diffusion in confinement.
Collapse
Affiliation(s)
- Praveen Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
15
|
Xin C, Ren Z, Zhang L, Yang L, Wang D, Hu Y, Li J, Chu J, Zhang L, Wu D. Light-triggered multi-joint microactuator fabricated by two-in-one femtosecond laser writing. Nat Commun 2023; 14:4273. [PMID: 37460571 DOI: 10.1038/s41467-023-40038-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Inspired by the flexible joints of humans, actuators containing soft joints have been developed for various applications, including soft grippers, artificial muscles, and wearable devices. However, integrating multiple microjoints into soft robots at the micrometer scale to achieve multi-deformation modalities remains challenging. Here, we propose a two-in-one femtosecond laser writing strategy to fabricate microjoints composed of hydrogel and metal nanoparticles, and develop multi-joint microactuators with multi-deformation modalities (>10), requiring short response time (30 ms) and low actuation power (<10 mW) to achieve deformation. Besides, independent joint deformation control and linkage of multi-joint deformation, including co-planar and spatial linkage, enables the microactuator to reconstruct a variety of complex human-like modalities. Finally, as a proof of concept, the collection of multiple microcargos at different locations is achieved by a double-joint micro robotic arm. Our microactuators with multiple modalities will bring many potential application opportunities in microcargo collection, microfluid operation, and cell manipulation.
Collapse
Affiliation(s)
- Chen Xin
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Zhongguo Ren
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Leran Zhang
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Liang Yang
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Minde Building, Renai Road, 215123, Suzhou, P. R. China
| | - Dawei Wang
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Yanlei Hu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Jiawen Li
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Jiaru Chu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Dong Wu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
16
|
Sridhar V, Yildiz E, Rodríguez‐Camargo A, Lyu X, Yao L, Wrede P, Aghakhani A, Akolpoglu BM, Podjaski F, Lotsch BV, Sitti M. Designing Covalent Organic Framework-Based Light-Driven Microswimmers toward Therapeutic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301126. [PMID: 37003701 PMCID: PMC11475396 DOI: 10.1002/adma.202301126] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/18/2023] [Indexed: 06/19/2023]
Abstract
While micromachines with tailored functionalities enable therapeutic applications in biological environments, their controlled motion and targeted drug delivery in biological media require sophisticated designs for practical applications. Covalent organic frameworks (COFs), a new generation of crystalline and nanoporous polymers, offer new perspectives for light-driven microswimmers in heterogeneous biological environments including intraocular fluids, thus setting the stage for biomedical applications such as retinal drug delivery. Two different types of COFs, uniformly spherical TABP-PDA-COF sub-micrometer particles and texturally nanoporous, micrometer-sized TpAzo-COF particles are described and compared as light-driven microrobots. They can be used as highly efficient visible-light-driven drug carriers in aqueous ionic and cellular media. Their absorption ranging down to red light enables phototaxis even in deeper and viscous biological media, while the organic nature of COFs ensures their biocompatibility. Their inherently porous structures with ≈2.6 and ≈3.4 nm pores, and large surface areas allow for targeted and efficient drug loading even for insoluble drugs, which can be released on demand. Additionally, indocyanine green (ICG) dye loading in the pores enables photoacoustic imaging, optical coherence tomography, and hyperthermia in operando conditions. This real-time visualization of the drug-loaded COF microswimmers enables unique insights into the action of photoactive porous drug carriers for therapeutic applications.
Collapse
Affiliation(s)
- Varun Sridhar
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Erdost Yildiz
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Andrés Rodríguez‐Camargo
- Nanochemistry DepartmentMax Planck Institute for Solid State Research70569StuttgartGermany
- Department of ChemistryUniversity of Stuttgart70569StuttgartGermany
| | - Xianglong Lyu
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Liang Yao
- Nanochemistry DepartmentMax Planck Institute for Solid State Research70569StuttgartGermany
| | - Paul Wrede
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH Zurich8092ZurichSwitzerland
| | - Amirreza Aghakhani
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Birgul M. Akolpoglu
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH Zurich8092ZurichSwitzerland
| | - Filip Podjaski
- Nanochemistry DepartmentMax Planck Institute for Solid State Research70569StuttgartGermany
- Department of ChemistryImperial College LondonW12 0BZLondonUK
| | - Bettina V. Lotsch
- Nanochemistry DepartmentMax Planck Institute for Solid State Research70569StuttgartGermany
- Department of ChemistryUniversity of Stuttgart70569StuttgartGermany
- Cluster of Excellence e‐conversion85748Lichtenbergstrasse 4GarchingGermany
- Department of ChemistryUniversity of Munich (LMU)81377MunichGermany
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH Zurich8092ZurichSwitzerland
- School of Medicine and College of EngineeringKoç University34450IstanbulTurkey
| |
Collapse
|
17
|
Liu Y, Lin G, Medina-Sánchez M, Guix M, Makarov D, Jin D. Responsive Magnetic Nanocomposites for Intelligent Shape-Morphing Microrobots. ACS NANO 2023; 17:8899-8917. [PMID: 37141496 DOI: 10.1021/acsnano.3c01609] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
With the development of advanced biomedical theragnosis and bioengineering tools, smart and soft responsive microstructures and nanostructures have emerged. These structures can transform their body shape on demand and convert external power into mechanical actions. Here, we survey the key advances in the design of responsive polymer-particle nanocomposites that led to the development of smart shape-morphing microscale robotic devices. We overview the technological roadmap of the field and highlight the emerging opportunities in programming magnetically responsive nanomaterials in polymeric matrixes, as magnetic materials offer a rich spectrum of properties that can be encoded with various magnetization information. The use of magnetic fields as a tether-free control can easily penetrate biological tissues. With the advances in nanotechnology and manufacturing techniques, microrobotic devices can be realized with the desired magnetic reconfigurability. We emphasize that future fabrication techniques will be the key to bridging the gaps between integrating sophisticated functionalities of nanoscale materials and reducing the complexity and footprints of microscale intelligent robots.
