1
|
Anyame Bawa S, Chan A, Wrobel-Tobiszewska A, Hardie M, Towns C. A review of methods for mitigating microplastic contamination in biosolids from wastewater treatment plants before agricultural soil application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177360. [PMID: 39515387 DOI: 10.1016/j.scitotenv.2024.177360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Wastewater treatment plants (WWTP) are recognized as major sources of microplastic (MP) particles in terrestrial environments, particularly in agricultural soils through biosolids application. While many reviews have focused on the distribution, detection, and mitigation of MPs in wastewater effluent to limit their discharge into oceans, our understanding of methods to mitigate biosolid contamination remains limited. This review focuses on methods for mitigating MPs contamination in biosolids at various intervention points, including sources, WWTP including the primary and secondary treatment stages where sludge is generated, and post-contamination. These methods are categorized as physical, physicochemical, and biological approaches, and their advantages and limitations are discussed. For instance, physicochemical methods, especially froth flotation, are cost-effective but are hindered by contaminants and reagents. Physical methods like microfibre filtration devices (MFD) are safe but their efficiency depends on the filter pore size and design. Biological methods, particularly microbial degradation, are limited by the varying efficiencies of microorganisms in breaking down MPs and the extended time required for their effective degradation. Other physical methods including dissolved air flotation, and ultrasonication already exist in WWTPs but may require retrofitting or optimization to enhance MP removal from biosolids. As each method inherently has limitations, the key to achieving MP-free biosolids, and thus preventing their release into agricultural soil, lies in integrating these methods through multi-coupling strategies.
Collapse
Affiliation(s)
| | - Andrew Chan
- School of Engineering, University of Tasmania, Australia
| | | | - Marcus Hardie
- Tasmania Institute of Agriculture (TIA), University of Tasmania, Australia
| | - Carmel Towns
- School of Engineering, University of Tasmania, Australia
| |
Collapse
|
2
|
Zhao H, Shang D, Li H, Aizudin M, Zhu H, Zhong X, Liu Y, Wang Z, Ni R, Wang Y, Tang S, Ang EH, Yang F. Monolith floatable dual-function solar photothermal evaporator: efficient clean water regeneration synergizing with pollutant degradation. MATERIALS HORIZONS 2024; 11:5081-5093. [PMID: 39108179 DOI: 10.1039/d4mh00696h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Meeting the growing demands of attaining clean water regeneration from wastewater and simultaneous pollutant degradation has been highly sought after. In this study, nanometric CuFe2O4 and plasmonic Cu were in situ confined into graphitic porous carbon nanofibers (CNF) through electrospinning and controlled graphitization, which were integrated onto a melamine sponge (S-FeCu/CNF) as a monolithic evaporator via a calcium ion-triggered network crosslinking method using sodium alginate (SA). This monolithic evaporator serves a dual purpose: harnessing solar-driven photothermal energy for water regeneration and facilitating synchronous contaminant mineralization through advanced oxidation processes (AOPs). The metal-modified FeCu/CNF graphitic porous carbon exhibited an enhanced light absorption property (≥95%) and was further securely anchored on the sponge by a calcium ion-triggered SA crosslinking technique, thereby efficiently restraining salt deposition. The FeCu/CNF evaporator demonstrated a solar-vapor conversion efficiency of 105.85% with an evaporation rate of 1.61 kg m-2 h-1 under one sun irradiation. The evaporation rate of the monolithic S-FeCu/CNF evaporator is close to 1.76 kg m-2 h-1, and an evaporation rate of 1.54 kg m-2 h-1 can be achieved even in 20% NaCl solution, with resistance to salt deposition and cycling stability. Synchronously, the monolithic D-S-FeCu/CNF evaporator also acts as a heterogeneous catalyst to activate peroxymonosulfate (PMS) and trigger rapid pollutant degradation, which also shows excellent catalytic cycling stability, producing clean water that satisfies the World Health Organization (WHO) standards. This work provides a potentially valuable solution for addressing desalination and wastewater treatment.
Collapse
Affiliation(s)
- Hongyao Zhao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China.
| | - Danhong Shang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China.
| | - Haodong Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China.
| | - Marliyana Aizudin
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| | - Hongyang Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China.
| | - Xiu Zhong
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China.
| | - Yang Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China.
| | - Zhenxiao Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China.
| | - Ruiting Ni
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China.
| | - Yanyun Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China.
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China.
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| | - Fu Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China.
| |
Collapse
|
3
|
Chao C, Niu J, Liu Y, Zhao M, Wan H, Zhai S, Wang Q, Wu Y, Zhao Y. 3D-printed controllable bio-accelerators with sustained release property to boost chromium (VI) inhibited denitrification recovery. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135928. [PMID: 39332254 DOI: 10.1016/j.jhazmat.2024.135928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
Although soluble bio-accelerators have proven effective in mitigating Cr(VI) inhibition within denitrification system, issues persist in immobilizing bio-accelerators and making them slow-release for sustained regulation. In this study, a novel strategy was proposed to fabricate immobilized bio-accelerators with controlled structure, sustained release property by 3D printing technology. Notably, the sustained release of bio-accelerators from 3D-printed bio-accelerators (3DP-B) lasted for at least 144 h. Compared to control group, 3DP-B with basic components (3DP-BB) shortened the recovery time by 1.4 folds, and the COD and NO3--N removal efficiency was 36.5 % and 38.0 % higher than that of natural recovery. Correspondingly, the activity of key enzymes (nitrate reductase, nitrite reductase, nitric oxide reductase, and nitrous oxide reductase), electron transfer system activity and extracellular polymer substances of denitrification biofilm maintained at relatively high levels. Furthermore, introducing 60 mg·L-1 anthraquinone-2,6-disulfonate (AQDS) into the ink showed noticeable superiority on the bio-inhibition release over 1000 mg·L-1 AQDS. The released AQDS facilitated the electron transport capacity by 1.25 times compared with control group. The groundbreaking findings of this study could advance the development of 3D printing technology and utilization of bio-accelerators in the field of wastewater treatment.
Collapse
Affiliation(s)
- Chunfang Chao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Minghao Zhao
- Power China Zhongnan Engineering Corporation Limited, Changsha 410019, China
| | - Huilin Wan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Siyuan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
4
|
Jia M, Guan M, Yao R, Qing Y, Hou X, Zhang J. Facile Formation of Multifunctional Biomimetic Hydrogel Fibers for Sensing Applications. Gels 2024; 10:590. [PMID: 39330192 PMCID: PMC11431008 DOI: 10.3390/gels10090590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
To face the challenges in preparing hydrogel fibers with complex structures and functions, this study utilized a microfluidic coaxial co-extrusion technique to successfully form functional hydrogel fibers through rapid ionic crosslinking. Functional hydrogel fibers with complex structures, including linear fibers, core-shell structure fibers, embedded helical channels, hollow tubes, and necklaces, were generated by adjusting the composition of internal and external phases. The characteristic parameters of the hydrogel fibers (inner and outer diameter, helix generation position, pitch, etc.) were achieved by adjusting the flow rate of the internal and external phases. As biocompatible materials, hydrogel fibers were endowed with electrical conductivity, temperature sensitivity, mechanical enhancement, and freeze resistance, allowing for their use as temperature sensors for human respiratory monitoring and other biomimetic application developments. The hydrogel fibers had a conductivity of up to 22.71 S/m, a response time to respiration of 37 ms, a recovery time of 1.956 s, and could improve the strength of respiration; the tensile strength at break up to 8.081 MPa, elongation at break up to 159%, and temperature coefficient of resistance (TCR) up to -13.080% °C-1 were better than the existing related research.
Collapse
Affiliation(s)
- Mengwei Jia
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214126, China
| | - Mingle Guan
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Ryan Yao
- College of Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Yuan Qing
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaoya Hou
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214126, China
| | - Jie Zhang
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214126, China
| |
Collapse
|
5
|
Chen X, Chen L, Zhou J, Wu J, Wang Z, Wei L, Yuan S, Zhang Q. Self-Adhesive, Stretchable, and Thermosensitive Iontronic Hydrogels for Highly Sensitive Neuromorphic Sensing-Synaptic Systems. NANO LETTERS 2024; 24:10265-10274. [PMID: 39116304 DOI: 10.1021/acs.nanolett.4c02614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Artificial sensory afferent nerves that emulate receptor nanochannel perception and synaptic ionic information processing in chemical environments are highly desirable for bioelectronics. However, challenges persist in achieving life-like nanoscale conformal contact, agile multimodal sensing response, and synaptic feedback with ions. Here, a precisely tuned phase transition poly(N-isopropylacrylamide) (PNIPAM) hydrogel is introduced through the water molecule reservoir strategy. The resulting hydrogel with strongly cross-linked networks exhibits excellent mechanical performance (∼2000% elongation) and robust adhesive strength. Importantly, the hydrogel's enhanced ionic conductance and heterogeneous structure of the temperature-sensitive component enable highly sensitive strain information perception (GFmax = 7.94, response time ∼ 87 ms), temperature information perception (TCRmax = -1.974%/°C, response time ∼ 270 ms), and low energy consumption synaptic plasticity (42.2 fJ/spike). As a demonstration, a neuromorphic sensing-synaptic system is constructed integrating iontronic strain/temperature sensors with fiber synapses for real-time information sensing, discrimination, and feedback. This work holds enormous potential in bioinspired robotics and bioelectronics.
