1
|
Yang S, Yu Y, Sui F, Ge R, Jin R, Liu B, Chen Y, Qi R, Yue F. Chiral Phonon, Valley Polarization, and Inter/Intravalley Scattering in a van der Waals ReSe 2 Semiconductor. ACS NANO 2024; 18:33754-33764. [PMID: 39610044 DOI: 10.1021/acsnano.4c15485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Exploring valley manipulatable layered semiconductors is highly significant for valleytronic devices. Here, we report the phonon chirality and resulting inter/intravalley scattering in valley polarized van der Waals (vdW) layered ReSe2 by linearly/circularly polarized Raman (L/CPR), transmission (L/CPT), and photoluminescence (L/CPL) spectroscopic techniques. L/CPR combined with scanning transmission electron microscopy determines the Re chains' direction and displays the existence of chiral phonons. The LPT discloses the energetic valley polarization between the Re chains and its perpendicular crystal axis directions. Intriguingly, the valley polarization strength depends on the layer thickness even in a micrometer scale and abnormaly increases with temperature increase. Further, CPT manifests the optical rotation in ReSe2 due to strong chiral phonon-photon coupling. More essentially, L/CPL unveils a strong exciton-like effect (Stokes shift) that can be interpreted from the inter/intravalley scattering related to the (chiral) phonon-carrier coupling. This investigation suggests a promising platform based on a low-symmetry vdW ReSe2 semiconductor for exploring valley physics and fabricating valley(opto)tronic nanodevices.
Collapse
Affiliation(s)
- Shuai Yang
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Yilun Yu
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Fengrui Sui
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Rui Ge
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Rong Jin
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Beituo Liu
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Ye Chen
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Ruijuan Qi
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Fangyu Yue
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai 200241, China
| |
Collapse
|
2
|
Yan S, Zhang J, Zhang JH, Wei S, Zhang S, Li S, Tan CK, Jiang M, Tang W, Liu Z. Unveiling anharmonic scattering in van der Waals semiconductor GaPS 4 through Raman spectroscopy and theoretical calculation. iScience 2024; 27:111040. [PMID: 39759082 PMCID: PMC11700654 DOI: 10.1016/j.isci.2024.111040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 01/07/2025] Open
Abstract
The van der Waals thiophosphate GaPS4 presents additional opportunities for gallium-based semiconductors, but limited research on phonon interactions has hindered optimization on thermal properties. This research undertakes a comprehensive investigation into the anharmonic phonon scattering within GaPS4. The findings reveal pronounced anharmonic scattering, with both cubic and quartic phonon scatterings significantly influencing phonon redshift and broadening. Notably, the scattering strength is markedly higher in Raman peaks with higher wavenumbers, where quartic phonon scattering leads to conspicuous nonlinear broadening. Furthermore, a large amount of cubic and quartic scattering events is found to be Umklapp process. Besides, the molecular dynamics calculation quantitatively confirms the extensive redshift and broadening and suggests stronger anharmonic scattering beyond the Brillouin zone center. This research not only elucidates the anharmonic phonon scattering in GaPS4 but also provides theoretical foundation for further application. Concurrently, it enhances the understanding of anharmonic scattering in semiconductors within the condensed matter physics.
Collapse
Affiliation(s)
- Sihan Yan
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jingpeng Zhang
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jia-Han Zhang
- School of Electronic Information Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Songrui Wei
- College of Physics and Optoelectronic Engineering, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Shaohui Zhang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Shan Li
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Chee-Keong Tan
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Mingming Jiang
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Weihua Tang
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zeng Liu
- School of Electronic Information Engineering, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
3
|
Labed M, Moon JY, Kim SI, Park JH, Kim JS, Venkata Prasad C, Bae SH, Rim YS. 2D Embedded Ultrawide Bandgap Devices for Extreme Environment Applications. ACS NANO 2024; 18:30153-30183. [PMID: 39436685 DOI: 10.1021/acsnano.4c09173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Ultrawide bandgap semiconductors such as AlGaN, AlN, diamond, and β-Ga2O3 have significantly enhanced the functionality of electronic and optoelectronic devices, particularly in harsh environment conditions. However, some of these materials face challenges such as low thermal conductivity, limited P-type conductivity, and scalability issues, which can hinder device performance under extreme conditions like high temperature and irradiation. In this review paper, we explore the integration of various two-dimensional materials (2DMs) to address these challenges. These materials offer excellent properties such as high thermal conductivity, mechanical strength, and electrical properties. Notably, graphene, hexagonal boron nitride, transition metal dichalcogenides, 2D and quasi-2D Ga2O3, TeO2, and others are investigated for their potential in improving ultrawide bandgap semiconductor-based devices. We highlight the significant improvement observed in the device performance after the incorporation of 2D materials. By leveraging the properties of these materials, ultrawide bandgap semiconductor devices demonstrate enhanced functionality and resilience in harsh environmental conditions. This review provides valuable insights into the role of 2D materials in advancing the field of ultrawide bandgap semiconductors and highlights opportunities for further research and development in this area.