Collapse
Affiliation(s)
- Yuan Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, 518055 Guangdong Province, P. R. China
| | - Gungun Lin
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Mariana Medina-Sánchez
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069 Dresden, Germany
- Chair of Micro- and NanoSystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062 Dresden, Germany
| | - Maria Guix
- Universitat de Barcelona, Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional Barcelona, 08028 Barcelona, Spain
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| |
Collapse
|
18
|
Li W, Li F, Li T, Zhang W, Li B, Liu K, Lun X, Guo Y. Self-actuated biomimetic nanocomposites for photothermal therapy and PD-L1 immunosuppression. Front Chem 2023; 11:1167586. [PMID: 37007061 PMCID: PMC10063802 DOI: 10.3389/fchem.2023.1167586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Biomimetic nanocomposites are widely used in the biomedical field because they can effectively solve the problems existing in the current cancer treatment by realizing multi-mode collaborative treatment. In this study, we designed and synthesized a multifunctional therapeutic platform (PB/PM/HRP/Apt) with unique working mechanism and good tumor treatment effect. Prussian blue nanoparticles (PBs) with good photothermal conversion efficiency were used as nuclei and coated with platelet membrane (PM). The ability of platelets (PLTs) to specifically target cancer cells and inflammatory sites can effectively enhance PB accumulation at tumor sites. The surface of the synthesized nanocomposites was modified with horseradish peroxidase (HRP) to enhance the deep penetration of the nanocomposites in cancer cells. In addition, PD-L1 aptamer and 4T1 cell aptamer AS1411 were modified on the nanocomposite to achieve immunotherapy and enhance targeting. The particle size, UV absorption spectrum and Zeta potential of the biomimetic nanocomposite were determined by transmission electron microscope (TEM), Ultraviolet-visible (UV-Vis) spectrophotometer and nano-particle size meter, and the successful preparation was proved. In addition, the biomimetic nanocomposites were proved to have good photothermal properties by infrared thermography. The cytotoxicity test showed that it had a good killing ability of cancer cells. Finally, thermal imaging, tumor volume detection, immune factor detection and Haematoxilin-Eosin (HE) staining of mice showed that the biomimetic nanocomposites had good anti-tumor effect and could trigger immune response in vivo. Therefore, this biomimetic nanoplatform as a promising therapeutic strategy provides new inspiration for the current diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Wenxin Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Fen Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Tao Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wenyue Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Binglin Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kunrui Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiaoli Lun
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- *Correspondence: Yingshu Guo,
| |
Collapse
|
19
|
Wang Y, Wu M, Wang X, Wang P, Ning Z, Zeng Y, Liu X, Sun H, Zheng A. Biodegradable MnO 2-based gene-engineered nanocomposites for chemodynamic therapy and enhanced antitumor immunity. Mater Today Bio 2023; 18:100531. [PMID: 36619204 PMCID: PMC9812708 DOI: 10.1016/j.mtbio.2022.100531] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Immune checkpoint blockade (ICB) is emerging as a promising therapeutic approach for clinical treatment against various cancers. However, ICB based monotherapies still suffer from low immune response rate due to the limited and exhausted tumor-infiltrating lymphocytes as well as tumor immunosuppressive microenvironment. In this work, the cell membrane with surface displaying PD-1 proteins (PD1-CM) was prepared for immune checkpoint blockade, which was further combined with multifunctional and biodegradable MnO2 for systematic and robust antitumor therapy. The MnO2-based gene-engineered nanocomposites can catalyze the decomposition of abundant H2O2 in TME to generate O2, which can promote the intratumoral infiltration of T cells, and thus improve the effect of immune checkpoint blockade by PD-1 proteins on PD1-CM. Furthermore, MnO2 in the nanocomposites can be completely degraded into Mn2+, which can catalyze the generation of highly toxic hydroxyl radicals for chemodynamic therapy, thereby further enhancing the therapeutic effect. In addition, the prepared nanocomposites possess the advantages of low cost, easy preparation and good biocompatibility, which are expected to become promising agents for combination immunotherapy.
Collapse
Affiliation(s)
- Yiru Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - Xiaorong Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Peiyuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Zhaoyu Ning
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Haiyan Sun
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China
| | - Aixian Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| |
Collapse
|
20
|
Yao W, Che J, Zhao C, Zhang X, Zhou H, Bai F. Treatment of Alzheimer's disease by microcapsule regulates neurotransmitter release via microfluidic technology. ENGINEERED REGENERATION 2023. [DOI: 10.1016/j.engreg.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
|
21
|
Li J, Parakhonskiy BV, Skirtach AG. A decade of developing applications exploiting the properties of polyelectrolyte multilayer capsules. Chem Commun (Camb) 2023; 59:807-835. [PMID: 36472384 DOI: 10.1039/d2cc04806j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Transferring the layer-by-layer (LbL) coating approach from planar surfaces to spherical templates and subsequently dissolving these templates leads to the fabrication of polyelectrolyte multilayer capsules. The versatility of the coatings of capsules and their flexibility upon bringing in virtually any material into the coatings has quickly drawn substantial attention. Here, we provide an overview of the main developments in this field, highlighting the trends in the last decade. In the beginning, various methods of encapsulation and release are discussed followed by a broad range of applications, which were developed and explored. We also outline the current trends, where the range of applications is continuing to grow, including addition of whole new and different application areas.
Collapse
Affiliation(s)
- Jie Li
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan V Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
22
|
Popescu MN, Gáspár S. Analyte Sensing with Catalytic Micromotors. BIOSENSORS 2022; 13:45. [PMID: 36671880 PMCID: PMC9856142 DOI: 10.3390/bios13010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Catalytic micromotors can be used to detect molecules of interest in several ways. The straightforward approach is to use such motors as sensors of their "fuel" (i.e., of the species consumed for self-propulsion). Another way is in the detection of species which are not fuel but still modulate the catalytic processes facilitating self-propulsion. Both of these require analysis of the motion of the micromotors because the speed (or the diffusion coefficient) of the micromotors is the analytical signal. Alternatively, catalytic micromotors can be used as the means to enhance mass transport, and thus increase the probability of specific recognition events in the sample. This latter approach is based on "classic" (e.g., electrochemical) analytical signals and does not require an analysis of the motion of the micromotors. Together with a discussion of the current limitations faced by sensing concepts based on the speed (or diffusion coefficient) of catalytic micromotors, we review the findings of the studies devoted to the analytical performances of catalytic micromotor sensors. We conclude that the qualitative (rather than quantitative) analysis of small samples, in resource poor environments, is the most promising niche for the catalytic micromotors in analytical chemistry.
Collapse
Affiliation(s)
- Mihail N. Popescu
- Física Teórica, Universidad de Sevilla, Apdo. 1065, E-41080 Sevilla, Spain
| | - Szilveszter Gáspár
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania
| |
Collapse
|
23
|
Wang J, Dong Y, Ma P, Wang Y, Zhang F, Cai B, Chen P, Liu BF. Intelligent Micro-/Nanorobots for Cancer Theragnostic. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201051. [PMID: 35385160 DOI: 10.1002/adma.202201051] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Cancer is one of the most intractable diseases owing to its high mortality rate and lack of effective diagnostic and treatment tools. Advancements in micro-/nanorobot (MNR)-assisted sensing, imaging, and therapeutics offer unprecedented opportunities to develop MNR-based cancer theragnostic platforms. Unlike ordinary nanoparticles, which exhibit Brownian motion in biofluids, MNRs overcome viscous resistance in an ultralow Reynolds number (Re << 1) environment by effective self-propulsion. This unique locomotion property has motivated the advanced design and functionalization of MNRs as a basis for next-generation cancer-therapy platforms, which offer the potential for precise distribution and improved permeation of therapeutic agents. Enhanced barrier penetration, imaging-guided operation, and biosensing are additionally studied to enable the promising cancer-related applications of MNRs. Herein, the recent advances in MNR-based cancer therapy are comprehensively addresses, including actuation engines, diagnostics, medical imaging, and targeted drug delivery; promising research opportunities that can have a profound impact on cancer therapy over the next decade is highlighted.
Collapse
Affiliation(s)
- Jie Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yue Dong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Peng Ma
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yu Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Fangyu Zhang
- Department of Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bocheng Cai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
24
|
Wang H, Song F, Feng J, Qi X, Ma L, Xie L, Shi W, Zhou Q. Tannin coordinated nanozyme composite-based hybrid hydrogel eye drops for prophylactic treatment of multidrug-resistant Pseudomonas aeruginosa keratitis. J Nanobiotechnology 2022; 20:445. [PMID: 36242070 PMCID: PMC9563483 DOI: 10.1186/s12951-022-01653-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa infection is a severe acute suppurative ulcer that engulfs virtually the entire tissue in a short period and leads to devastating destruction. Antibiotic therapy is a common approach for the prophylaxis and treatment of P. aeruginosa infection. However, it is often associated with serious side effects, complications, and multidrug resistance. Therefore, it has been a long-standing challenge to explore safe and effective methods for controlling P. aeruginosa infection. Herein, tannin-coordinated nanozyme composite-based hybrid hydrogels (TCNH) are developed and characterized for the prophylactic treatment of P. aeruginosa and multidrug-resistant P. aeruginosa infections using mouse keratitis as the animal model. The TCNH eye drops are constructed by photoinitiated free radical polymerization of acetylated gelatin solution containing self-synthesized tannin-coordinated Co3O4/Ag nanozyme composite. The as-prepared TCNH displays good dispersibility, peroxidase-like activity and in vitro/in vivo biocompatibility. The nanozyme composite in TCNH seems to penetrate the interior of bacteria and exhibited significant broad-spectrum antibacterial activity owing to its intrinsic and nanozymic catalytic properties. Furthermore, TCNH eye drops can be successfully applied to treat P. aeruginosa and multidrug-resistant P. aeruginosa keratitis. The findings of this study reveal the potential of tannin-coordinated nanozyme composite-based hybrid hydrogel eye drops for treating infectious diseases.