Collapse
Affiliation(s)
- Xuedan Chen
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Long Chen
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jianxian Zhou
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jiajun Wu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuanglong Yuan
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
6
|
Yu Z, Gu R, Su Y, Li Y, Liu G, Cheng S. Natural-inspired hierarchic double-Janus solar evaporator for stable clean water production from high-salinity emulsions. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134739. [PMID: 38805818 DOI: 10.1016/j.jhazmat.2024.134739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Interfacial solar evaporation shows great potential in clean water production, emulsions separation, and high-salinity brine treatment. However, it remains challenging for the evaporators to maintain a high evaporation rate in the high-salinity emulsions due to the co-pollution of salt and oil. Herein, we first proposed a hierarchic double-Janus solar evaporator (HDJE) with a hydrophobic salt-rejecting top layer and oil-rejecting bottom layer. Compared to the traditional one, HDJE could treat industrial high-salinity oil-in-water emulsions stably for over 70 h, with a stable average evaporation rate of 1.73 kg m-2 h-1 and a high purification efficiency of up to 99.8 % for oil and ions. It was also verified that HDJE could be used for high-efficiency purification of oily concentrated seawater outdoor. An average water production rate of 3.59 kg m-2 d-1 and a TOC removal ratio of over 98 % was obtained. In conclusion, this study provides a novel way to effectively dispose of high-salinity oily wastewater.
Collapse
Affiliation(s)
- Zhen Yu
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Ruonan Gu
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Yuqing Su
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Yihang Li
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
7
|
Liu Q, Xie M, Wang C, Deng M, Li P, Yang X, Zhao N, Huang C, Zhang X. Rapid Preparation Triggered by Visible Light for Tough Hydrogel Sensors with Low Hysteresis and High Elasticity: Mechanism, Use and Recycle-by-Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311647. [PMID: 38593379 DOI: 10.1002/smll.202311647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/05/2024] [Indexed: 04/11/2024]
Abstract
Hydrogels have emerged as promising candidates for flexible devices and water resource management. However, further applications of conventional hydrogels are restricted due to their limited performance and lack of a recycling strategy. Herein, a tough, flexible, and recyclable hydrogel sensor via a visible-light-triggered polymerization is rapidly created. The Zn2+ crosslinked terpolymer is in situ polymerized using g-C3N4 as the sole initiator to form in situ chain entanglements, endowing the hydrogels with low hysteresis and high elasticity. In the use phase, the hydrogel sensor exhibited high ion conductivity, excellent mechanical properties, fast responsiveness, high sensitivity, and remarkable anti-fatigue ability, making it exceptionally effective in accurately monitoring complex human movements. At the end-of-life (EOL), leveraging the synergy between the photodegradation capacity of g-C3N4 and the adsorption function of the hydrogel matrix, the post-consumer hydrogel is converted into water remediation materials, which not only promoted the rapid degradation of organic pollutants, but also facilitated collection and reuse. This innovative strategy combined in situ entangling reinforcement and tailored recycle-by-design that employed g-C3N4 as key blocks in the hydrogel to achieve high performance in the use phase and close the loop through the reutilization at EOL, highlighting the cost-effective synthesis, specialized structure, and life cycle management.
Collapse
Affiliation(s)
- Qi Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan, 637002, China
| | - Mingwei Xie
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan, 637002, China
| | - Chenghao Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan, 637002, China
| | - Mingming Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan, 637002, China
| | - Ping Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan, 637002, China
| | - Xulin Yang
- School of Mechanical Engineering, Sichuan Province Engineering Research Centre for Powder Metallurgy, Chengdu University, Chengdu, 610106, China
| | - Nihui Zhao
- Key Laboratory of Southwest China Wildlife Resources Conservation, the Ministry of Education, College of Life Science, China West Normal University, Nanchong, Sichuan, 637002, China
| | - Chi Huang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan, 637002, China
| | - Xinghua Zhang
- School of Science, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
8
|
Zhang M, Hu N, Guo Y, Wu W, Fan L, Lin D, Wang J, Yang K. KOH Activated Carbon Coated 3D Wood Solar Evaporator with Highest Water Transport Height and Evaporation Rate for Clean Water Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402583. [PMID: 38867648 PMCID: PMC11321681 DOI: 10.1002/advs.202402583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/08/2024] [Indexed: 06/14/2024]
Abstract
The water evaporation rate of 3D solar evaporator heavily relies on the water transport height of the evaporator. In this work, a 3D solar evaporator featuring a soil capillary-like structure is designed by surface coating native balsa wood using potassium hydroxide activated carbon (KAC). This KAC-coated wood evaporator can transport water up to 32 cm, surpassing that of native wood by ≈8 times. Moreover, under 1 kW m-2 solar radiation without wind, the KAC-coated wood evaporator exhibits a remarkable water evaporation rate of 25.3 kg m-2 h-1, ranking among the highest compared with other reported evaporators. The exceptional water transport capabilities of the KAC-coated wood should be attributed to the black and hydrophilic KAC film, which creates a porous network resembling a soil capillary structure to facilitate efficient water transport. In the porous network of coated KAC film, the small internal pores play a pivotal role in achieving rapid capillary condensation, while the larger interstitial channels store condensed water, further promoting water transport up more and micropore capillary condensation. Moreover, this innovative design demonstrates efficacy in retarding phenol from wastewater through absorption onto the coated KAC film, thus presenting a new avenue for high-efficiency clean water production.
Collapse
Affiliation(s)
- Mengxue Zhang
- Department of Environmental ScienceZhejiang UniversityHangzhou310058P. R. China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and ControlZhejiang UniversityHangzhou310058P. R. China
| | - Nan Hu
- Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonNJ08544USA
| | - Yang Guo
- Department of Environmental ScienceZhejiang UniversityHangzhou310058P. R. China
| | - Wenhao Wu
- Department of Environmental ScienceZhejiang UniversityHangzhou310058P. R. China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and ControlZhejiang UniversityHangzhou310058P. R. China
| | - Liwu Fan
- Institute of Thermal Science and Power SystemsSchool of Energy EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Daohui Lin
- Department of Environmental ScienceZhejiang UniversityHangzhou310058P. R. China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and ControlZhejiang UniversityHangzhou310058P. R. China
| | - Juan Wang
- Department of Environmental ScienceZhejiang UniversityHangzhou310058P. R. China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and ControlZhejiang UniversityHangzhou310058P. R. China
| | - Kun Yang
- Department of Environmental ScienceZhejiang UniversityHangzhou310058P. R. China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and ControlZhejiang UniversityHangzhou310058P. R. China
- Zhejiang University‐Hangzhou Global Scientific and Technological Innovation CenterHangzhou311200P. R. China
| |
Collapse
|
9
|
Chen J, Wang X, Wang B, Wu T, Zhang L, Zhang K, Fang G, Wang Y, Zhao Y, Yang G. Recent Advances of Bio-Based Hydrogel Derived Interfacial Evaporator for Sustainable Water and Collaborative Energy Storage Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403221. [PMID: 39012064 DOI: 10.1002/smll.202403221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/13/2024] [Indexed: 07/17/2024]
Abstract
Solar interfacial evaporation strategy (SIES) has shown great potential to deal with water scarcity and energy crisis. Biobased hydrogel derived interfacial evaporator can realize efficient evaporation due to the unique structure- properties relationship. As such, increasing studies have focused on water treatment or even potential accompanying advanced energy storage applications with respect of efficiency and mechanism of bio-based hydrogel derived interfacial evaporation from microscale to molecular scale. In this review, the interrelationship between efficient interfacial evaporator and bio-based hydrogel is first presented. Then, special attention is paid on the inherent molecular characteristics of the biopolymer related to the up-to-date studies of promising biopolymers derived interfacial evaporator with the objective to showcase the unique superiority of biopolymer. In addition, the applications of the bio-based hydrogels are highlighted concerning the aspects including water desalination, water decontamination atmospheric water harvesting, energy storage and conversion. Finally, the challenges and future perspectives are given to unveil the bottleneck of the biobased hydrogel derived SIES in sustainable water and other energy storage applications.