Collapse
Affiliation(s)
- Madani Labed
- Department of Semiconductor Systems Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University Seoul, Seoul 05006, Republic of Korea
| | - Ji-Yun Moon
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| | - Seung-Il Kim
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| | - Jang Hyeok Park
- Department of Semiconductor Systems Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University Seoul, Seoul 05006, Republic of Korea
| | - Justin S Kim
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
- Institute of Materials Science and Engineering, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| | - Chowdam Venkata Prasad
- Department of Semiconductor Systems Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University Seoul, Seoul 05006, Republic of Korea
| | - Sang-Hoon Bae
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
- Institute of Materials Science and Engineering, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| | - You Seung Rim
- Department of Semiconductor Systems Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University Seoul, Seoul 05006, Republic of Korea
| |
Collapse
|
4
|
Cheng L, Quan Q, Hu L. Light-Cured Junction Formation and Broad-Band Imaging Application in Thermally Mismatched van der Waals Heterointerface. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3988. [PMID: 39203166 PMCID: PMC11356230 DOI: 10.3390/ma17163988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024]
Abstract
Van der Waals (vdW) heterostructures are mainly fabricated by a classic dry transfer procedure, but the interface quality is often subject to the vdW gap, residual strains, and defect species. The realization of interface fusion and repair holds significant implications for the modulation of multiple photoelectric conversion processes. In this work, we propose a thermally mismatched strategy to trigger broad-band and high-speed photodetection performance based on a type-I heterostructure composed of black phosphorus (BP) and FePS3 (FPS) nanoflakes. The BP acts as photothermal source to promote interface fusion when large optical power is adopted. The regulation of optical power enables the device from pyroelectric (PE) and/or alternating current photovoltaic (AC-PV) mode to a mixed photovoltaic (PV)/photothermoelectric (PTE)/PE mode. The fused heterostructure device presents an extended detection range (405~980 nm) for the FPS. The maximum responsivity and detectivity are 329.86 mA/W and 6.95 × 1010 Jones, respectively, and the corresponding external quantum efficiency (EQE) approaches ~100%. Thanks to these thermally-related photoelectric conversion mechanism, the response and decay time constants of device are as fast as 290 μs and 265 μs, respectively, superior to current all FPS-based photodetectors. The robust environmental durability also renders itself as a high-speed and broad-band imaging sensor.
Collapse
Affiliation(s)
| | | | - Liang Hu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (L.C.); (Q.Q.)
| |
Collapse
|
5
|
Ma Y, Liang H, Guan X, Xu S, Tao M, Liu X, Zheng Z, Yao J, Yang G. Two-dimensional layered material photodetectors: what could be the upcoming downstream applications beyond prototype devices? NANOSCALE HORIZONS 2024. [PMID: 39046195 DOI: 10.1039/d4nh00170b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
With distinctive advantages spanning excellent flexibility, rich physical properties, strong electrostatic tunability, dangling-bond-free surface, and ease of integration, 2D layered materials (2DLMs) have demonstrated tremendous potential for photodetection. However, to date, most of the research enthusiasm has been merely focused on developing novel prototype devices. In the past few years, researchers have also been devoted to developing various downstream applications based on 2DLM photodetectors to contribute to promoting them from fundamental research to practical commercialization, and extensive accomplishments have been realized. In spite of the remarkable advancements, these fascinating research findings are relatively scattered. To date, there is still a lack of a systematic and profound summarization regarding this fast-evolving domain. This is not beneficial to researchers, especially researchers just entering this research field, who want to have a quick, timely, and comprehensive inspection of this fascinating domain. To address this issue, in this review, the emerging downstream applications of 2DLM photodetectors in extensive fields, including imaging, health monitoring, target tracking, optoelectronic logic operation, ultraviolet monitoring, optical communications, automatic driving, and acoustic signal detection, have been systematically summarized, with the focus on the underlying working mechanisms. At the end, the ongoing challenges of this rapidly progressing domain are identified, and the potential schemes to address them are envisioned, which aim at navigating the future exploration as well as fully exerting the pivotal roles of 2DLMs towards the practical optoelectronic industry.
Collapse
Affiliation(s)
- Yuhang Ma
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Huanrong Liang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Xinyi Guan
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Shuhua Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Meiling Tao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Xinyue Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China.
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China.
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| |
Collapse
|
6
|
Zheng T, Pan Y, Yang M, Li Z, Zheng Z, Li L, Sun Y, He Y, Wang Q, Cao T, Huo N, Chen Z, Gao W, Xu H, Li J. 2D Free-Standing GeS 1-xSe x with Composition-Tunable Bandgap for Tailored Polarimetric Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313721. [PMID: 38669677 DOI: 10.1002/adma.202313721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/30/2024] [Indexed: 04/28/2024]
Abstract
Germanium-based monochalcogenides (i.e., GeS and GeSe) with desirable properties are promising candidates for the development of next-generation optoelectronic devices. However, they are still stuck with challenges, such as relatively fixed electronic band structure, unconfigurable optoelectronic characteristics, and difficulty in achieving free-standing growth. Herein, it is demonstrated that two-dimensional (2D) free-standing GeS1-xSex (0 ≤ x ≤ 1) nanoplates can be grown by low-pressure rapid physical vapor deposition (LPRPVD), fulfilling a continuously composition-tunable optical bandgap and electronic band structure. By leveraging the synergistic effect of composition-dependent modulation and free-standing growth, GeS1-xSex-based optoelectronic devices exhibit significantly configurable hole mobility from 6.22 × 10-4 to 1.24 cm2V-1s⁻1 and tunable responsivity from 8.6 to 311 A W-1 (635 nm), as x varies from 0 to 1. Furthermore, the polarimetric sensitivity can be tailored from 4.3 (GeS0.29Se0.71) to 1.8 (GeSe) benefiting from alloy engineering. Finally, the tailored imaging capability is also demonstrated to show the application potential of GeS1-xSex alloy nanoplates. This work broadens the functionality of conventional binary materials and motivates the development of tailored polarimetric optoelectronic devices.