Collapse
|
25
|
Zhou C, Yang L, Wu Y, Yang M, He Q. A Chemotactic Colloidal Motor. Chemistry 2022; 28:e202202319. [DOI: 10.1002/chem.202202319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Chang Zhou
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education) School of Medicine and Health Harbin Institute of Technology No. 92 XiDaZhi Street 150001 Harbin P. R. China
- Wenzhou Institute University of Chinese Academy of Sciences 1 Jinlian Street 325000 Wenzhou P. R. China
| | - Ling Yang
- Wenzhou Institute University of Chinese Academy of Sciences 1 Jinlian Street 325000 Wenzhou P. R. China
| | - Yingjie Wu
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education) School of Medicine and Health Harbin Institute of Technology No. 92 XiDaZhi Street 150001 Harbin P. R. China
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics Institute of Physics Chinese Academy of Sciences 100190 Beijing P. R. China
- School of Physical Sciences University of Chinese Academy of Sciences 100049 Beijing P. R. China
- Songshan Lake Materials Laboratory 523808 Dongguan Guangdong P. R. China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education) School of Medicine and Health Harbin Institute of Technology No. 92 XiDaZhi Street 150001 Harbin P. R. China
- Wenzhou Institute University of Chinese Academy of Sciences 1 Jinlian Street 325000 Wenzhou P. R. China
| |
Collapse
|
26
|
Zhang D, Liu S, Guan J, Mou F. "Motile-targeting" drug delivery platforms based on micro/nanorobots for tumor therapy. Front Bioeng Biotechnol 2022; 10:1002171. [PMID: 36185435 PMCID: PMC9523273 DOI: 10.3389/fbioe.2022.1002171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional drug delivery systems opened the gate for tumor-targeted therapy, but they generally took advantage of enhanced permeability and retention or ligand-receptor mediated interaction, and thus suffered from limited recognition range (<0.5 nm) and low targeting efficiency (0.7%, median). Alternatively, micro/nanorobots (MNRs) may act as emerging "motile-targeting" drug delivery platforms to deliver therapeutic payloads, thereby making a giant step toward effective and safe cancer treatment due to their autonomous movement and navigation in biological media. This review focuses on the most recent developments of MNRs in "motile-targeting" drug delivery. After a brief introduction to traditional tumor-targeted drug delivery strategies and various MNRs, the representative applications of MNRs in "motile-targeting" drug delivery are systematically streamlined in terms of the propelling mechanisms. Following a discussion of the current challenges of each type of MNR in biomedical applications, as well as future prospects, several promising designs for MNRs that could benefit in "motile-targeting" drug delivery are proposed. This work is expected to attract and motivate researchers from different communities to advance the creation and practical application of the "motile-targeting" drug delivery platforms.
Collapse
Affiliation(s)
| | | | | | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
27
|
Qiu B, Chen X, Xu F, Wu D, Zhou Y, Tu W, Jin H, He G, Chen S, Sun D. Nanofiber self-consistent additive manufacturing process for 3D microfluidics. MICROSYSTEMS & NANOENGINEERING 2022; 8:102. [PMID: 36119377 PMCID: PMC9477890 DOI: 10.1038/s41378-022-00439-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 06/13/2023]
Abstract
3D microfluidic devices have emerged as powerful platforms for analytical chemistry, biomedical sensors, and microscale fluid manipulation. 3D printing technology, owing to its structural fabrication flexibility, has drawn extensive attention in the field of 3D microfluidics fabrication. However, the collapse of suspended structures and residues of sacrificial materials greatly restrict the application of this technology, especially for extremely narrow channel fabrication. In this paper, a 3D printing strategy named nanofiber self-consistent additive manufacturing (NSCAM) is proposed for integrated 3D microfluidic chip fabrication with porous nanofibers as supporting structures, which avoids the sacrificial layer release process. In the NSCAM process, electrospinning and electrohydrodynamic jet (E-jet) writing are alternately employed. The porous polyimide nanofiber mats formed by electrospinning are ingeniously applied as both supporting structures for the suspended layer and percolating media for liquid flow, while the polydimethylsiloxane E-jet writing ink printed on the nanofiber mats (named construction fluid in this paper) controllably permeates through the porous mats. After curing, the resultant construction fluid-nanofiber composites are formed as 3D channel walls. As a proof of concept, a microfluidic pressure-gain valve, which contains typical features of narrow channels and movable membranes, was fabricated, and the printed valve was totally closed under a control pressure of 45 kPa with a fast dynamic response of 52.6 ms, indicating the feasibility of NSCAM. Therefore, we believe NSCAM is a promising technique for manufacturing microdevices that include movable membrane cavities, pillar cavities, and porous scaffolds, showing broad applications in 3D microfluidics, soft robot drivers or sensors, and organ-on-a-chip systems.
Collapse
Affiliation(s)
- Bin Qiu
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| | - Xiaojun Chen
- School of Mechanical and Electrical Engineering, Lingnan Normal University, Zhanjiang, 524000 China
| | - Feng Xu
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| | - Dongyang Wu
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| | - Yike Zhou
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| | - Wenchang Tu
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| | - Hang Jin
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| | - Gonghan He
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| | - Songyue Chen
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| | - Daoheng Sun
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| |
Collapse
|
28
|
Li J, He X, Jiang H, Xing Y, Fu B, Hu C. Enhanced and Robust Directional Propulsion of Light-Activated Janus Micromotors by Magnetic Spinning and the Magnus Effect. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36027-36037. [PMID: 35916408 DOI: 10.1021/acsami.2c08464] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Advances in the versatile design and synthesis of nanomaterials have imparted diverse functionalities to Janus micromotors as autonomous vehicles. However, a significant challenge remains in maneuvering Janus micromotors by following desired trajectories for on-demand motility and intelligent control due to the inherent rotational Brownian motion. Here, we present the enhanced and robust directional propulsion of light-activated Fe3O4@TiO2/Pt Janus micromotors by magnetic spinning and the Magnus effect. Once exposed to a low-intensity rotating magnetic field, the micromotors become physically actuated, and their rotational Brownian diffusion is quenched by the magnetic rotation. Photocatalytic propulsion can be triggered by unidirectional irradiation based on a self-electrophoretic mechanism. Thus, a transverse Magnus force can be generated due to the rotational motion and ballistic motion (photocatalytic propulsion) of the micromotors. Both the self-electrophoretic propulsion and the Magnus force are periodically changed due to the magnetic rotation, which results in an overall directed motion moving toward a trajectory with a deflection angle from the direction of incident light with enhanced speed, maneuverability, and steering robustness. Our study illustrates the admirable directional motion capabilities of light-driven Janus micromotors based on magnetic spinning and the Magnus effect, which unfolds a new paradigm for addressing the limitations of directionality control in the current asymmetric micromotors.