Collapse
Affiliation(s)
- Jiachuan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Xiaofa Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu Province, 210042, China
| | - Baobin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu Province, 210042, China
| | - Lei Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Kai Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu Province, 210042, China
| | - Yueying Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Yu Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| |
Collapse
|
10
|
Gao Z, Li L, Li F, Miao G, Miao X, Song Y, Xu L, Hou Z, Ren G, Zhu X. Versatile GO/ANFs Aerogel for Highly Efficient Solar-Powered Water Purification in Wide Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12504-12511. [PMID: 38836627 DOI: 10.1021/acs.langmuir.4c00929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Solar-driven interfacial evaporation is a very promising choice for producing clean water. Despite the considerable investigation of pure NaCl brine purification, solar-driven complex water purification, such as real-world seawater desalination as well as domestic and industrial wastewater treatment, has rarely been investigated, mainly due to its compositions being much more complicated than NaCl brine. Herein, we developed a graphene oxide/aramid nanofiber (GO/ANFs) aerogel by a freeze-drying process. The GO/ANFs aerogel combined opened porous microchannels, superhydrophilicity, anti-oil-fouling capacity, enhanced broad-spectrum light absorption (more than 92%), and good solar/heat management. These integrated properties enabled the GO/ANFs aerogel to be an advanced solar interfacial evaporator for efficient freshwater production with the characteristics of localized heat conversion, quick water transport, and salt crystallization inhibition, and the rate of steam production rate was as high as 2.25 kg m-2 h-1 upon exposure to 1 solar irradiation. Importantly, the high-water-vapor generation rate was maintained even under complicated conditions, including real-world seawater, dye water, emulsions, and corrosive liquid environments. Considering its promising adaptability to a wide range of environments, this work hopes to inspire the development of brine desalination, wastewater purification, clean water production, and solar energy utilization.
Collapse
Affiliation(s)
- Zhongshuai Gao
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Linfan Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Fangchao Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Gan Miao
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Xiao Miao
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Yuanming Song
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Lide Xu
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Zhiqiang Hou
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Guina Ren
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Xiaotao Zhu
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| |
Collapse
|
11
|
Sang C, Wang S, Jin X, Cheng X, Xiao H, Yue Y, Han J. Nanocellulose-mediated conductive hydrogels with NIR photoresponse and fatigue resistance for multifunctional wearable sensors. Carbohydr Polym 2024; 333:121947. [PMID: 38494214 DOI: 10.1016/j.carbpol.2024.121947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
The rapid development of hydrogels has garnered significant attention in health monitoring and human motion sensing. However, the synthesis of multifunctional conductive hydrogels with excellent strain/pressure sensing and photoresponsiveness remains a challenge. Herein, the conductive hydrogels (BPTP) with excellent mechanical properties, fatigue resistance and photoresponsive behavior composed of polyacrylamide (PAM) matrix, 2,2,6,6-tetramethylpiperidin-1-yloxy-oxidized cellulose nanofibers (TOCNs) reinforcement and polydopamine-modified black phosphorus (BP@PDA) photosensitizer are prepared through a facile free-radical polymerization approach. The PDA adhered to the BP surface by π-π stacking promotes the optical properties of BP while also preventing BP oxidation from water. Through hydrogen bonding interactions, TOCNs improve the homogeneous dispersion of BP@PDA nanosheets and the mechanical toughness of BPTP. Benefiting from the synergistic effect of PDA and TOCNs, the conductive BPTP integrates superior mechanical performances, excellent photoelectric response and photothermal conversion capability. The BPTP-based sensor with high cycling stability demonstrates superior strain sensitivity (GF = 6.0) and pressure sensing capability (S = 0.13 kPa-1) to monitor various human activities. Therefore, this work delivers an alternative construction strategy for generating high-performance conductive hydrogels as multifunctional wearable sensors.
Collapse
Affiliation(s)
- Chenyu Sang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaowei Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyue Jin
- Nanjing Institute of Product Quality Inspection, Nanjing Institute of Quality Development and Advanced Technology Application, Nanjing 210019, China
| | - Xiaoyu Cheng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, 15 Dineen Drive, Fredericton, NB E3B 5A3, Canada
| | - Yiying Yue
- College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Jingquan Han
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
12
|
Niu C, Lin Z, Fu Q, Xu Y, Chen Y, Lu L. An eco-friendly versatile superabsorbent hydrogel based on sodium alginate and urea for soil improvement with a synchronous chemical loading strategy. Carbohydr Polym 2024; 327:121676. [PMID: 38171662 DOI: 10.1016/j.carbpol.2023.121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
In this paper, an eco-friendly versatile superabsorbent material was designed for soil improvement, and a synchronous chemical loading strategy was proposed. In this strategy, urea not only acted as fertilizer but also acted as a crosslinker to construct an alginate network. The microstructure, chemical structure, thermal stability and composition of the obtained SA/urea hydrogel were characterized in detail. Adsorption behavior and application performance in agriculture were evaluated. The results demonstrated that urea had two different conformations in the network. The SA/urea hydrogel had abundant pore structures with excellent water absorption performance. It could not only improve the water retention capacity of soil but also release nitrogen, phosphorus and potassium elements with degradation for as long as 9 weeks. Moreover, the hydrogel could promote plant growth, increase the nutritional composition of plants and inhibit the accumulation of harmful nitrate in plants. With advantages, including biodegradability, high water absorption, controllable degradation, excellent water retention, sustained NPK release and improved plant nutrition value, the SA/urea hydrogel has great potential for soil improvement in agriculture as an eco-friendly versatile water retention agent and can be expected to extend to more fields as a novel superabsorbent material.
Collapse
Affiliation(s)
- Chenxi Niu
- Special Glass Key Lab of Hainan Province (Hainan University) & State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhibo Lin
- Special Glass Key Lab of Hainan Province (Hainan University) & State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Qian Fu
- Special Glass Key Lab of Hainan Province (Hainan University) & State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Yutao Xu
- Special Glass Key Lab of Hainan Province (Hainan University) & State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Youhui Chen
- Special Glass Key Lab of Hainan Province (Hainan University) & State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Lingbin Lu
- Special Glass Key Lab of Hainan Province (Hainan University) & State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
13
|
He M, Wu S, Xiong S, Zhang L, Lai C, Peng X, Zhong S, Lu ZH, Chen S, Zhang WG, Tan C, Peng G, Liu C. Hydrophobic Carbon Nitride Nanolayer Enables High-Flux Oil/Water Separation with Photocatalytic Antifouling Ability. NANO LETTERS 2023; 23:10563-10570. [PMID: 37926962 DOI: 10.1021/acs.nanolett.3c03482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Efficient oil/water separation tackles various issues in occasions of oil leakage and oil discharge, such as environmental pollution, recollection of the oil, and saving the water. Herein, a compact superhydrophobic/superoleophilic graphitic carbon nitride nanolayer coated on carbon fiber networks (CNBA/CF) is designed and synthesized for efficient gravity-driven oil/water separation. The CNBA/CF shows excellent oil absorption and an impressive oil/water filtration separation performance. The flux reaches the state-of-art value of 4.29 × 105 L/m2/h for dichloromethane with separation efficiency up to 99%. Successive oil absorption tests, long-term filtration separation, and harsh conditions experiments confirm the remarkable separation and chemical structure stability of the CNBA/CF filter. Besides, the CNBA/CF demonstrates good photocatalytic antifouling ability thanks to the extended visible light absorption and improved charge separation. This work combines the material surface wettability modulation with a photocatalytic self-cleaning property in the fabrication of efficient oil/water separation materials while overcoming the filter fouling issue.
Collapse
Affiliation(s)
- Mao He
- College of Chemistry and Chemical Engineering, National Engineering Research Center for Carbonhydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Suqin Wu
- College of Chemistry and Chemical Engineering, National Engineering Research Center for Carbonhydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Shubin Xiong
- College of Chemistry and Chemical Engineering, National Engineering Research Center for Carbonhydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, National Engineering Research Center for Carbonhydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Chen Lai
- College of Chemistry and Chemical Engineering, National Engineering Research Center for Carbonhydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Xiaoying Peng
- College of Chemistry and Chemical Engineering, National Engineering Research Center for Carbonhydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Shengliang Zhong
- College of Chemistry and Chemical Engineering, National Engineering Research Center for Carbonhydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Zhang-Hui Lu
- College of Chemistry and Chemical Engineering, National Engineering Research Center for Carbonhydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Shuiliang Chen
- College of Chemistry and Chemical Engineering, National Engineering Research Center for Carbonhydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Wei-Guang Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Chaoliang Tan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Guiming Peng
- College of Chemistry and Chemical Engineering, National Engineering Research Center for Carbonhydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Chong Liu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
14
|
Han X, Zhong L, Zhang L, Zhu L, Zhou M, Wang S, Yu D, Chen H, Hou Y, Zheng Y. Efficient Atmospheric Water Harvesting of Superhydrophilic Photothermic Nanocapsule. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303358. [PMID: 37488688 DOI: 10.1002/smll.202303358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/09/2023] [Indexed: 07/26/2023]
Abstract
Drought and water scarcity are two of the world's major problems. Solar-powered sorption-based atmospheric water harvesting technology is a promising solution in this category. The main challenge is to design materials with high water harvesting performance while achieving fast water vapor adsorption/desorption rates. Here, a superhydrophilic photothermic hollow nanocapsule (SPHN) is represented that achieves efficient atmospheric water harvesting in outdoor climates. In SPHN, the hollow mesoporous silica (HMS) is grafted with polypyrrole (PPy) and also loaded with lithium chloride (LiCl). The hollow structure is used to store water while preventing leakage. The hydrophilic spherical nanocapsule and the trapped water produce more free and weakly adsorbed water. Significantly lower the heat of desorption compared to pure LiCl solution. Such SPHN significantly improves the adsorption/desorption kinetics, e.g., absorbs 0.78-2.01 g of water per gram of SPHN at 25 °C, relative humidity (RH) 30-80% within 3 h. In particular, SPHN has excellent photothermal properties to achieve rapid water release under natural sunlight conditions, i.e., 80-90% of water is released in 1 h at 0.7-1.0 kW m-2 solar irradiation, and 50% of water is released even at solar irradiation as low as 0.4 kW m-2 . The water collection capacity can reach 1.2 g g-1 per cycle by using the self-made atmospheric water harvesting (AWH) device. This finding provides a way to design novel materials for efficient water harvesting tasks, e.g., water engineering, freshwater generator, etc.