Collapse
Affiliation(s)
- Tao Zheng
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan, 528225, P. R. China
| | - Yuan Pan
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan, 528225, P. R. China
| | - Mengmeng Yang
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan, 528225, P. R. China
| | - Zhongming Li
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan, 528225, P. R. China
| | - Zhaoqiang Zheng
- College of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Ling Li
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan, 528225, P. R. China
| | - Yiming Sun
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan, 528225, P. R. China
| | - Yingbo He
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan, 528225, P. R. China
| | - Quanhao Wang
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan, 528225, P. R. China
| | - Tangbiao Cao
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan, 528225, P. R. China
| | - Nengjie Huo
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan, 528225, P. R. China
| | - Zuxin Chen
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan, 528225, P. R. China
| | - Wei Gao
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan, 528225, P. R. China
| | - Hua Xu
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Jingbo Li
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan, 528225, P. R. China
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
7
|
Yu Y, Zhong M, Xiong T, Yang J, Hu P, Long H, Zhou Z, Xin K, Liu Y, Yang J, Qiao J, Liu D, Wei Z. Spectrometer-Less Remote Sensing Image Classification Based on Gate-Tunable van der Waals Heterostructures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309781. [PMID: 38610112 PMCID: PMC11200008 DOI: 10.1002/advs.202309781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/01/2024] [Indexed: 04/14/2024]
Abstract
Remote sensing technology, which conventionally employs spectrometers to capture hyperspectral images, allowing for the classification and unmixing based on the reflectance spectrum, has been extensively applied in diverse fields, including environmental monitoring, land resource management, and agriculture. However, miniaturization of remote sensing systems remains a challenge due to the complicated and dispersive optical components of spectrometers. Here, m-phase GaTe0.5Se0.5 with wide-spectral photoresponses (250-1064 nm) and stack it with WSe2 are utilizes to construct a two-dimensional van der Waals heterojunction (2D-vdWH), enabling the design of a gate-tunable wide-spectral photodetector. By utilizing the multi-photoresponses under varying gate voltages, high accuracy recognition can be achieved aided by deep learning algorithms without the original hyperspectral reflectance data. The proof-of-concept device, featuring dozens of tunable gate voltages, achieves an average classification accuracy of 87.00% on 6 prevalent hyperspectral datasets, which is competitive with the accuracy of 250-1000 nm hyperspectral data (88.72%) and far superior to the accuracy of non-tunable photoresponse (71.17%). Artificially designed gate-tunable wide-spectral 2D-vdWHs GaTe0.5Se0.5/WSe2-based photodetector present a promising pathway for the development of miniaturized and cost-effective remote sensing classification technology.
Collapse
Affiliation(s)
- Yali Yu
- State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Mianzeng Zhong
- Hunan Key Laboratory of Nanophotonics and DevicesSchool of PhysicsCentral South UniversityChangshaHunan410083China
| | - Tao Xiong
- State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jian Yang
- School of Automation Science and Electrical EngineeringBeihang UniversityBeijing100191China
| | - Pengwei Hu
- School of Instrumentation and Optoelectronic EngineeringBeihang UniversityBeijing100191China
| | - Haoran Long
- State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Ziqi Zhou
- State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
| | - Kaiyao Xin
- State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yue‐Yang Liu
- State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
| | - Juehan Yang
- State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
| | - Jianzhong Qiao
- School of Automation Science and Electrical EngineeringBeihang UniversityBeijing100191China
| | - Duanyang Liu
- State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
8
|
Yoo J, Kim D, Jeong MS, Lee SM, Kim J. Divergent Vibrational Property Induced by an Anomalous Layer Sequence in Two-Dimensional GaPS 4. J Phys Chem Lett 2024; 15:5183-5190. [PMID: 38716924 PMCID: PMC11104350 DOI: 10.1021/acs.jpclett.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 05/22/2024]
Abstract
Recently, various fundamental properties of GaPS4 such as anisotropy and strain-induced properties have been reported, but the impacts of the stacking sequence in layered materials remain ambiguous. This ambiguity is evident in the inconsistent Raman scattering data reported for GaPS4, suggesting a significant influence of stacking order on its physical properties. To demonstrate the discrepancies, this study investigates the vibrational characteristics of 2D GaPS4 under different stacking sequences using both experimental observations and theoretical models (AA and AB sequences) through density functional theory calculations. The results of our theoretical calculations revealed that the identical stacking sequence structure significantly influences the vibrational configurations of GaPS4, which results in divergent configurations of Raman scattering spectra including unidentified Raman peaks. Our study addresses not only the clarification of the ambiguity of experimental observations but also qualitative criteria to evaluate the degree of each stacking sequence.