Collapse
Affiliation(s)
- Jianjie Li
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoli He
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huaide Jiang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Xing
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bi Fu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
29
|
Barmin RA, Dasgupta A, Bastard C, De Laporte L, Rütten S, Weiler M, Kiessling F, Lammers T, Pallares RM. Engineering the Acoustic Response and Drug Loading Capacity of PBCA-Based Polymeric Microbubbles with Surfactants. Mol Pharm 2022; 19:3256-3266. [PMID: 35905480 DOI: 10.1021/acs.molpharmaceut.2c00416] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gas-filled microbubbles (MB) are routinely used in the clinic as ultrasound contrast agents. MB are also increasingly explored as drug delivery vehicles based on their ultrasound stimuli-responsiveness and well-established shell functionalization routes. Broadening the range of MB properties can enhance their performance in both imaging and drug delivery applications. This can be promoted by systematically varying the reagents used in the synthesis of MB, which in the case of polymeric MB include surfactants. We therefore set out to study the effect of key surfactant characteristics, such as the chemical structure, molecular weight, and hydrophilic-lipophilic balance on the formation of poly(butyl cyanoacrylate) (PBCA) MB, as well as on their properties, including shell thickness, drug loading capacity, ultrasound contrast, and acoustic stability. Two different surfactant families (i.e., Triton X and Tween) were employed, which show opposite molecular weight vs hydrophilic-lipophilic balance trends. For both surfactant types, we found that the shell thickness of PBCA MB increased with higher-molecular-weight surfactants and that the resulting MB with thicker shells showed higher drug loading capacities and acoustic stability. Furthermore, the higher proportion of smaller polymer chains of the Triton X-based MB (as compared to those of the Tween-based ones) resulted in lower polymer entanglement, improving drug loading capacity and ultrasound contrast response. These findings open up new avenues to fine-tune the shell properties of polymer-based MB for enhanced ultrasound imaging and drug delivery applications.
Collapse
Affiliation(s)
- Roman A Barmin
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Anshuman Dasgupta
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Céline Bastard
- DWI - Leibniz Institute for Interactive Materials, 52074 Aachen, Germany.,Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany.,Institute of Applied Medical Engineering, Department of Advanced Materials for Biomedicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Laura De Laporte
- DWI - Leibniz Institute for Interactive Materials, 52074 Aachen, Germany.,Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany.,Institute of Applied Medical Engineering, Department of Advanced Materials for Biomedicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Stephan Rütten
- Electron Microscope Facility, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Marek Weiler
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|
30
|
Mu H, Liu C, Zhang Q, Meng H, Yu S, Zeng K, Han J, Jin X, Shi S, Yu P, Li T, Xu J, Hua Y. Magnetic-Driven Hydrogel Microrobots Selectively Enhance Synthetic Lethality in MTAP-Deleted Osteosarcoma. Front Bioeng Biotechnol 2022; 10:911455. [PMID: 35875497 PMCID: PMC9299081 DOI: 10.3389/fbioe.2022.911455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Drugs based on synthetic lethality have advantages such as inhibiting tumor growth and affecting normal tissue in vivo. However, specific targets for osteosarcoma have not been acknowledged yet. In this study, a non-targeted but controllable drug delivery system has been applied to selectively enhance synthetic lethality in osteosarcoma in vitro, using the magnetic-driven hydrogel microrobots. Methods: In this study, EPZ015666, a PRMT5 inhibitor, was selected as the synthetic lethality drug. Then, the drug was carried by hydrogel microrobots containing Fe3O4. Morphological characteristics of the microrobots were detected using electron microscopy. In vitro drug effect was detected by the CCK-8 assay kit, Western blotting, etc. Swimming of microrobots was observed by a timing microscope. Selective inhibition was verified by cultured tumors in an increasing magnetic field. Results: Genomic mutation of MTAP deletion occurred commonly in pan-cancer in the TCGA database (nearly 10.00%) and in osteosarcoma in the TARGET database (23.86%). HOS and its derivatives, 143B and HOS/MNNG, were detected by MTAP deletion according to the CCLE database and RT-PCR. EPZ015666, the PRMT5 inhibitor, could reduce the SDMA modification and inhibition of tumor growth of 143B and HOS/MNNG. The hydrogel microrobot drug delivery system was synthesized, and the drug was stained by rhodamine. The microrobots were powered actively by a magnetic field. A simulation of the selected inhibition of microrobots was performed and lower cell viability of tumor cells was detected by adding a high dose of microrobots. Conclusion: Our magnetic-driven drug delivery system could carry synthetic lethality drugs. Meanwhile, the selective inhibition of this system could be easily controlled by programming the strength of the magnetic field.
Collapse
Affiliation(s)
- Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Chenlu Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huanliang Meng
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Shimin Yu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Ke Zeng
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Xinmeng Jin
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Shi Shi
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiyao Yu
- School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Jing Xu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| |
Collapse
|
31
|
Estifeeva TM, Barmin RA, Rudakovskaya PG, Nechaeva AM, Luss AL, Mezhuev YO, Chernyshev VS, Krivoborodov EG, Klimenko OA, Sindeeva OA, Demina PA, Petrov KS, Chuprov-Netochin RN, Fedotkina EP, Korotchenko OE, Sencha EA, Sencha AN, Shtilman MI, Gorin DA. Hybrid (Bovine Serum Albumin)/Poly( N-vinyl-2-pyrrolidone- co-acrylic acid)-Shelled Microbubbles as Advanced Ultrasound Contrast Agents. ACS APPLIED BIO MATERIALS 2022; 5:3338-3348. [PMID: 35791763 DOI: 10.1021/acsabm.2c00331] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microbubbles are routinely used ultrasound contrast agents in the clinic. While a soft protein shell is commercially preferable for imaging purposes, a rigid polymer shell demonstrates prolonged agent stability. Hence, combining polymers and proteins in one shell composition can advance microbubble properties. We formulated the hybrid "protein-copolymer" microbubble shell with a complex of bovine serum albumin and an amphiphilic copolymer of N-vinyl-2-pyrrolidone and acrylic acid. The resulting microbubbles demonstrated advanced physicochemical and acoustic properties, preserving in vitro biocompatibility. Adjusting the mass ratio between protein and copolymer allowed fine tuning of the microbubble properties of concentration (by two orders, up to 1010 MBs/mL), mean size (from 0.8 to 5 μm), and shell thickness (from 28 to 50 nm). In addition, the minimum air-liquid surface tension for the "protein-copolymer" solution enabled the highest bubble concentration. At the same time, a higher copolymer amount in the bubble shell increased the bubble size and tuned duration and intensity of the contrast during an ultrasound procedure. Demonstrated results exemplify the potential of the hybrid "protein-polymer" microbubble shell, allowing tailoring of microbubble properties for image-guided applications, combining advances of each material involved in the formulation.