Collapse
Affiliation(s)
- Xuefeng Han
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| | - Lieshuang Zhong
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| | - Lei Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| | - Lingmei Zhu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| | - Maolin Zhou
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| | - Shaomin Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| | - Dongdong Yu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| | - Huan Chen
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| | - Yongping Hou
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| | - Yongmei Zheng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| |
Collapse
|
15
|
Zhu L, Tian L, Jiang S, Han L, Liang Y, Li Q, Chen S. Advances in photothermal regulation strategies: from efficient solar heating to daytime passive cooling. Chem Soc Rev 2023; 52:7389-7460. [PMID: 37743823 DOI: 10.1039/d3cs00500c] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Photothermal regulation concerning solar harvesting and repelling has recently attracted significant interest due to the fast-growing research focus in the areas of solar heating for evaporation, photocatalysis, motion, and electricity generation, as well as passive cooling for cooling textiles and smart buildings. The parallel development of photothermal regulation strategies through both material and system designs has further improved the overall solar utilization efficiency for heating/cooling. In this review, we will review the latest progress in photothermal regulation, including solar heating and passive cooling, and their manipulating strategies. The underlying mechanisms and criteria of highly efficient photothermal regulation in terms of optical absorption/reflection, thermal conversion, transfer, and emission properties corresponding to the extensive catalog of nanostructured materials are discussed. The rational material and structural designs with spectral selectivity for improving the photothermal regulation performance are then highlighted. We finally present the recent significant developments of applications of photothermal regulation in clean energy and environmental areas and give a brief perspective on the current challenges and future development of controlled solar energy utilization.
Collapse
Affiliation(s)
- Liangliang Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Liang Tian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Siyi Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Lihua Han
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Yunzheng Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| |
Collapse
|
16
|
Liu X, Zhang L, El Fil B, Díaz-Marín CD, Zhong Y, Li X, Lin S, Wang EN. Unusual Temperature Dependence of Water Sorption in Semicrystalline Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211763. [PMID: 36921061 DOI: 10.1002/adma.202211763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/13/2023] [Indexed: 06/02/2023]
Abstract
Water vapor sorption is a ubiquitous phenomenon in nature and plays an important role in various applications, including humidity regulation, energy storage, thermal management, and water harvesting. In particular, capturing moisture at elevated temperatures is highly desirable to prevent dehydration and to enlarge the tunability of water uptake. However, owing to the thermodynamic limit of conventional materials, sorbents inevitably tend to capture less water vapor at higher temperatures, impeding their broad applications. Here, an inverse temperature dependence of water sorption in poly(ethylene glycol) (PEG) hydrogels, where their water uptake can be doubled with increasing temperature from 25 to 50 °C, is reported. With mechanistic modeling of water-polymer interactions, this unusual water sorption is attributed to the first-order phase transformation of PEG structures, and the key parameters for a more generalized strategy in materials development are identified. This work elucidates a new regime of water sorption with an unusual temperature dependence, enabling a promising engineering space for harnessing moisture and heat.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lenan Zhang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Bachir El Fil
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Carlos D Díaz-Marín
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yang Zhong
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xiangyu Li
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shaoting Lin
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Evelyn N Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
17
|
Yang P, Bai W, Zou Y, Zhang X, Yang Y, Duan G, Wu J, Xu Y, Li Y. A melanin-inspired robust aerogel for multifunctional water remediation. MATERIALS HORIZONS 2023; 10:1020-1029. [PMID: 36692037 DOI: 10.1039/d2mh01474b] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Solar-driven vapor generation has emerged as a promising wastewater remediation technology for clean water production. However, the complicated and diversified contaminants in wastewater still restrict its practical applications. Herein, inspired by the melanin in nature, a robust aerogel was facilely fabricated for multifunctional water remediation via a one-pot condensation copolymerization of 5,6-dihydroxyindole and formaldehyde. Benefiting from the superhydrophilicity, underwater superoleophobicity, and synergistic coordination effects, the resulting aerogel not only showed excellent performances in underwater oil resistance and oil-water separation ability, but also removed organic dyes and heavy metal ions contaminants in wastewater simultaneously. Moreover, owing to its admirable light harvesting capacity and porous microstructure for fast water transportation, the aerogel-based evaporator exhibited an excellent evaporation rate of 1.42 kg m-2 h-1 with a 91% evaporation efficiency under 1 sun illumination, which can be reused for long-term water evaporation. Note that such a stable evaporation rate could be maintained even in wastewater containing complex multicomponent contaminants. Outdoor evaporation experiments for lotus pond wastewater under natural sunlight also proved its great potential in practical applications. All those promising features of this all-in-one melanin-inspired aerogel may provide new strategies for the development of robust photothermal devices for multifunctional solar-driven water remediation.
Collapse
Affiliation(s)
- Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Wanjie Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuan Zou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yiyan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jinrong Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
18
|
Xu X, Guillomaitre N, Christie KSS, Bay RK, Bizmark N, Datta SS, Ren ZJ, Priestley RD. Quick-Release Antifouling Hydrogels for Solar-Driven Water Purification. ACS CENTRAL SCIENCE 2023; 9:177-185. [PMID: 36844496 PMCID: PMC9951281 DOI: 10.1021/acscentsci.2c01245] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 06/18/2023]
Abstract
Hydrogels are promising soft materials for energy and environmental applications, including sustainable and off-grid water purification and harvesting. A current impediment to technology translation is the low water production rate well below daily human demand. To overcome this challenge, we designed a rapid-response, antifouling, loofah-inspired solar absorber gel (LSAG) capable of producing potable water from various contaminated sources at a rate of ∼26 kg m-2 h-1, which is sufficient to meet daily water demand. The LSAG-produced at room temperature via aqueous processing using an ethylene glycol (EG)-water mixture-uniquely integrates the attributes of poly(N-isopropylacrylamide) (PNIPAm), polydopamine (PDA), and poly(sulfobetaine methacrylate) (PSBMA) to enable off-grid water purification with enhanced photothermal response and the capacity to prevent oil fouling and biofouling. The use of the EG-water mixture was critical to forming the loofah-like structure with enhanced water transport. Remarkably, under sunlight irradiations of 1 and 0.5 sun, the LSAG required only 10 and 20 min to release ∼70% of its stored liquid water, respectively. Equally important, we demonstrate the ability of LSAG to purify water from various harmful sources, including those containing small molecules, oils, metals, and microplastics.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department
of Chemical and Biological Engineering, Department of Mechanical and Aerospace
Engineering, Princeton Materials Institute, Department of Civil and Environmental Engineering, and Andlinger Center
for Energy and the Environment, Princeton
University, Princeton, New Jersey 08540, United States
| | - Néhémie Guillomaitre
- Department
of Chemical and Biological Engineering, Department of Mechanical and Aerospace
Engineering, Princeton Materials Institute, Department of Civil and Environmental Engineering, and Andlinger Center
for Energy and the Environment, Princeton
University, Princeton, New Jersey 08540, United States
| | - Kofi S. S. Christie
- Department
of Chemical and Biological Engineering, Department of Mechanical and Aerospace
Engineering, Princeton Materials Institute, Department of Civil and Environmental Engineering, and Andlinger Center
for Energy and the Environment, Princeton
University, Princeton, New Jersey 08540, United States
| | - R. Ko̅nane Bay
- Department
of Chemical and Biological Engineering, Department of Mechanical and Aerospace
Engineering, Princeton Materials Institute, Department of Civil and Environmental Engineering, and Andlinger Center
for Energy and the Environment, Princeton
University, Princeton, New Jersey 08540, United States
| | - Navid Bizmark
- Department
of Chemical and Biological Engineering, Department of Mechanical and Aerospace
Engineering, Princeton Materials Institute, Department of Civil and Environmental Engineering, and Andlinger Center
for Energy and the Environment, Princeton
University, Princeton, New Jersey 08540, United States
| | - Sujit S. Datta
- Department
of Chemical and Biological Engineering, Department of Mechanical and Aerospace
Engineering, Princeton Materials Institute, Department of Civil and Environmental Engineering, and Andlinger Center
for Energy and the Environment, Princeton
University, Princeton, New Jersey 08540, United States
| | - Zhiyong Jason Ren
- Department
of Chemical and Biological Engineering, Department of Mechanical and Aerospace
Engineering, Princeton Materials Institute, Department of Civil and Environmental Engineering, and Andlinger Center
for Energy and the Environment, Princeton
University, Princeton, New Jersey 08540, United States
| | - Rodney D. Priestley
- Department
of Chemical and Biological Engineering, Department of Mechanical and Aerospace
Engineering, Princeton Materials Institute, Department of Civil and Environmental Engineering, and Andlinger Center
for Energy and the Environment, Princeton
University, Princeton, New Jersey 08540, United States
| |
Collapse
|
19
|
Cao S, Thomas A, Li C. Emerging Materials for Interfacial Solar-Driven Water Purification. Angew Chem Int Ed Engl 2023; 62:e202214391. [PMID: 36420911 PMCID: PMC10107296 DOI: 10.1002/anie.202214391] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Solar-driven water purification is considered as an effective and sustainable technology for water treatment using green solar energy. One major goal for practical applications is to improve the solar evaporation performance by the design of novel photothermal materials, with optimized heat localization and water transport pathways to achieve reduced energy consumption for water vaporization. Recently, some emerging materials like polymers, metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and also single molecules were employed to construct novel solar evaporation systems. In this minireview, we present an overview of the recent efforts on materials development for water purification systems. The state-of-the-art applications of these emerging materials for solar-driven water treatment, including desalination, wastewater purification, sterilization and energy production, are also summarized.