Collapse
Affiliation(s)
- Jaekak Yoo
- Korea
Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department
of Physics, Hanyang Unversity, Seoul 04763, Republic of Korea
| | - Doyeon Kim
- Korea
Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Mun Seok Jeong
- Department
of Physics, Hanyang Unversity, Seoul 04763, Republic of Korea
| | - Seung Mi Lee
- Korea
Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Jaeseok Kim
- Korea
Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| |
Collapse
|
9
|
Yang S, Jiao S, Nie Y, Zhao Y, Gao S, Wang D, Wang J. A high-performance and self-powered polarization-sensitive photoelectrochemical-type Bi 2O 2Te photodetector based on a quasi-solid-state gel electrolyte. MATERIALS HORIZONS 2024; 11:1710-1718. [PMID: 38275080 DOI: 10.1039/d3mh01882b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Among the two-dimensional (2D) Bi2O2X (X = S, Se, and Te) series, Bi2O2Te has the smallest effective mass and the highest carrier mobility. However, Bi2O2Te has rarely been investigated, most likely due to the lack of feasible methods to synthesize 2D Bi2O2Te. Herein, 2D Bi2O2Te nanosheets are successfully synthesized by low-temperature oxidation of Bi2Te3 nanosheets synthesized using a solvothermal method. The performance of a quasi-solid-state photoelectrochemical-type (PEC-type) photodetector based on 2D Bi2O2Te nanosheets is systematically investigated. Remarkably, the device has a high responsivity of 20.5 mA W-1 (zero bias) and fast rise/fall times of 6/90 ms under 365 nm illumination, which is superior to the majority of PEC-type photodetectors based on bismuth-based compounds. More importantly, due to the strong anisotropy of 2D Bi2O2Te nanosheets, the device achieves a dichroic ratio as high as 52, which belongs to the state-of-the-art polarized photodetectors. Besides, the capacity of 2D Bi2O2Te for high-resolution polarization imaging is demonstrated. This work provides a promising strategy for the synthesis of 2D Bi2O2Te nanosheets to fabricate a high-performance and polarization-sensitive photodetector.
Collapse
Affiliation(s)
- Song Yang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Shujie Jiao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yiyin Nie
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yue Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Shiyong Gao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Dongbo Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Jinzhong Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
10
|
Panda J, Sahu S, Haider G, Thakur MK, Mosina K, Velický M, Vejpravova J, Sofer Z, Kalbáč M. Polarization-Resolved Position-Sensitive Self-Powered Binary Photodetection in Multilayer Janus CrSBr. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1033-1043. [PMID: 38147583 PMCID: PMC10788859 DOI: 10.1021/acsami.3c13552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
Recent progress in polarization-resolved photodetection based on low-symmetry 2D materials has formed the basis of cutting-edge optoelectronic devices, including quantum optical communication, 3D image processing, and sensing applications. Here, we report an optical polarization-resolving photodetector (PD) fabricated from multilayer semiconducting CrSBr single crystals with high structural anisotropy. We have demonstrated self-powered photodetection due to the formation of Schottky junctions at the Au-CrSBr interfaces, which also caused the photocurrent to display a position-sensitive and binary nature. The self-biased CrSBr PD showed a photoresponsivity of ∼0.26 mA/W with a detectivity of 3.4 × 108 Jones at 514 nm excitation of fluency (0.42 mW/cm2) under ambient conditions. The optical polarization-induced photoresponse exhibits a large dichroic ratio of 3.4, while the polarization is set along the a- and the b-axes of single-crystalline CrSBr. The PD also showed excellent stability, retaining >95% of the initial photoresponsivity in ambient conditions for more than five months without encapsulation. Thus, we demonstrate CrSBr as a fascinating material for ultralow-powered optical polarization-resolving optoelectronic devices for cutting-edge technology.
Collapse
Affiliation(s)
- Jaganandha Panda
- J.
Heyrovský Institute of Physical Chemistry, Dolejskova 3, 182 23 Prague 8, Czech Republic
| | - Satyam Sahu
- J.
Heyrovský Institute of Physical Chemistry, Dolejskova 3, 182 23 Prague 8, Czech Republic
- Department
of Biophysics, Chemical and Macromolecular Physics, Faculty of Mathematics
and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Golam Haider
- J.
Heyrovský Institute of Physical Chemistry, Dolejskova 3, 182 23 Prague 8, Czech Republic
| | - Mukesh Kumar Thakur
- J.
Heyrovský Institute of Physical Chemistry, Dolejskova 3, 182 23 Prague 8, Czech Republic
| | - Kseniia Mosina
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Matěj Velický
- J.
Heyrovský Institute of Physical Chemistry, Dolejskova 3, 182 23 Prague 8, Czech Republic
| | - Jana Vejpravova
- Department
of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Zdeněk Sofer
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Martin Kalbáč
- J.