Collapse
Affiliation(s)
- Tatyana M Estifeeva
- Department of Biomaterials, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Roman A Barmin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel str. 3, 121205 Moscow, Russia
| | - Polina G Rudakovskaya
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel str. 3, 121205 Moscow, Russia
| | - Anna M Nechaeva
- Department of Biomaterials, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Anna L Luss
- Department of Biomaterials, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Yaroslav O Mezhuev
- Department of Biomaterials, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Vasiliy S Chernyshev
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel str. 3, 121205 Moscow, Russia
| | - Efrem G Krivoborodov
- Institute of Chemistry and Sustainable Development, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Oleg A Klimenko
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel str. 3, 121205 Moscow, Russia.,P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninskiy Prospekt 53, 119991 Moscow, Russia
| | - Olga A Sindeeva
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Nobelya Str. 3, 121205 Moscow, Russia
| | - Polina A Demina
- Federal Scientific Research Centre ″Crystallography and Photonics″ of the Russian Academy of Sciences, Leninskiy avenue 59, 119333 Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997 Moscow, Russia
| | - Kirill S Petrov
- Hadassah Medical Moscow, Bolshoy Boulevard 46, 121205 Moscow, Russia
| | - Roman N Chuprov-Netochin
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutsky Lane 9, 141700 Dolgoprudny, Moscow Region, Russia
| | - Elena P Fedotkina
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, Akademika Oparina str. 4, 117198 Moscow, Russia
| | - Olga E Korotchenko
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, Akademika Oparina str. 4, 117198 Moscow, Russia
| | - Ekaterina A Sencha
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, Akademika Oparina str. 4, 117198 Moscow, Russia
| | - Alexander N Sencha
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, Akademika Oparina str. 4, 117198 Moscow, Russia
| | - Mikhail I Shtilman
- Department of Biomaterials, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Dmitry A Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel str. 3, 121205 Moscow, Russia
| |
Collapse
|
32
|
Cong Z, Tang S, Xie L, Yang M, Li Y, Lu D, Li J, Yang Q, Chen Q, Zhang Z, Zhang X, Wu S. Magnetic-Powered Janus Cell Robots Loaded with Oncolytic Adenovirus for Active and Targeted Virotherapy of Bladder Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201042. [PMID: 35452560 DOI: 10.1002/adma.202201042] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/09/2022] [Indexed: 02/05/2023]
Abstract
A unique robotic medical platform is designed by utilizing cell robots as the active "Trojan horse" of oncolytic adenovirus (OA), capable of tumor-selective binding and killing. The OA-loaded cell robots are fabricated by entirely modifying OA-infected 293T cells with cyclic arginine-glycine-aspartic acid tripeptide (cRGD) to specifically bind with bladder cancer cells, followed by asymmetric immobilization of Fe3 O4 nanoparticles (NPs) on the cell surface. OA can replicate in host cells and induce cytolysis to release the virus progeny to the surrounding tumor sites for sustainable infection and oncolysis. The asymmetric coating of magnetic NPs bestows the cell robots with effective movement in various media and wireless manipulation with directional migration in a microfluidic device and bladder mold under magnetic control, further enabling steerable movement and prolonged retention of cell robots in the mouse bladder. The biorecognition of cRGD and robust, controllable propulsion of cell robots work synergistically to greatly enhance their tissue penetration and anticancer efficacy in the 3D cancer spheroid and orthotopic mouse bladder tumor model. Overall, this study integrates cell-based microrobots with virotherapy to generate an attractive robotic system with tumor specificity, expanding the operation scope of cell robots in biomedical community.
Collapse
Affiliation(s)
- Zhaoqing Cong
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Songsong Tang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Leiming Xie
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Ming Yang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Yangyang Li
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Dongdong Lu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Jiahong Li
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Qingxin Yang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Qiwei Chen
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Zhiqiang Zhang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Song Wu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
- South China Hospital, Shenzhen University, Shenzhen, 518116, P. R. China
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou, 515000, P. R. China
| |
Collapse
|
33
|
Rudakovskaya PG, Barmin RA, Kuzmin PS, Fedotkina EP, Sencha AN, Gorin DA. Microbubbles Stabilized by Protein Shell: From Pioneering Ultrasound Contrast Agents to Advanced Theranostic Systems. Pharmaceutics 2022; 14:1236. [PMID: 35745808 PMCID: PMC9227336 DOI: 10.3390/pharmaceutics14061236] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 12/16/2022] Open
Abstract
Ultrasound is a widely-used imaging modality in clinics as a low-cost, non-invasive, non-radiative procedure allowing therapists faster decision-making. Microbubbles have been used as ultrasound contrast agents for decades, while recent attention has been attracted to consider them as stimuli-responsive drug delivery systems. Pioneering microbubbles were Albunex with a protein shell composed of human serum albumin, which entered clinical practice in 1993. However, current research expanded the set of proteins for a microbubble shell beyond albumin and applications of protein microbubbles beyond ultrasound imaging. Hence, this review summarizes all-known protein microbubbles over decades with a critical evaluation of formulations and applications to optimize the safety (low toxicity and high biocompatibility) as well as imaging efficiency. We provide a comprehensive overview of (1) proteins involved in microbubble formulation, (2) peculiarities of preparation of protein stabilized microbubbles with consideration of large-scale production, (3) key chemical factors of stabilization and functionalization of protein-shelled microbubbles, and (4) biomedical applications beyond ultrasound imaging (multimodal imaging, drug/gene delivery with attention to anticancer treatment, antibacterial activity, biosensing). Presented critical evaluation of the current state-of-the-art for protein microbubbles should focus the field on relevant strategies in microbubble formulation and application for short-term clinical translation. Thus, a protein bubble-based platform is very perspective for theranostic application in clinics.
Collapse
Affiliation(s)
- Polina G. Rudakovskaya
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str. 3, 121205 Moscow, Russia;
| | - Roman A. Barmin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str. 3, 121205 Moscow, Russia;
| | - Pavel S. Kuzmin
- Institute of Materials for Modern Energy and Nanotechnology, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russia;
| | - Elena P. Fedotkina
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, Akademika Oparina Str. 4, 117198 Moscow, Russia; (E.P.F.); (A.N.S.)
| | - Alexander N. Sencha
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, Akademika Oparina Str. 4, 117198 Moscow, Russia; (E.P.F.); (A.N.S.)
| | - Dmitry A. Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str. 3, 121205 Moscow, Russia;
| |
Collapse
|
34
|
Programmable Microfluidic Manipulations for Biomedical Applications. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
35
|
Shen J, Chen A, Cai Z, Chen Z, Cao R, Liu Z, Li Y, Hao J. Exhausted local lactate accumulation via injectable nanozyme-functionalized hydrogel microsphere for inflammation relief and tissue regeneration. Bioact Mater 2022; 12:153-168. [PMID: 35310385 PMCID: PMC8897073 DOI: 10.1016/j.bioactmat.2021.10.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/11/2021] [Accepted: 10/10/2021] [Indexed: 12/15/2022] Open
Abstract
Local lactate accumulation greatly hinders tissue repair and regeneration under ischemic condition. Herein, an injectable microsphere (MS@MCL) for local lactate exhaustion was constructed by grafting manganese dioxide (MnO2) -lactate oxidase (LOX) composite nanozyme on microfluidic hyaluronic acid methacrylate (HAMA) microspheres via chemical bonds, achieving a long-term oxygen-promoted lactate exhaustion effect and a long half-life in vivo. The uniform and porous microspheres synthesized by microfluidic technology is beneficial to in situ injection therapy and improving encapsulation efficiency. Furthermore, chemical grafting into HAMA microspheres through amide reactions promoted local enzymatic concentration and activity enhancement. It was showed that the MS@MCL eliminated oxidative and inflammatory stress and promoted extracellular matrix metabolism and cell survival when co-cultured with nucleus pulposus cells (NPCs) in vitro. In the rat degenerative intervertebral disc model caused by lactate injection, MS@MCL showed a long-term therapeutic effect in reducing intervertebral height narrowing and preventing extracellular matrix (ECM) degradation as well as inflammatory damage in vivo. Altogether, this study confirms that this nanozyme-functionalized injectable MS@MCL effectively improves the regenerative and reparative effect in ischemic tissues by disposing of enriched lactate in local microenvironment. Exhausted local lactate accumulation via injectable hydrogel microsphere. Long-acting microfluidic hyaluronic acid microspheres. Manganese dioxide-lactate oxidase composited nanozyme via covalent bond. Promoted sustained release of nanozyme and maintained enzymatic activity.