Collapse
Affiliation(s)
- Sijia Cao
- Department of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.,Institute of Chemistry, University of Potsdam, 14476, Potsdam, Germany
| | - Arne Thomas
- Department of Chemistry, Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Changxia Li
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| |
Collapse
|
20
|
Hermosillo‐Ochoa E, Cortez‐Lemus NA. End‐group controlling aqueous solution properties in star‐shaped poly(2‐hydroxyethyl acrylate) and poly(2‐hydroxyethyl acrylate)‐
b
‐poly(
N
‐isopropylacrylamide) polymers. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Eduardo Hermosillo‐Ochoa
- Centro de Graduados e Investigación en Química Tecnológico Nacional de México/Instituto Tecnológico de Tijuana Tijuana Mexico
| | - Norma A. Cortez‐Lemus
- Centro de Graduados e Investigación en Química Tecnológico Nacional de México/Instituto Tecnológico de Tijuana Tijuana Mexico
| |
Collapse
|
21
|
Liu E, Xia X, Chen Q, Xu S. Gradient hydrogel actuator with fast response and self-recovery in air. J Mater Chem B 2023; 11:560-564. [PMID: 36598010 DOI: 10.1039/d2tb02471c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The driving principle of a thermal-responsive hydrogel that loses water at high temperature and absorbs water at low temperature limits its application in an aqueous environment. Here, a gradient hydrogel actuator was developed by introducing sodium hyaluronate into poly(N-isopropylacrylamide) hydrogel by an asymmetric mold method. The hydrogel exhibited a fast response above the LCST in air and unusual self-recovery without the need for further temperature stimuli. The actuation behavior was related to conversion from free water to bound water and water retention within the gradient matrix. The self-recovery mechanism was explored. This work provides a new insight into designing bionic hydrogels applied in a non-aqueous environment.
Collapse
Affiliation(s)
- E Liu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xuehuan Xia
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Qiuyue Chen
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Shimei Xu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
22
|
Yang Y, Yang L, Yang F, Bai W, Zhang X, Li H, Duan G, Xu Y, Li Y. A bioinspired antibacterial and photothermal membrane for stable and durable clean water remediation. MATERIALS HORIZONS 2023; 10:268-276. [PMID: 36411995 DOI: 10.1039/d2mh01151d] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Solar-driven steam generation has been considered as a prevalent and sustainable approach to obtain clean fresh water. However, the presence of microorganisms in seawater may cause the biofouling and degradation of polymeric photothermal materials and clog the channels for water transportation, leading to a decrease in solar evaporation efficiency during long-term usage. Herein, we have reported a facile strategy to construct a robust cellulose membrane device coated by tobramycin-doped polydopamine nanoparticles (PDA/TOB@CA). The PDA/TOB@CA membrane not only exhibited synergistic antibacterial behaviors with long-term and sustained antibiotic release profiles, but also achieved a high water evaporation rate of 1.61 kg m-2 h-1 as well as an evaporation efficiency of >90%. More importantly, the high antibacterial activity endowed the PDA/TOB@CA membrane with superb durability for stable reuse over 20 cycles, even in microbe-rich environments. Therefore, we envision that this study could pave a new pathway towards the design and fabrication of robust antibacterial and photothermal materials for long-term and stable clean water production.
Collapse
Affiliation(s)
- Yiyan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Lei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Fengying Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Wanjie Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Haotian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Gaigai Duan
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources International Innovation Centre for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forest University, Nanjing 210037, China
| | - Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
23
|
Wen J, Li X, Zhang H, Zheng S, Yi C, Yang L, Shi J. Architecting Janus hydrogel evaporator with polydopamine-TiO2 photocatalyst for high-efficient solar desalination and purification. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
24
|
Jin F, Liao S, Li W, Jiang C, Wei Q, Xia X, Wang Q. Amphiphilic sodium alginate-polylysine hydrogel with high antibacterial efficiency in a wide pH range. Carbohydr Polym 2023; 299:120195. [PMID: 36876766 DOI: 10.1016/j.carbpol.2022.120195] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Bacterial infection is a major pathological factor leading to persistent wounds. With the aging of population, wound infection has gradually become a global health-issue. The wound site environment is complicated, and the pH changes dynamically during healing. Therefore, there is an urgent need for new antibacterial materials that can adapt to a wide pH range. To achieve this goal, we developed a thymol-oligomeric tannic acid/amphiphilic sodium alginate-polylysine hydrogel film, which exhibited excellent antibacterial efficacy in the pH range from 4 to 9, achieving the highest achievable 99.993 % (4.2 log units) and 99.62 % (2.4 log units) against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, respectively. The hydrogel films exhibited excellent cytocompatibility, suggesting that the materials are promising as a novel wound healing material without the concern of biosafety.
Collapse
Affiliation(s)
- Fangyu Jin
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Shiqin Liao
- Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, PR China
| | - Wei Li
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Chenyu Jiang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Xin Xia
- College of Textile and Clothing, Xinjiang University, Urumqi 830046, PR China
| | - Qingqing Wang
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, PR China.
| |
Collapse
|
25
|
Guo Y, Wu H, Guo S, Qiu J. Tunable all-in-one bimodal porous membrane of ultrahigh molecular weight polyethylene for solar driven interfacial evaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Haidari H, Vasilev K, Cowin AJ, Kopecki Z. Bacteria-Activated Dual pH- and Temperature-Responsive Hydrogel for Targeted Elimination of Infection and Improved Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51744-51762. [PMID: 36356210 DOI: 10.1021/acsami.2c15659] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Antibacterial treatment that provides on-demand release of therapeutics that can kill a broad spectrum of pathogens while maintaining long-term efficacy and without developing resistance or causing side effects is urgently required in clinical practice. Here, we demonstrate the development of a multistimuli-responsive hydrogel, prepared by cross-linking N-isopropylacrylamide with acrylic acid and loaded with ultrasmall silver nanoparticles (AgNPs), offering the on-demand release of Ag+ ions triggered by changes in the wound microenvironment. We demonstrate that this dual-responsive hydrogel is highly sensitive to a typical wound pH and temperature change, evidenced by the restricted release of Ag+ ions at acidic pH (<5.5) while significantly promoting the release in alkaline pH (>7.4) (>90% release). The pH-dependent release and antibacterial effect show minimal killing at pH 4 or 5.5 but dramatically activated at pH 7.4 and 10, eliminating >95% of the pathogens. The in vivo antibacterial efficacy and safety showed a high potency to clear Staphylococcus aureus wound infection while significantly accelerating the wound healing rate. This multifunctional hydrogel presents a promising bacteria-responsive delivery platform that serves as an on-demand carrier to not only reduce side effects but also significantly boost the antibacterial efficiency based on physiological needs. It offers great potential to improve the way wound infections are treated with direct clinical implications, providing a single platform for long-lasting application in wound management.
Collapse
Affiliation(s)
- Hanif Haidari
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Allison J Cowin
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
27
|
Highly Efficient Uranium Extraction by Aminated Lignin-based Thermo-responsive Hydrogels. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Zhao Q, Wu Z, Xu X, Yang R, Ma H, Xu Q, Zhang K, Zhang M, Xu J, Lu B. Design of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate-polyacrylamide dual network hydrogel for long-term stable, highly efficient solar steam generation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Shang Y, Cai L, Liu R, Zhang D, Zhao Y, Sun L. Self-Propelled Structural Color Cylindrical Micromotors for Heavy Metal Ions Adsorption and Screening. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204479. [PMID: 36207291 DOI: 10.1002/smll.202204479] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Water contamination resulting from heavy metal ions (HMIs) poses a severe threat to public health and the ecosystem. Attempts are tending to develop functional materials to realize efficient and intelligent adsorption of HMIs. Herein, self-propelled structural color cylindrical micromotors (SCCMs) with reversible HMIs adsorption capacity and self-reporting property are presented. The SCCMs are fabricated by using platinum nanoparticles (Pt NPs) tagged responsive hydrogel of carboxymethyl chitosan (CMC) and polyacrylamide (PAM) to asymmetrically replicate tubular colloidal crystal templates (TCCTs). Owing to the self-propelled motion of the SCCMs, the enhancive ion-motor interactions bring significantly improved decontamination efficiency. Moreover, it is demonstrated that the SCCMs can realize quick and naked-eye-visible self-reporting during the adsorption/desorption process based on their responsive structure color variation and superior adsorption capacity. Thus, it is anticipated that such intelligent SCCMs can significantly facilitate the evolution of sensing assays and diverse environmental fields.