Heyrovský Institute of Physical Chemistry, Dolejskova 3, 182 23 Prague 8, Czech Republic
| |
Collapse
|
11
|
Yang Y, Liu J, Zhao C, Liang Q, Dong W, Shi J, Wang P, Kong D, Lv L, Jia L, Wang D, Huang C, Zheng S, Wang M, Liu F, Yu P, Qiao J, Ji W, Zhou J. A Universal Strategy for Synthesis of 2D Ternary Transition Metal Phosphorous Chalcogenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307237. [PMID: 37776266 DOI: 10.1002/adma.202307237] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/26/2023] [Indexed: 10/02/2023]
Abstract
The 2D ternary transition metal phosphorous chalcogenides (TMPCs) have attracted extensive research interest due to their widely tunable band gap, rich electronic properties, inherent magnetic and ferroelectric properties. However, the synthesis of TMPCs via chemical vapor deposition (CVD) is still challenging since it is difficult to control reactions among multi-precursors. Here, a subtractive element growth mechanism is proposed to controllably synthesize the TMPCs. Based on the growth mechanism, the TMPCs including FePS3 , FePSe3 , MnPS3 , MnPSe3 , CdPS3 , CdPSe3 , In2 P3 S9 , and SnPS3 are achieved successfully and further confirmed by Raman, second-harmonic generation (SHG), and scanning transmission electron microscopy (STEM). The typical TMPCs-SnPS3 shows a strong SHG signal at 1064 nm, with an effective nonlinear susceptibility χ(2) of 8.41 × 10-11 m V-1 , which is about 8 times of that in MoS2 . And the photodetector based on CdPSe3 exhibits superior detection performances with responsivity of 582 mA W-1 , high detectivity of 3.19 × 1011 Jones, and fast rise time of 611 µs, which is better than most previously reported TMPCs-based photodetectors. These results demonstrate the high quality of TMPCs and promote the exploration of the optical properties of 2D TMPCs for their applications in optoelectronics.
Collapse
Affiliation(s)
- Yang Yang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Jijian Liu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Chunyu Zhao
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Qingrong Liang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Weikang Dong
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Jia Shi
- Institute of Information Photonics Technology and School of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing, 100124, China
| | - Ping Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Denan Kong
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Lu Lv
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Lin Jia
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Dainan Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Chun Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 10081, China
| | - Shoujun Zheng
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Meiling Wang
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030002, China
| | - Fucai Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Peng Yu
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jingsi Qiao
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 10081, China
| | - Wei Ji
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing, 100872, China
| | - Jiadong Zhou
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 10081, China
| |
Collapse
|
12
|
Liu LE, Fang ZG, Song JL, Yuan L, Wei DX. Comparative analysis of electronic, magnetic, catalytic properties of clusters (PS 4, Cr nPS 4, Al nPS 4, Ga nPS 4, n = 1 ~ 3) based on density functional theory. J Mol Model 2023; 29:363. [PMID: 37932547 DOI: 10.1007/s00894-023-05774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
CONTEXT The article presents a comparative study of the electronic, magnetic and catalytic properties of CrPS4, AlPS4, GaPS4 and their expanded structures. It is finally found that: When n = 2, 3, the internal electron mobility of the configurations is stronger than when n = 0,1. When n = 1, the five configurations, except configuration 1Cr(4), are susceptible to both electrophilic and nucleophilic reactions at the same time. The configurations are more prone to nucleophilic reactions when n = 2 and 3, and the reaction sites are mainly located on the metal atoms; the more metal atoms, the more nucleophilic reaction sites. When the M atoms in the configuration are Al and Ga atoms, there is no big difference between the contribution of metal atoms and non-metal atoms to the magnetism in the configuration, while in the configuration containing Cr atoms, the metal atoms contribute more to the magnetism and mainly originate from the d-orbitals, which has better magnetic properties and greater application value. Configuration 2Cr(4) and configuration 1Cr(2) have better catalytic and adsorption activities and are most suitable as catalysts. METHODS In the article, based on topological principles, density functional theory, B3LYP functional and def2-tzvp basis group and Gaussian16 quantum chemistry software were used to optimise the calculations of the clusters CrPS4, AlPS4, GaPS4 and their expanded configurations, with the most stable structure selected for each cluster, and finally, with the help of Multiwfn program, the required analytical data were obtained by assisting the calculations.
Collapse
Affiliation(s)
- Li-E Liu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, Liaoning, China
| | - Zhi-Gang Fang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, Liaoning, China.
| | - Jing-Li Song
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, Liaoning, China
| | - Lin Yuan
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, Liaoning, China
| | - Dai-Xia Wei
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, Liaoning, China
| |
Collapse
|
13
|
Yu M, Zhang F, Gao W, Shen H, Kang L, Ju L, Yin H. Two-dimensional InTeClO 3: an ultrawide-bandgap material with potential application in a deep ultraviolet photodetector. Phys Chem Chem Phys 2023; 25:29241-29248. [PMID: 37874031 DOI: 10.1039/d3cp03612j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Ultrawide-bandgap semiconductors, possessing bandgaps distinctly larger than the 3.4 eV of GaN, have emerged as a promising class capable of achieving deep ultraviolet (UV) light detection. Based on first-principles calculations, we propose an unexplored two-dimensional (2D) InTeClO3 layered system with ultrawide bandgaps ranging from 4.34 eV of bulk to 4.54 eV of monolayer. Our calculations demonstrate that 2D InTeClO3 monolayer can be exfoliated from its bulk counterpart and maintain good thermal and dynamic stability at room temperature. The ultrawide bandgaps may be modulated by the small in-plane strains and layer thickness in a certain range. Furthermore, the 2D InTeClO3 monolayer shows promising electron transport behavior and strong optical absorption capacity in the deep UV range. A two-probe InTeClO3-based photodetection device has been constructed for evaluating the photocurrent. Remarkably, the effective photocurrent (5.7 A m-2 at photon energy of 4.2 eV) generation under polarized light has been observed in such a photodetector. Our results indicate that 2D InTeClO3 systems have strong photoresponse capacity in the deep UV region, accompanying the remarkable polarization sensitivity and high extinction ratio. These distinctive characteristics highlight the promising application prospects of InTeClO3 materials in the field of deep UV optoelectronics.