Collapse
Affiliation(s)
- Jieliang Shen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing, 40042, PR China
| | - Ao Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, PR China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Zhijie Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Ruichao Cao
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing, 40042, PR China
| | - Zongchao Liu
- Department of Orthopaedics, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, No.182 Chunhui Road, Sichuan, 646699, PR China
- Corresponding author.
| | - Yuling Li
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No.63 Wenhua Road, Nanchong, Sichuan, 637000, PR China
- Corresponding author.
| | - Jie Hao
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing, 40042, PR China
- Corresponding author.
| |
Collapse
|
36
|
Novoselova M, Chernyshev VS, Schulga A, Konovalova EV, Chuprov-Netochin RN, Abakumova TO, German S, Shipunova VO, Mokrousov MD, Prikhozhdenko E, Bratashov DN, Nozdriukhin DV, Bogorodskiy A, Grishin O, Kosolobov SS, Khlebtsov BN, Inozemtseva O, Zatsepin TS, Deyev SM, Gorin DA. Effect of Surface Modification of Multifunctional Nanocomposite Drug Delivery Carriers with DARPin on Their Biodistribution In Vitro and In Vivo. ACS APPLIED BIO MATERIALS 2022; 5:2976-2989. [PMID: 35616387 DOI: 10.1021/acsabm.2c00289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present a targeted drug delivery system for therapy and diagnostics that is based on a combination of contrasting, cytotoxic, and cancer-cell-targeting properties of multifunctional carriers. The system uses multilayered polymer microcapsules loaded with magnetite and doxorubicin. Loading of magnetite nanoparticles into the polymer shell by freezing-induced loading (FIL) allowed the loading efficiency to be increased 5-fold, compared with the widely used layer-by-layer (LBL) assembly. FIL also improved the photoacoustic signal and particle mobility in a magnetic field gradient, a result unachievable by the LBL alone. For targeted delivery of the carriers to cancer cells, the carrier surface was modified with a designed ankyrin repeat protein (DARPin) directed toward the epithelial cell adhesion molecule (EpCAM). Flow cytometry measurements showed that the DARPin-coated capsules specifically interacted with the surface of EpCAM-overexpressing human cancer cells such as MCF7. In vivo and ex vivo biodistribution studies in FvB mice showed that the carrier surface modification with DARPin changed the biodistribution of the capsules toward epithelial cells. In particular, the capsules accumulated substantially in the lungs─a result that can be effectively used in targeted lung cancer therapy. The results of this work may aid in the further development of the "magic bullet" concept and may bring the quality of personalized medicine to another level.
Collapse
Affiliation(s)
- Marina Novoselova
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| | - Vasiliy S Chernyshev
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia.,School of Biological and Medical Physics, Moscow Institute of Physics & Technology, Dolgoprudnyi, Moscow Region 141700, Russia
| | - Alexey Schulga
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Elena V Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Roman N Chuprov-Netochin
- School of Biological and Medical Physics, Moscow Institute of Physics & Technology, Dolgoprudnyi, Moscow Region 141700, Russia
| | - Tatiana O Abakumova
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| | - Sergei German
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia.,Institute of Spectroscopy of the Russian Academy of Sciences, Moscow 108840, Russia
| | - Victoria O Shipunova
- School of Biological and Medical Physics, Moscow Institute of Physics & Technology, Dolgoprudnyi, Moscow Region 141700, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Maksim D Mokrousov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| | | | - Daniil N Bratashov
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Daniil V Nozdriukhin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| | - Andrey Bogorodskiy
- School of Biological and Medical Physics, Moscow Institute of Physics & Technology, Dolgoprudnyi, Moscow Region 141700, Russia
| | - Oleg Grishin
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Sergey S Kosolobov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| | - Boris N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov 410049, Russia
| | - Olga Inozemtseva
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia.,Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| |
Collapse
|
37
|
Frank BD, Djalali S, Baryzewska AW, Giusto P, Seeberger PH, Zeininger L. Reversible morphology-resolved chemotactic actuation and motion of Janus emulsion droplets. Nat Commun 2022; 13:2562. [PMID: 35538083 PMCID: PMC9091213 DOI: 10.1038/s41467-022-30229-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
We report, for the first time, a chemotactic motion of emulsion droplets that can be controllably and reversibly altered. Our approach is based on using biphasic Janus emulsion droplets, where each phase responds differently to chemically induced interfacial tension gradients. By permanently breaking the symmetry of the droplets' geometry and composition, externally evoked gradients in surfactant concentration or effectiveness induce anisotropic Marangoni-type fluid flows adjacent to each of the two different exposed interfaces. Regulation of the competitive fluid convections then enables a controllable alteration of the speed and the direction of the droplets' chemotactic motion. Our findings provide insight into how compositional anisotropy can affect the chemotactic behavior of purely liquid-based microswimmers. This has implications for the design of smart and adaptive soft microrobots that can autonomously regulate their response to changes in their chemical environment by chemotactically moving towards or away from a certain target, such as a bacterium.
Collapse
Affiliation(s)
- Bradley D Frank
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Saveh Djalali
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Agata W Baryzewska
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Paolo Giusto
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Lukas Zeininger
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
38
|
Peng Y, Yu S, Wang Z, Huang P, Wang W, Xing J. Nanogels loading curcumin in situ through microemulsion photopolymerization for enhancement of antitumor effects. J Mater Chem B 2022; 10:3293-3302. [PMID: 35380157 DOI: 10.1039/d2tb00035k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Drug-loaded nanogels for cancer treatment can limit the free diffusion and distribution of drug molecules in the whole body to reduce undesirable side effects and improve the drug absorption efficiency of the tumor. In this study, curcumin as a model drug was encapsulated into nanogels in situ through microemulsion photopolymerization at 532 nm. Nanogels loaded with curcumin (NG-C) displayed a diameter of around 150 nm with good stability and a low polydispersity index of around 0.1. NG-C had a drug-loading capacity of 8.96 ± 1.16 wt%. The cumulative release of curcumin from NG-C was around 25%, 34% and 55% within 90 h in pH 7.4, 6.8 and 5.0 PBS buffer, respectively. NG-C presented prominent cytotoxicity toward Hep G2 and HeLa cancer cells in vitro. Moreover, NG-C exhibited much a stronger inhibition of tumor growth, necrosis, apoptosis, and the suppression of proliferation compared with curcumin on Hep G2 tumor-bearing nude mice.
Collapse
Affiliation(s)
- Yuanyuan Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| | - Siyuan Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| | - Zhen Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Jinfeng Xing
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| |
Collapse
|
39
|
Rajendran B, Chen X, Li Z, Zhan Z, Goh KB. How molecular interactions tune the characteristic time of nanocomposite colloidal sensors. J Colloid Interface Sci 2022; 616:668-678. [PMID: 35245793 DOI: 10.1016/j.jcis.2022.02.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022]
Abstract
HYPOTHESIS Mass transport critically controls the performance of colloidal metal-polymer sensors. We hypothesize that molecular-level pair interactions, such as electric, steric, and specific binding effects, govern the mass transport and, in return, the characteristic time of these sensors. THEORY Here we present a simple theory guided by experimental data to examine the sensing performance of two usually encountered archetypal metal-polymer sensors, namely (1) core-shell and (2) yolk-shell architectures. For this purpose, we use the static reactive density functional theory framework, determining how (i) charge, (ii) size, and (iii) non-covalent binding factors modulate the characteristic time. FINDINGS We show how an interplay between diffusivity and partitioning governs the sensing time of the sensors, where an anti-correlation cancellation between them renders the time non-trivial. Our study demonstrates that the convoluted substrate-hydrogel shell interaction controls the characteristic time of these colloidal sensors, especially when the sensors are in a collapsed state. Notably, the substrates with a high dipole moment tend to equilibrate greatly, but undesirably, at the shell-solution interface. With this, we encourage the formation of a metastable sorption state.