Collapse
Affiliation(s)
- Yixuan Shang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Rui Liu
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Dagan Zhang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
30
|
Zhang L, Wang X, Xu X, Yang J, Xiao J, Bai B, Wang Q. A Janus solar evaporator with photocatalysis and salt resistance for water purification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Wang Y, Zhao W, Han M, Xu J, Zhou X, Luu W, Han L, Tam KC. Topographical Design and Thermal-Induced Organization of Interfacial Water Structure to Regulate the Wetting State of Surfaces. JACS AU 2022; 2:1989-2000. [PMID: 36186561 PMCID: PMC9516702 DOI: 10.1021/jacsau.2c00273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Smart surfaces with superhydrophobic/superhydrophilic characteristics can be controlled by external stimuli, such as temperature. These transitions are attributed to the molecular-level conformation of the grafted polymer chains due to the varied interactions at the interface. Here, tunable surfaces were prepared by grafting two well-known thermo-responsive polymers, poly(N-isopropylacrylamide) (PNIPAM) and poly(oligoethylene glycol)methyl ether acrylate (POEGMA188) onto micro-pollen particles of uniform morphology and roughness. Direct Raman spectra and thermodynamic analyses revealed that above the lower critical solution temperature, the bonded and free water at the interface partially transformed to intermediate water that disrupted the "water cage" surrounding the hydrophobic groups. The increased amounts of intermediate water produced hydrogen bonding networks that were less ordered around the polymer grafted microparticles, inducing a weaker binding interaction at the interface and a lower tendency to wet the surface. Combining the roughness factor, the bulk surface assembled by distinct polymer-grafted-pollen microparticles (PNIPAM or POEGMA188) could undergo a different wettability transition for liquid under air, water, and oil. This work identifies new perspectives on the interfacial water structure variation at a multiple length scale, which contributed to the temperature-dependent surface wettability transition. It offers inspiration for the application of thermo-responsive surface to liquid-gated multiphase separation, water purification and harvesting, biomedical devices, and printing.
Collapse
|
32
|
Zhang C, Qi Y, Zhang Z. Swelling Behaviour of Polystyrene Microsphere Enhanced PEG-Based Hydrogels in Seawater and Evolution Mechanism of Their Three-Dimensional Network Microstructure. MATERIALS 2022; 15:ma15144959. [PMID: 35888427 PMCID: PMC9316508 DOI: 10.3390/ma15144959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022]
Abstract
To understand the microstructure evolution of hydrogels swollen in seawater, freeze-drying technology was used to fix and preserve the swollen three-dimensional microstructure. By this method, we revealed the swelling behavior of hydrogels in seawater, and elucidated the mechanism of the swelling process. Meanwhile, we also used Fourier-transform infrared spectroscopy; laser confocal microscopy; field emission scanning electron microscopy, and swelling performance tests to research the structure and properties of PS-PEG hydrogels, before and after seawater swelling, and analyzed the structure and properties of PEG-based hydrogels with different contents of polystyrene microspheres. Results showed that PS-PEG hydrogels went through three stages during the swelling process, namely ‘wetting-rapid swelling-swelling equilibrium’. Due to the capillary effect and hydration effect, the surface area would initially grow tiny pores, and enter the interior in a free penetration manner. Finally, it formed a stable structure, and this process varied with different content of polystyrene microspheres. In addition, with the increase of polystyrene microsphere content, the roughness of the hydrogel before swelling would increase, but decrease after swelling. Appropriate acquisition of polystyrene microspheres could enhance the three-dimensional network structure of PEG-based hydrogels, with a lower swelling degree than hydrogels without polystyrene microspheres.
Collapse
|
33
|
Lu K, Liu C, Liu J, He Y, Tian X, Liu Z, Cao Y, Shen Y, Huang W, Zhang K. Hierarchical Natural Pollen Cell-Derived Composite Sorbents for Efficient Atmospheric Water Harvesting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33032-33040. [PMID: 35839436 DOI: 10.1021/acsami.2c04845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Freshwater scarcity is a critical challenge threatening human survival especially due to poverty and arid and off-grid regions. Sorption-based atmospheric water harvesting (AWH) has emerged as a promising strategy for clean water production. However, most of the high-capacity sorbents are limited by the poor sorption/desorption kinetics and uncontrollable liquid leakage problem. Inspired by the plant transpiration process, we develop an environmentally friendly LiCl@pollen cell-polypyrrole (LiCl@PC-PPy) composite sorbent by confining the LiCl hygroscopic agent in the cages of the PC-PPy. The composite sorbent exhibits much improved sorption/desorption kinetics owing to the hydrophilicity of the hierarchical porous structure of the pollen cells, which provides abundant water sorption active sites and diffusion pathways and forms a concave meniscus on cell skeletons to maximize the thermal utilization efficiency. Moreover, the big cavities of the PC-PPy cages can serve as a water reservoir to reduce liquid leakage. As a result, the sorbent can capture atmospheric water to 85% of its own weight under 60% relative humidity (RH) within 2 h and rapidly release the water within 1 h under weak light irradiation of 0.8 sun. As a proof-of-concept demonstration, the fabricated AWH device can absorb 1.55 gwater/gsorbent at night and collect 1.53 gwater/gsorbent of water in 1-day outdoor operation, and the collected water can meet the drinking water standards defined by the World Health Organization (WHO) and Environmental Protection Agency (EPA).
Collapse
Affiliation(s)
- Kunjuan Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Chenjue Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Jing Liu
- School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Yi He
- Hangzhou Vocational & Technical College, Hangzhou 310005, P. R. China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Zhongxin Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Yang Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Yijun Shen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Wei Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Kexi Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| |
Collapse
|
34
|
Xu P, Zhang Y, Li L, Lin Z, Zhu B, Chen W, Li G, Liu H, Xiao K, Xiong Y, Yang S, Lei Y, Xue L. Adhesion behaviors of water droplets on bioinspired superhydrophobic surfaces. BIOINSPIRATION & BIOMIMETICS 2022; 17:041003. [PMID: 35561670 DOI: 10.1088/1748-3190/ac6fa5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The adhesion behaviors of droplets on surfaces are attracting increasing attention due to their various applications. Many bioinspired superhydrophobic surfaces with different adhesion states have been constructed in order to mimic the functions of natural surfaces such as a lotus leaf, a rose petal, butterfly wings, etc. In this review, we first present a brief introduction to the fundamental theories of the adhesion behaviors of droplets on various surfaces, including low adhesion, high adhesion and anisotropic adhesion states. Then, different techniques to characterize droplet adhesion on these surfaces, including the rotating disk technique, the atomic force microscope cantilever technique, and capillary sensor-based techniques, are described. Wetting behaviors, and the switching between different adhesion states on bioinspired surfaces, are also summarized and discussed. Subsequently, the diverse applications of bioinspired surfaces, including water collection, liquid transport, drag reduction, and oil/water separation, are discussed. Finally, the challenges of using liquid adhesion behaviors on various surfaces, and future applications of these surfaces, are discussed.
Collapse
Affiliation(s)
- Peng Xu
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, 430072, Wuhan, Hubei Province, People's Republic of China
| | - Yurong Zhang
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, 430072, Wuhan, Hubei Province, People's Republic of China
| | - Lijun Li
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, 430072, Wuhan, Hubei Province, People's Republic of China
| | - Zhen Lin
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, 430072, Wuhan, Hubei Province, People's Republic of China
| | - Bo Zhu
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, 430072, Wuhan, Hubei Province, People's Republic of China
| | - Wenhui Chen
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, 430072, Wuhan, Hubei Province, People's Republic of China
| | - Gang Li
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, 430072, Wuhan, Hubei Province, People's Republic of China
| | - Hongtao Liu
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, 430072, Wuhan, Hubei Province, People's Republic of China
| | - Kangjian Xiao
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, 430072, Wuhan, Hubei Province, People's Republic of China
| | - Yunhe Xiong
- Urology Department, Renmin Hospital of Wuhan University, Zhangzhidong Road 99, 430060, Wuhan, Hubei Province, People's Republic of China
| | - Sixing Yang
- Urology Department, Renmin Hospital of Wuhan University, Zhangzhidong Road 99, 430060, Wuhan, Hubei Province, People's Republic of China
| | - Yifeng Lei
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, 430072, Wuhan, Hubei Province, People's Republic of China
| | - Longjian Xue
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, 430072, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
35
|
Zhang C, Chen X, Cui B, Chen L, Zhu J, Bai N, Wang W, Zhao D, Li Z, Wang Z. Dual-Layer Multichannel Hydrogel Evaporator with High Salt Resistance and a Hemispherical Structure toward Water Desalination and Purification. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26303-26313. [PMID: 35615808 DOI: 10.1021/acsami.2c06370] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Interfacial solar steam generation technology has been considered as one of the most promising methods for seawater desalination. However, in practical applications, salt precipitation on the evaporation surface reduces the evaporation rate and impairs long-term stability. Herein, a dual-layer hydrogel-based evaporator that contains a microchannel-structured water-supplying layer and a nanoporous light-absorbing layer was synthesized via sol-gel transition and "hot-ice" template methods. Contributed by the designed structure-induced accelerated salt ion exchange, the hemispherical dual-layer hydrogel evaporator showed excellent salt formation resistance property, as well as a high evaporation rate reaching 2.03 kg m-2 h-1 even under high brine concentration conditions. Furthermore, the hydrogel-based evaporator also demonstrated excellent ion rejection, high/low pH tolerance, and excellent purification properties toward heavy metals and organic dyes. It is believed that this type of dual-layer multichannel evaporator is promising to be used in seawater desalination, water pollution treatment, and other environmental remediation-related applications.