Collapse
Affiliation(s)
- Meiyang Yu
- Joint Center for Theoretical Physics, Institute for Computational Materials Science, and International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Fumin Zhang
- Joint Center for Theoretical Physics, Institute for Computational Materials Science, and International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Wenjiang Gao
- Joint Center for Theoretical Physics, Institute for Computational Materials Science, and International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Huimin Shen
- Joint Center for Theoretical Physics, Institute for Computational Materials Science, and International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Lili Kang
- Joint Center for Theoretical Physics, Institute for Computational Materials Science, and International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Lin Ju
- School of Physics and Electric Engineering, Anyang Normal University, Anyang 455000, China.
| | - Huabing Yin
- Joint Center for Theoretical Physics, Institute for Computational Materials Science, and International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| |
Collapse
|
14
|
Wang H, Li T, Chen Z, Zhu W, Lin W, Wang H, Liu X, Li Z. High out-of-plane negative Poisson's ratios and strong light harvesting in two-dimensional SiS 2 and its derivatives. NANOSCALE 2023; 15:16155-16162. [PMID: 37771318 DOI: 10.1039/d3nr04483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Two-dimensional (2D) materials with negative Poisson's ratios (NPRs) hold tremendous potential in diverse electronic devices. However, most 2D auxetic materials exhibit small out-of-plane NPRs and materials with bi-directional NPRs are rare. In this work, the SiS2 monolayer and its derivatives MX2 (M = Si, Ge, Sn and X = S, Se, Te) are systematically studied via first-principles simulation. We demonstrate that a SiS2 monolayer possesses a remarkable out-of-plane NPR with a value of -1.09 and an in-plane NPR (-0.13). Furthermore, a higher out-of-plane NPR (-1.79) can be achieved in a SnS2 monolayer by element substitution. Remarkably, SiS2 and its derivative MX2 monolayers exhibit excellent light harvesting over the ultraviolet and visible range, and the corresponding electronic properties show robustness against strains. Our results confirm that MX2 monolayers provide an ideal platform to explore auxeticity in two-dimensional limits.
Collapse
Affiliation(s)
- Haidi Wang
- School of Physics, Hefei University of Technology, Hefei, Anhui 230601, China.
| | - Tao Li
- School of Physics, Hefei University of Technology, Hefei, Anhui 230601, China.
| | - Zhao Chen
- School of Physics, Hefei University of Technology, Hefei, Anhui 230601, China.
| | - Weiduo Zhu
- School of Physics, Hefei University of Technology, Hefei, Anhui 230601, China.
| | - Wei Lin
- School of Physics, Hefei University of Technology, Hefei, Anhui 230601, China.
| | - Huimiao Wang
- School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, Anhui 230601, China
| | - Xiaofeng Liu
- School of Physics, Hefei University of Technology, Hefei, Anhui 230601, China.
| | - Zhongjun Li
- School of Physics, Hefei University of Technology, Hefei, Anhui 230601, China.
| |
Collapse
|
15
|
Zhang ZW, Yang Y, Wu H, Zhang T. Advances in the two-dimensional layer materials for cancer diagnosis and treatment: unique advantages beyond the microsphere. Front Bioeng Biotechnol 2023; 11:1278871. [PMID: 37840663 PMCID: PMC10576562 DOI: 10.3389/fbioe.2023.1278871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
In recent years, two-dimensional (2D) layer materials have shown great potential in the field of cancer diagnosis and treatment due to their unique structural, electronic, and chemical properties. These non-spherical materials have attracted increasing attention around the world because of its widely used biological characteristics. The application of 2D layer materials like lamellar graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BPs) and so on have been developed for CT/MRI imaging, serum biosensing, drug targeting delivery, photothermal therapy, and photodynamic therapy. These unique applications for tumor are due to the multi-variable synthesis of 2D materials and the structural characteristics of good ductility different from microsphere. Based on the above considerations, the application of 2D materials in cancer is mainly carried out in the following three aspects: 1) In terms of accurate and rapid screening of tumor patients, we will focus on the enrichment of serum markers and sensitive signal transformation of 2D materials; 2) The progress of 2D nanomaterials in tumor MRI and CT imaging was described by comparing the performance of traditional contrast agents; 3) In the most important aspect, we will focus on the progress of 2D materials in the field of precision drug delivery and collaborative therapy, such as photothermal ablation, sonodynamic therapy, chemokinetic therapy, etc. In summary, this review provides a comprehensive overview of the advances in the application of 2D layer materials for tumor diagnosis and treatment, and emphasizes the performance difference between 2D materials and other types of nanoparticles (mainly spherical). With further research and development, these multifunctional layer materials hold great promise in the prospects, and challenges of 2D materials development are discussed.