Collapse
Affiliation(s)
- Barathan Rajendran
- School of Engineering, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Xiao Chen
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - Zhong Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Republic of Singapore; Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Zhixin Zhan
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| | - K B Goh
- School of Engineering, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
40
|
Lee J, Liao H, Wang Q, Han J, Han J, Shin HE, Ge M, Park W, Li F. Exploration of nanozymes in viral diagnosis and therapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20210086. [PMID: 37324577 PMCID: PMC10191057 DOI: 10.1002/exp.20210086] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/21/2021] [Indexed: 06/15/2023]
Abstract
Nanozymes are nanomaterials with similar catalytic activities to natural enzymes. Compared with natural enzymes, they have numerous advantages, including higher physiochemical stability, versatility, and suitability for mass production. In the past decade, the synthesis of nanozymes and their catalytic mechanisms have advanced beyond the simple replacement of natural enzymes, allowing for fascinating applications in various fields such as biosensing and disease treatment. In particular, the exploration of nanozymes as powerful toolkits in diagnostic viral testing and antiviral therapy has attracted growing attention. It can address the great challenges faced by current natural enzyme-based viral testing technologies, such as high cost and storage difficulties. Therefore, nanozyme can provide a novel nanozyme-based antiviral therapeutic regime with broader availability and generalizability that are keys to fighting a pandemic such as COVID-19. Herein, we provide a timely review of the state-of-the-art nanozymes regarding their catalytic activities, as well as a focused discussion on recent research into the use of nanozymes in viral testing and therapy. The remaining challenges and future perspectives will also be outlined. Ultimately, this review will inform readers of the current knowledge of nanozymes and inspire more innovative studies to push forward the frontier of this field.
Collapse
Affiliation(s)
- Jiyoung Lee
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
| | - Hongwei Liao
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
| | - Qiyue Wang
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
| | - Jieun Han
- Department of Biomedical‐Chemical Engineering and BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
| | - Jun‐Hyeok Han
- Department of Biomedical‐Chemical Engineering and BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
- Department of Biological ScienceKorea UniversitySeoulRepublic of Korea
| | - Ha Eun Shin
- Department of Biomedical‐Chemical Engineering and BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
| | - Minghua Ge
- Zhejiang Provincial People's Hospital HangzhouHangzhouP. R. China
| | - Wooram Park
- Department of Biomedical‐Chemical Engineering and BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
| | - Fangyuan Li
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
- Hangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouP. R. China
| |
Collapse
|
41
|
Shao C, Chi J, Shang L, Fan Q, Ye F. Droplet microfluidics-based biomedical microcarriers. Acta Biomater 2022; 138:21-33. [PMID: 34718181 DOI: 10.1016/j.actbio.2021.10.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022]
Abstract
Droplet microfluidic technology provides a new platform for controllable generation of microdroplets and droplet-derived materials. In particular, because of the ability in high-throughput production and accurate control of the size, structure, and function of these materials, droplet microfluidics presents unique advantages in the preparation of functional microcarriers, i.e., microsized liquid containers or solid particles that serve as substrates of biomolecules or cells. These microcarriers could be extensively applied in the areas of cell culture, tissue engineering, and drug delivery. In this review, we focus on the fabrication of microcarriers from droplet microfluidics, and discuss their applications in the biomedical field. We start with the basic principle of droplet microfluidics, including droplet generation regimes and its control methods. We then introduce the fabrication of biomedical microcarriers based on single, double, and multiple emulsion droplets, and emphasize the various applications of microcarriers in biomedical field, especially in 3D cell culture, drug development and biomedical detection. Finally, we conclude this review by discussing the limitations and challenges of droplet microfluidics in preparing microcarriers. STATEMENT OF SIGNIFICANCE: Because of its precise control and high throughput, droplet microfluidics has been employed to generate functional microcarriers, which have been widely used in the areas of drug development, tissue engineering, and regenerative medicine. This review is significant because it emphasizes recent progress in research on droplet microfluidics in the preparation and application of biomedical microcarriers. In addition, this review suggests research directions for the future development of biomedical microcarriers based on droplet microfluidics by presenting existing shortcomings and challenges.
Collapse
|
42
|
Ma Y, Tian Z, Zhai W, Qu Y. Insights on catalytic mechanism of CeO 2 as multiple nanozymes. NANO RESEARCH 2022; 15:10328-10342. [PMID: 35845145 PMCID: PMC9274632 DOI: 10.1007/s12274-022-4666-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 05/20/2023]
Abstract
CeO2 with the reversible Ce3+/Ce4+ redox pair exhibits multiple enzyme-like catalytic performance, which has been recognized as a promising nanozyme with potentials for disease diagnosis and treatments. Tailorable surface physicochemical properties of various CeO2 catalysts with controllable sizes, morphologies, and surface states enable a rich surface chemistry for their interactions with various molecules and species, thus delivering a wide variety of catalytic behaviors under different conditions. Despite the significant progress made in developing CeO2-based nanozymes and their explorations for practical applications, their catalytic activity and specificity are still uncompetitive to their counterparts of natural enzymes under physiological environments. With the attempt to provide the insights on the rational design of highly performed CeO2 nanozymes, this review focuses on the recent explorations on the catalytic mechanisms of CeO2 with multiple enzyme-like performance. Given the detailed discussion and proposed perspectives, we hope this review can raise more interest and stimulate more efforts on this multi-disciplinary field.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Zhimin Tian
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Wenfang Zhai
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Yongquan Qu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
| |
Collapse
|
43
|
Kurochkin MA, German SV, Abalymov A, Vorontsov DА, Gorin DA, Novoselova MV. Sentinel lymph node detection by combining nonradioactive techniques with contrast agents: State of the art and prospects. JOURNAL OF BIOPHOTONICS 2022; 15:e202100149. [PMID: 34514735 DOI: 10.1002/jbio.202100149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The status of sentinel lymph nodes (SLNs) has a substantial prognostic value because these nodes are the first place where cancer cells accumulate along their spreading route. Routine SLN biopsy ("gold standard") involves peritumoral injections of radiopharmaceuticals, such as technetium-99m, which has obvious disadvantages. This review examines the methods used as "gold standard" analogs to diagnose SLNs. Nonradioactive preoperative and intraoperative methods of SLN detection are analyzed. Promising photonic tools for SLNs detection are reviewed, including NIR-I/NIR-II fluorescence imaging, photoswitching dyes for SLN detection, in vivo photoacoustic detection, imaging and biopsy of SLNs. Also are discussed methods of SLN detection by magnetic resonance imaging, ultrasonic imaging systems including as combined with photoacoustic imaging, and methods based on the magnetometer-aided detection of superparamagnetic nanoparticles. The advantages and disadvantages of nonradioactive SLN-detection methods are shown. The review concludes with prospects for the use of conservative diagnostic methods in combination with photonic tools.
Collapse
Affiliation(s)
| | - Sergey V German
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Spectroscopy of the Russian Academy of Sciences, Moscow, Russia
| | | | - Dmitry А Vorontsov
- State Budgetary Institution of Health Care of Nizhny Novgorod "Nizhny Novgorod Regional Clinical Oncological Dispensary", Nizhny Novgorod, Russia
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | | |
Collapse
|
44
|
Garg Y, Kapoor DN, Sharma AK, Bhatia A. Drug Delivery Systems and Strategies to Overcome the Barriers of Brain. Curr Pharm Des 2021; 28:619-641. [PMID: 34951356 DOI: 10.2174/1381612828666211222163025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
The transport of drugs to the central nervous system is the most challenging task for conventional drug delivery systems. Reduced permeability of drugs through the blood-brain barrier is a major hurdle in delivering drugs to the brain. Hence, various strategies for improving drug delivery through the blood-brain barrier are currently being explored. Novel drug delivery systems (NDDS) offer several advantages, including high chemical and biological stability, suitability for both hydrophobic and hydrophilic drugs, and can be administered through different routes. Furthermore, the conjugation of suitable ligands with these carriers tend to potentiate targeting to the endothelium of the brain and could facilitate the internalization of drugs through endocytosis. Further, the intranasal route has also shown potential, as a promising alternate route, for the delivery of drugs to the brain. This can deliver the drugs directly to the brain through the olfactory pathway. In recent years, several advancements have been made to target and overcome the barriers of the brain. This article deals with a detailed overview of the diverse strategies and delivery systems to overcome the barriers of the brain for effective delivery of drugs.