Collapse
Affiliation(s)
- Caiyan Zhang
- Department of Macromolecular Materials and Engineering, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xuelong Chen
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Baozheng Cui
- Department of Macromolecular Materials and Engineering, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Lina Chen
- Department of Macromolecular Materials and Engineering, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Jingbo Zhu
- Department of Macromolecular Materials and Engineering, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Ningjing Bai
- Department of Macromolecular Materials and Engineering, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Wei Wang
- Department of Macromolecular Materials and Engineering, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Dongyu Zhao
- Department of Macromolecular Materials and Engineering, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Zewen Li
- Department of Macromolecular Materials and Engineering, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Zhe Wang
- Department of Macromolecular Materials and Engineering, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
36
|
Chen L, Ding Y, Gong J, Xie H, Qu J, Niu R. Molecular Engineering of Biomass-Derived Hybrid Hydrogels for Solar Water Purification. J Colloid Interface Sci 2022; 626:231-240. [DOI: 10.1016/j.jcis.2022.06.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 10/31/2022]
|
37
|
Yang M, Luo H, Zou W, Liu Y, Xu J, Guo J, Xu J, Zhao N. Ultrafast Solar-Vapor Harvesting Based on a Hierarchical Porous Hydrogel with Wettability Contrast and Tailored Water States. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24766-24774. [PMID: 35579439 DOI: 10.1021/acsami.2c03597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optimizing the water bonding network in an evaporator is significant for efficient solar-driven vapor generation (SVG). Herein, we report a facile one-pot method to regulate the hydrated structure and wettability in a hierarchical porous hydrogel. An ovalbumin (OVA)-polyacrylamide hydrogel foam was fabricated in a cake-making fashion. Because of the enrichment of amphiphilic OVA at the interface, the hydrophobic walls of the air pores in the foam provide vaporization sites and help reduce parasitic heat loss, while the hydrophilic skeleton with the secondary pores effectively pumps capillary water. Notably, the proportion of intermediate water in the foam reaches 87.6% with the melting point as low as -10 °C. All these features contribute to an exceptional evaporation rate of 3.4-4.5 kg m-2 h-1 under 1 sun and robust SVG performances at high-humidity, weak sunlight, or cold weathers. The strategy of using amphiphilic molecules to optimize the hydrated structures both at the interface and in bulk promises the reasonable design of SVG materials with superior efficiency and weather adaptability.
Collapse
Affiliation(s)
- Meng Yang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Heng Luo
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weizhi Zou
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong Liu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinhao Xu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jing Guo
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jian Xu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518061, P. R. China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
38
|
Design of asymmetric-adhesion lignin-reinforced hydrogels based on disulfide bond crosslinking for strain sensing application. Int J Biol Macromol 2022; 212:275-282. [PMID: 35594941 DOI: 10.1016/j.ijbiomac.2022.05.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/29/2022] [Accepted: 05/13/2022] [Indexed: 12/27/2022]
Abstract
Soft and elastic polymer hydrogel materials are booming in the fields of wearable biomimetic skin, sensors, robotics, and bioelectrodes. Currently, many researchers are exploring new chemistries for the preparation of hydrogels to improve their performance. In the present study, we design and develop a strategy to prepare lignin reinforced hydrogels based on disulfide bond crosslinking mechanisms, and resultant hydrogels exhibit excellent stretchability, with tensile strain of up to 1085.4%, and high adhesion (with the highest T-peel strength of up to 432.2 N/m to pigskin). The underlying mechanism is based on the disulfide bonds that act as crosslinkers in the as-prepared hydrogel, and they can be easily cleaved and re-formed under mild conditions. Thanks to the presence of lignin, the as-obtained hydrogels also have excellent UV shielding effect. When assembled into a strain sensor, they can output stable and sensitive sensing signals, with gauge factor (GF) of 2.72 (strain: 0-72.8%). Furthermore, a simple and effective strategy to construct asymmetric adhesive hydrogels was adopted, which is based on directional soaking of the top portion of the hydrogel in a high-concentrated calcium chloride solution. The asymmetric hydrogel strain sensor transmits accurate and stable signals without the interference of various contaminants.
Collapse
|
39
|
Zhang H, Wang F, Akakuru OU, Wang T, Wang Z, Wu A, Zhang Y. Nature-Inspired Polyethylenimine-Modified Calcium Alginate Blended Waterborne Polyurethane Graded Functional Materials for Multiple Water Purification. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17826-17836. [PMID: 35380790 DOI: 10.1021/acsami.2c02059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent years, natural disasters such as hurricanes and floods have become more frequent, which usually leads to the pollution of drinking water. Drinking contaminated water may cause public health emergencies. The demand for healthy drinking water in disaster-affected areas is huge and urgent. Therefore, it is necessary to develop a simple water treatment technology suitable for emergencies. Inspired by nature, a fractional spray method was used to prepare graded purification material under mild conditions. The material consists of a calcium alginate isolation layer and a functional layer composed of calcium alginate, polyethylenimine, and water-based polyurethane, which can purify complex pollutants in water such as heavy metals, oils, pathogens, and micro/nano plastics through percolation. It does not require additional energy and can purify polluted water only under gravity. A disposable paper cup model was also designed, which can be used to obtain purified water by immersing in polluted water directly without other filtering devices. The test report shows that the water obtained from the paper cup was deeply purified. This design makes the material user-friendly and has the potential as a strategic material. This discovery can effectively improve the safety of drinking water after disasters and improve people's quality of life.
Collapse
Affiliation(s)
- Hao Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, P. R. China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Fangfang Wang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, P. R. China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, P. R. China
| | - Tianqi Wang
- Zhejiang Cixi High School, Ningbo, Zhejiang 315300, P. R. China
| | - Zongbao Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujie Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Zheng D, Wang K, Bai B, Hu N, Wang H. Swelling and glyphosate-controlled release behavior of multi-responsive alginate-g-P(NIPAm-co-NDEAm)-based hydrogel. Carbohydr Polym 2022; 282:119113. [PMID: 35123748 DOI: 10.1016/j.carbpol.2022.119113] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/30/2022]
Abstract
Intelligent controlled release systems (ICRS) displayed great achievement in agriculture by enhancing the utilization efficiency of agrochemicals. In this work, an intelligent graft copolymer (Alg-g-P(NIPAm-co-NDEAm)) with alginate (Alg) backbone and thermo-responsive poly(N-isopropyl acrylamide-co-N,N-diethylacrylamide) (P(NIPAm-co-NDEAm)) side chain was constructed as the matrix of ICRS through redox copolymerization, and its thermo-induced responsive property was studied. Then, the copolymer was mixed with a promising photothermal material semi-coke (SC) to form hydrogel beads (Ca-Alg-g-P(NIPAm-co-NDEAm)/SC) by ion crosslinking. The water absorbency of beads under different stimuli (pH, temperature, and light) presented outstanding responsive performance and the swelling mechanism was analyzed through coupling theory. Furthermore, the release of glyphosate (Gly) from Ca-Alg-g-P(NIPAm-co-NDEAm)/SC under environmental stimuli displayed regulatable behaviors. This multi-responsive hydrogel bead shows bright prospect in the sustainable advancement of crop production.
Collapse
Affiliation(s)
- Dan Zheng
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, PR China; School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| | - Kai Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Bo Bai
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, PR China; School of Water and Environment, Chang'an University, Xi'an 710054, PR China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China.
| | - Na Hu
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China
| | - Honglun Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China
| |
Collapse
|
41
|
Wang Y, Chang Q, Xue C, Yang J, Hu S. Chemical treatment of biomasswastes as carbon dot carriers for solar-driven water purification. J Colloid Interface Sci 2022; 621:33-40. [PMID: 35452928 DOI: 10.1016/j.jcis.2022.04.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/03/2022] [Accepted: 04/09/2022] [Indexed: 01/18/2023]
Abstract
A purely chemical method is demonstrated to treat a variety of biomass wastes for extracting cellulose nanofibrils (CNFs) with a consistent property. By hydrothermal reaction, carbon dots (CDs) can be easily grafted on the surface of CNFs to act as photo-thermal agents and enable fast water evaporation rate at 2.5 kg m-2h-1 with about 96.45% solar-to-vapor efficiency under one sun irradiation. This derives from good hydration ability of this system, which lowers the evaporation enthalpy. Moreover, this system not only adsorbs dye contaminants effectively by the formation of hydrogen bonds, but also possesses long-term antifouling solar desalination by means of rationally drilled millimeter-sized channels. Given the sustainable biomass resources and scalable fabrication process, this work offers a promising strategy towards construct low-cost evaporators with the excellent water purification performance.