Collapse
Affiliation(s)
- Zheng-Wei Zhang
- Department of Hepatopancreatobiliary Surgery, Xinghua People’s Hospital, Yangzhou University, Xinghua, Jiangsu, China
| | - Yang Yang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
- Department of Hepatopancreatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Han Wu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Tong Zhang
- Department of Hepatopancreatobiliary Surgery, Xinghua People’s Hospital, Yangzhou University, Xinghua, Jiangsu, China
| |
Collapse
|
16
|
Yi H, Ma C, Wang W, Liang H, Cui R, Cao W, Yang H, Ma Y, Huang W, Zheng Z, Zou Y, Deng Z, Yao J, Yang G. Quantum tailoring for polarization-discriminating Bi 2S 3 nanowire photodetectors and their multiplexing optical communication and imaging applications. MATERIALS HORIZONS 2023; 10:3369-3381. [PMID: 37404203 DOI: 10.1039/d3mh00733b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
In this study, cost-efficient atmospheric pressure chemical vapor deposition has been successfully developed to produce well-aligned high-quality monocrystalline Bi2S3 nanowires. By virtue of surface strain-induced energy band reconstruction, the Bi2S3 photodetectors demonstrate a broadband photoresponse across 370.6 to 1310 nm. Upon a gate voltage of 30 V, the responsivity, external quantum efficiency, and detectivity reach 23 760 A W-1, 5.55 × 106%, and 3.68 × 1013 Jones, respectively. The outstanding photosensitivity is ascribed to the high-efficiency spacial separation of photocarriers, enabled by synergy of the axial built-in electric field and type-II band alignment, as well as the pronounced photogating effect. Moreover, a polarization-discriminating photoresponse has been unveiled. For the first time, the correlation between quantum confinement and dichroic ratio is systematically explored. The optoelectronic dichroism is established to be negatively correlated with the cross dimension (i.e., width and height) of the channel. Specifically, upon 405 nm illumination, the optimized dichroic ratio reaches 2.4, the highest value among the reported Bi2S3 photodetectors. In the end, proof-of-concept multiplexing optical communications and broadband lensless polarimetric imaging have been implemented by exploiting the Bi2S3 nanowire photodetectors as light-sensing functional units. This study develops a quantum tailoring strategy for tailoring the polarization properties of (quasi-)1D material photodetectors whilst depicting new horizons for the next-generation opto-electronics industry.
Collapse
Affiliation(s)
- Huaxin Yi
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Churong Ma
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, Guangdong, P. R. China
| | - Wan Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Huanrong Liang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Rui Cui
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Weiwei Cao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Hailin Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Yuhang Ma
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Wenjing Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Yichao Zou
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Zexiang Deng
- School of Science, Guilin University of Aerospace Technology, Guilin 541004, Guangxi, P. R. China.
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| |
Collapse
|
17
|
Lu J, He Y, Ma C, Ye Q, Yi H, Zheng Z, Yao J, Yang G. Ultrabroadband Imaging Based on Wafer-Scale Tellurene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211562. [PMID: 36893428 DOI: 10.1002/adma.202211562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/02/2023] [Indexed: 05/19/2023]
Abstract
High-resolution imaging is at the heart of the revolutionary breakthroughs of intelligent technologies, and it is established as an important approach toward high-sensitivity information extraction/storage. However, due to the incompatibility between non-silicon optoelectronic materials and traditional integrated circuits as well as the lack of competent photosensitive semiconductors in the infrared region, the development of ultrabroadband imaging is severely impeded. Herein, the monolithic integration of wafer-scale tellurene photoelectric functional units by exploiting room-temperature pulsed-laser deposition is realized. Taking advantage of the surface plasmon polaritons of tellurene, which results in the thermal perturbation promoted exciton separation, in situ formation of out-of-plane homojunction and negative expansion promoted carrier transport, as well as the band bending promoted electron-hole pair separation enabled by the unique interconnected nanostrip morphology, the tellurene photodetectors demonstrate wide-spectrum photoresponse from 370.6 to 2240 nm and unprecedented photosensitivity with the optimized responsivity, external quantum efficiency and detectivity of 2.7 × 107 A W-1 , 8.2 × 109 % and 4.5 × 1015 Jones. An ultrabroadband imager is demonstrated and high-resolution photoelectric imaging is realized. The proof-of-concept wafer-scale tellurene-based ultrabroadband photoelectric imaging system depicts a fascinating paradigm for the development of an advanced 2D imaging platform toward next-generation intelligent equipment.
Collapse
Affiliation(s)
- Jianting Lu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Yan He
- College of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| | - Churong Ma
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511443, P. R. China
| | - Qiaojue Ye
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Huaxin Yi
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| |
Collapse
|
18
|
Zhang M, Yu H, Li H, Jiang Y, Qu L, Wang Y, Gao F, Feng W. Ultrathin In 2 O 3 Nanosheets toward High Responsivity and Rejection Ratio Visible-Blind UV Photodetection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205623. [PMID: 36372520 DOI: 10.1002/smll.202205623] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Photoelectrochemical-type visible-blind ultraviolet photodetectors (PEC VBUV PDs) have gained ever-growing attention due to their simple fabrication processes, uncomplicated packaging technology, and high sensitivity. However, it is still challenging to achieve high-performance PEC VBUV PDs based on a single material with good spectral selectivity. Here, it is demonstrated that individual ultrathin indium oxide (In2 O3 ) nanosheets (NSs) are suitable for designing high-performance PEC VBUV PDs with high responsivity and UV/visible rejection ratio for the first time. In2 O3 NSs PEC PDs show excellent UV photodetection capability with an ultrahigh photoresponsivity of 172.36 mA W-1 and a high specific detectivity of 4.43 × 1011 Jones under 254 nm irradiation, which originates from the smaller charge transfer resistance (Rct ) at the In2 O3 NSs/electrolyte interface. The light absorption of In2 O3 NSs takes a blueshift due to the quantum confinement effect, granting good spectral selectivity for visible-blind detection. The UV/visible rejection ratio of In2 O3 NSs PEC PDs is 1567, which is 30 times higher than that of In2 O3 nanoparticles (NPs) and exceeds all recently reported PEC VBUV PDs. Moreover, In2 O3 NSs PEC PDs show good stability and good underwater imaging capability. The results verify that ultrathin In2 O3 NSs have potential in underwater optoelectronic devices.