Collapse
Affiliation(s)
- Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, Pin. 151001. India
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, Pin. 173229. India
| | - Abhishek Kumar Sharma
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, Pin. 173229. India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, Pin. 151001. India
| |
Collapse
|
45
|
Naeem S, Naeem F, Mujtaba J, Shukla AK, Mitra S, Huang G, Gulina L, Rudakovskaya P, Cui J, Tolstoy V, Gorin D, Mei Y, Solovev AA, Dey KK. Oxygen Generation Using Catalytic Nano/Micromotors. MICROMACHINES 2021; 12:1251. [PMID: 34683302 PMCID: PMC8541545 DOI: 10.3390/mi12101251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023]
Abstract
Gaseous oxygen plays a vital role in driving the metabolism of living organisms and has multiple agricultural, medical, and technological applications. Different methods have been discovered to produce oxygen, including plants, oxygen concentrators and catalytic reactions. However, many such approaches are relatively expensive, involve challenges, complexities in post-production processes or generate undesired reaction products. Catalytic oxygen generation using hydrogen peroxide is one of the simplest and cleanest methods to produce oxygen in the required quantities. Chemically powered micro/nanomotors, capable of self-propulsion in liquid media, offer convenient and economic platforms for on-the-fly generation of gaseous oxygen on demand. Micromotors have opened up opportunities for controlled oxygen generation and transport under complex conditions, critical medical diagnostics and therapy. Mobile oxygen micro-carriers help better understand the energy transduction efficiencies of micro/nanoscopic active matter by careful selection of catalytic materials, fuel compositions and concentrations, catalyst surface curvatures and catalytic particle size, which opens avenues for controllable oxygen release on the level of a single catalytic microreactor. This review discusses various micro/nanomotor systems capable of functioning as mobile oxygen generators while highlighting their features, efficiencies and application potentials in different fields.
Collapse
Affiliation(s)
- Sumayyah Naeem
- Department of Materials Science, Fudan University, Shanghai 200433, China; (S.N.); (F.N.); (J.M.); (G.H.); (J.C.); (Y.M.)
- State Key Laboratory for Modification of Chemical Fibers and Polymer Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Farah Naeem
- Department of Materials Science, Fudan University, Shanghai 200433, China; (S.N.); (F.N.); (J.M.); (G.H.); (J.C.); (Y.M.)
- State Key Laboratory for Modification of Chemical Fibers and Polymer Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jawayria Mujtaba
- Department of Materials Science, Fudan University, Shanghai 200433, China; (S.N.); (F.N.); (J.M.); (G.H.); (J.C.); (Y.M.)
| | - Ashish Kumar Shukla
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Palaj 382355, Gujarat, India; (A.K.S.); (S.M.)
| | - Shirsendu Mitra
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Palaj 382355, Gujarat, India; (A.K.S.); (S.M.)
| | - Gaoshan Huang
- Department of Materials Science, Fudan University, Shanghai 200433, China; (S.N.); (F.N.); (J.M.); (G.H.); (J.C.); (Y.M.)
| | - Larisa Gulina
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Petergof, 198504 St. Petersburg, Russia; (L.G.); (V.T.)
| | - Polina Rudakovskaya
- Center of Photonics & Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str., 121205 Moscow, Russia; (P.R.); (D.G.)
| | - Jizhai Cui
- Department of Materials Science, Fudan University, Shanghai 200433, China; (S.N.); (F.N.); (J.M.); (G.H.); (J.C.); (Y.M.)
| | - Valeri Tolstoy
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Petergof, 198504 St. Petersburg, Russia; (L.G.); (V.T.)
| | - Dmitry Gorin
- Center of Photonics & Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str., 121205 Moscow, Russia; (P.R.); (D.G.)
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai 200433, China; (S.N.); (F.N.); (J.M.); (G.H.); (J.C.); (Y.M.)
| | - Alexander A. Solovev
- Department of Materials Science, Fudan University, Shanghai 200433, China; (S.N.); (F.N.); (J.M.); (G.H.); (J.C.); (Y.M.)
| | - Krishna Kanti Dey
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Palaj 382355, Gujarat, India; (A.K.S.); (S.M.)
| |
Collapse
|
46
|
Maksimova EA, Barmin RA, Rudakovskaya PG, Sindeeva OA, Prikhozhdenko ES, Yashchenok AM, Khlebtsov BN, Solovev AA, Huang G, Mei Y, Kanti Dey K, Gorin DA. Air-Filled Microbubbles Based on Albumin Functionalized with Gold Nanocages and Zinc Phthalocyanine for Multimodal Imaging. MICROMACHINES 2021; 12:1161. [PMID: 34683212 PMCID: PMC8537308 DOI: 10.3390/mi12101161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 01/01/2023]
Abstract
Microbubbles are intravascular contrast agents clinically used in diagnostic sonography, echocardiography, and radiology imaging applications. However, up to date, the idea of creating microbubbles with multiple functionalities (e.g., multimodal imaging, photodynamic therapy) remained a challenge. One possible solution is the modification of bubble shells by introducing specific compounds responsible for such functions. In the present work, air-core microbubbles with the shell consisting of bovine serum albumin, albumin-coated gold nanocages, and zinc phthalocyanine were prepared using the sonication method. Various physicochemical parameters such as stability over time, size, and concentration were investigated to prove the potential use of these microbubbles as contrast agents. This work shows that hybrid microbubbles have all the necessary properties for multimodal imaging (ultrasound, raster-scanning microscopy, and fluorescence tomography), which demonstrate superior characteristics for potential theranostic and related biomedical applications.
Collapse
Affiliation(s)
- Elizaveta A Maksimova
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str., 121205 Moscow, Russia
| | - Roman A Barmin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str., 121205 Moscow, Russia
| | - Polina G Rudakovskaya
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str., 121205 Moscow, Russia
| | - Olga A Sindeeva
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobelya Str., 121205 Moscow, Russia
| | | | - Alexey M Yashchenok
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str., 121205 Moscow, Russia
| | - Boris N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, 410049 Saratov, Russia
| | | | - Gaoshan Huang
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Krishna Kanti Dey
- Discipline of Physics, Indian Institute of Technology Gandhinagar Gandhinagar, Gujarat 382355, India
| | - Dmitry A Gorin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str., 121205 Moscow, Russia
| |
Collapse
|
47
|
Engineering Active Micro and Nanomotors. MICROMACHINES 2021; 12:mi12060687. [PMID: 34208386 PMCID: PMC8231110 DOI: 10.3390/mi12060687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022]
Abstract
Micro- and nanomotors (MNMs) are micro/nanoparticles that can perform autonomous motion in complex fluids driven by different power sources. They have been attracting increasing attention due to their great potential in a variety of applications ranging from environmental science to biomedical engineering. Over the past decades, this field has evolved rapidly, with many significant innovations contributed by global researchers. In this review, we first briefly overview the methods used to propel motors and then present the main strategies used to design proper MNMs. Next, we highlight recent fascinating applications of MNMs in two examplary fields, water remediation and biomedical microrobots, and conclude this review with a brief discussion of challenges in the field.
Collapse
|