Collapse
Affiliation(s)
- Yifan Wang
- Research Group of New Energy Materials and Devices, North University of China, Taiyuan 030051, PR China
| | - Qing Chang
- Research Group of New Energy Materials and Devices, North University of China, Taiyuan 030051, PR China
| | - Chaorui Xue
- Research Group of New Energy Materials and Devices, North University of China, Taiyuan 030051, PR China
| | - Jinlong Yang
- Research Group of New Energy Materials and Devices, North University of China, Taiyuan 030051, PR China; State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, PR China
| | - Shengliang Hu
- Research Group of New Energy Materials and Devices, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
42
|
Shen M, Zhao X, Han L, Jin N, Liu S, Jia T, Chen Z, Zhao X. Developing Flexible Quinacridone-Derivatives-Based Photothermal Evaporaters for Solar Steam and Thermoelectric Power Generation. Chemistry 2022; 28:e202104137. [PMID: 35102622 DOI: 10.1002/chem.202104137] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 01/26/2023]
Abstract
Solar-driven interfacial vaporization by localizing solar-thermal energy conversion to the air-water interface has attracted tremendous attention. In the process of converting solar energy into heat energy, photothermal materials play an essential role. Herein, a flexible solar-thermal material di-cyan substituted 5,12-dibutylquinacridone (DCN-4CQA)@Paper was developed by coating photothermal quinacridone derivatives on the cellulose paper. The DCN-4CQA@Paper combines desired chemical and physical properties, broadband light-absorbing, and shape-conforming abilities that render efficient photothermic vaporization. Notably, synergetic coupling of solar-steam and solar-electricity technologies by integrating DCN-4CQA@Paper and the thermoelectric devices is realized without trade-offs, highlighting the practical consideration toward more impactful solar heat exploitation. Such solar distillation and low-grade heat-to-electricity generation functions can provide potential opportunities for fresh water and electricity supply in off-grid or remote areas.
Collapse
Affiliation(s)
- Meihua Shen
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P.R. China
| | - Xinpeng Zhao
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education School of Materials Science and Engineering, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P.R. China
| | - Lu Han
- Technology Center for China Tobacco Henan Industrial Limited Company, Zhengzhou, 450000, P.R. China
| | - Nanxi Jin
- School of Life Engineering, Sung Kyun Kwan University, Seoul, Korea
| | - Song Liu
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P.R. China
| | - Tao Jia
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P.R. China
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education School of Materials Science and Engineering, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P.R. China
| | - Xiuhua Zhao
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P.R. China
| |
Collapse
|
43
|
Wen H, Soyekwo F, Liu C. Highly permeable forward osmosis membrane with selective layer “hooked” to a hydrophilic Cu-Alginate intermediate layer for efficient heavy metal rejection and sludge thickening. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
Zhao HY, Huang J, Zhou J, Chen LF, Wang C, Bai Y, Zhou J, Deng Y, Dong WX, Li YS, Yu SH. Biomimetic Design of Macroporous 3D Truss Materials for Efficient Interfacial Solar Steam Generation. ACS NANO 2022; 16:3554-3562. [PMID: 35231174 DOI: 10.1021/acsnano.1c10184] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Interfacial solar steam generation (ISSG) utilizing local heating technology for evaporation at the water-to-steam interface is drawing great attention because of its high efficiency of solar-thermal conversion for a sustainable and eco-friendly drinking water regeneration process. Here, inspired by the structure of penguin feathers and polar bear hairs that both have macropores to trap air for thermal insulation, we report a bionic solar evaporator (BSE) with macroporous skeleton for partial thermal management and macro patulous channels for abundant water transportation and rapid steam extraction. Meanwhile, the 3D hierarchical isotropic truss structures can induce multiple light reflections to enable omnidirectional light absorption, and bimodal pores facilitate ion diffusion to suppress salt deposits. This BSE exhibits an evaporation rate of 2.3 kg m-2 h-1 and efficiency of 93% under 1 sun. The multiple advantages of high efficiency and salt resistance make BSE available for future practical sewage purification and desalination applications.
Collapse
Affiliation(s)
- Hao-Yu Zhao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China. Hefei Anhui 230026, China
| | - Jin Huang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China. Hefei Anhui 230026, China
| | - Jie Zhou
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China. Hefei Anhui 230026, China
| | - Li-Feng Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD), Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Chengming Wang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China. Hefei Anhui 230026, China
| | - Yuxia Bai
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China. Hefei Anhui 230026, China
| | - Jun Zhou
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China. Hefei Anhui 230026, China
| | - Yu Deng
- CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD), Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Wei-Xu Dong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD), Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Yan-Song Li
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China. Hefei Anhui 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China. Hefei Anhui 230026, China
| |
Collapse
|
45
|
Thermoresponsive PEDOT:PSS/PNIPAM conductive hydrogels as wearable resistive sensors for breathing pattern detection. Polym J 2022. [DOI: 10.1038/s41428-022-00626-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Recent innovations in solar energy education and research towards sustainable energy development. ACTA INNOVATIONS 2022. [DOI: 10.32933/actainnovations.42.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The essential requirements of our everyday lives are fresh air, pure water, nourishing food, and clean energy in a most sustainable manner. The present review article concisely discusses recent innovations in solar energy education, research, and development toward providing clean and affordable energy and clean water to some extent. This article primarily addresses the Sustainable Development Goal 7 of the United Nations (SDG 7: Affordable and Clean Energy). Over the past few decades, many research activities have been carried out on solar energy conversion and utilization. The deployment of solar energy technologies has been witnessed to combat global warming and the betterment of the planet. Drivers and barriers to implementing solar energy systems from school to master's level through real-time deployments are discussed for further development and innovations. Mainly, expedited solar energy education and research are essential to improve solar energy utilization. The advancements in solar energy education and research towards sustainable energy development and circular economy are highlighted along with further directions required.
Collapse
|
47
|
A Simple Polypyrrole/Polyvinylidene Fluoride Membrane with Hydrophobic and Self-Floating Ability for Solar Water Evaporation. NANOMATERIALS 2022; 12:nano12050859. [PMID: 35269347 PMCID: PMC8912860 DOI: 10.3390/nano12050859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/04/2022]
Abstract
The traditional hydrophobic solarevaporator is generally obtained through the modification of alkyl or fluoroalkyl on the photothermal membrane. However, the modified groups can easily be oxidized in the long-term use process, resulting in the poor salt resistance and stability of photothermal membrane. In order to solve this problem, a simple polypyrrole/polyvinylidene fluoride membrane, consisting of an intrinsic hydrophobic support (polyvinylidene fluoride) and a photothermal material (polypyrrole), was fabricated by ultrasonically mixing and immersed precipitation. This photothermal membrane showed good self-floating ability in the process of water evaporation. In order to further improve the photothermal conversion efficiency, a micropyramid structure with antireflective ability was formed on the surface of membrane by template method. The micropyramids can enhance the absorption efficiency of incident light. The water evaporation rate reached 1.42 kg m−2 h−1 under 1 sun irradiation, and the photothermal conversion efficiency was 88.7%. The hydrophobic polyvinylidene fluoride ensures that NaCl cannot enter into membrane during the evaporation process of the brine, thus realizing the stability and salt resistance of polypyrrole/polyvinylidene fluoride in 3.5%wt and 10%wt NaCl solution.
Collapse
|
48
|
Xu X, Bizmark N, Christie KSS, Datta SS, Ren ZJ, Priestley RD. Thermoresponsive Polymers for Water Treatment and Collection. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Gu Y, Luo S, Wang Y, Zhu X, Yang S. A smart enzyme reactor based on a photo-responsive hydrogel for purifying water from phenol contaminated sources. SOFT MATTER 2022; 18:826-831. [PMID: 34950937 DOI: 10.1039/d1sm01536b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this paper, a smart enzyme reactor (SER) was synthesized using immobilized tyrosinase (Tyr) in a photo-responsive hydrogel via a polydopamine-assisted self-assembly strategy for purifying water from phenol contaminated water. PDA was not only utilized as a binder between Tyr and the hydrogel to prevent the leakage of Tyr with relatively high enzymatic activity from the SER, but also acted as a light absorber to trigger the hydrophilic/hydrophobic switching of PNIPAm hydrogels to realize the efficient reclamation of clean water. Experimental results showed that the SER maintained a well-defined porous structure with excellent elasticity, which was beneficial for water transport and enzyme accessibility. And the stability and reusability of Tyr in the degradation of phenol were all improved. Furthermore, clean water could be reclaimed completely and facilely by light irradiation after enzymatic remediation in the SER.
Collapse
Affiliation(s)
- Yuqi Gu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Siyuan Luo
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yaya Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Xuhui Zhu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Shun Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
- National local joint engineering laboratory to functional adsorption material technology for the environmental protection, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
50
|
|