Collapse
Affiliation(s)
- Mingxi Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Huan Yu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Hang Li
- Key Laboratory of Engineering Bionics, Ministry of Education, Jilin University, Changchun, 130022, China
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yan Jiang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Lihang Qu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Yunxia Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Feng Gao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Wei Feng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
19
|
Zhang Y, Wang F, Zhao X, Feng X, Zhang N, Xia F, Ma Y, Li H, Zhai T. 2D Ruddlesden-Popper perovskite sensitized SnP 2S 6 ultraviolet photodetector enabling high responsivity and fast speed. NANOSCALE HORIZONS 2022; 8:108-117. [PMID: 36426643 DOI: 10.1039/d2nh00466f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As the newly developed wide-bandgap semiconductors, two-dimensional layered metal phosphorus chalcogenides (2D LMPCs) exhibit enormous potential applications in ultraviolet (UV) photodetection due to their superior optoelectronic performance. However, 2D LMPC-based UV photodetectors generally suffer from low responsivity and slow response speed, which hinder their practical applications. Here, we present an effective strategy of sensitizing 2D LMPC UV photodetectors with a 2D Ruddlesden-Popper (RP) perovskite to enable high responsivity and fast response speed. As a demonstration, a hybrid heterojunction composed of RP perovskite (PEA)2PbI4 and a 2D SnP2S6 flake is fabricated by spin-coating method. Benefitting from the strong optical absorption of (PEA)2PbI4 and the efficient interfacial charge transfer caused by the favorable type-II energy band alignment, the as-fabricated 2D SnP2S6/(PEA)2PbI4 hybrid heterojunction photodetectors show high responsivity (67.1 A W-1), large detectivity (2.8 × 1011 Jones), fast rise/delay time (30/120 μs) and excellent external quantum efficiency (22825%) at 365 nm. Under field-effect modulation, the responsivity of the heterojunction photodetector can reach up to 239.4 A W-1, which is attributed to the photogating mechanism and reduced Schottky barriers. Owing to the excellent photodetection performance, the heterojunction device further shows superior imaging capability. This work provides an effective strategy for designing high-performance UV photodetectors toward future applications.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Fakun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xuan Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Xin Feng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Na Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Fangfang Xia
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Ying Ma
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| |
Collapse
|
20
|
Yan Y, Li J, Li S, Wang M, Luo G, Song X, Zhang S, Jiang Y, Qin R, Xia C. Two-dimensional wide-bandgap GeSe 2 vertical ultraviolet photodetectors with high responsivity and ultrafast response speed. NANOSCALE ADVANCES 2022; 4:5297-5303. [PMID: 36540128 PMCID: PMC9724610 DOI: 10.1039/d2na00565d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 06/17/2023]
Abstract
Germanium selenide (GeSe2), as a typical member of 2D wide bandgap semiconductors (WBSs), shows great potential in ultraviolet (UV) optoelectronics due to its excellent flexibility, superior environmental stability, competitive UV absorption coefficient, and significant spectral selectivity. However, the GeSe2-based UV photodetector suffers from high operation voltages and low photocurrent, which prevents its practical imaging applications. In this work, we report an elevated photocurrent generation in a vertical stacking graphene/GeSe2/graphene heterostructure with low operation voltage and low power consumption. Efficient collection of photoexcited carriers in GeSe2 through graphene electrodes results in outstanding UV detection properties, including a pronounced responsivity of 37.1 A W-1, a specific detectivity of 8.83 × 1011 Jones, and an ultrahigh on/off ratio (∼105) at 355 nm. In addition, building a Schottky barrier between GeSe2 and graphene and reducing the channel length can increase the photoresponse speed to ∼300 μs. These accomplishments set the stage for future optoelectronic applications of vertical 2D WBS heterostructure UV photodetectors.
Collapse
Affiliation(s)
- Yong Yan
- School of Physics, Henan Normal University Xinxiang Henan province China
| | - Jie Li
- School of Physics, Henan Normal University Xinxiang Henan province China
| | - Shasha Li
- School of Physics, Henan Normal University Xinxiang Henan province China
| | - Mengna Wang
- School of Physics, Henan Normal University Xinxiang Henan province China
| | - Gaoli Luo
- School of Physics, Henan Normal University Xinxiang Henan province China
| | - Xiaohui Song
- School of Physics, Henan Normal University Xinxiang Henan province China
| | - Suicai Zhang
- School of Physics, Henan Normal University Xinxiang Henan province China
| | - Yurong Jiang
- School of Physics, Henan Normal University Xinxiang Henan province China
| | - Ruiping Qin
- School of Physics, Henan Normal University Xinxiang Henan province China
| | - Congxin Xia
- School of Physics, Henan Normal University Xinxiang Henan province China
| |
Collapse
|
21
|
Liu T, Xiao W, Luo Z, Bi J, Zhang Y, Wang G, Wang D, Liu X. Regulating on photocatalytic overall water splitting performance of gallium thiophosphate based on transition metal doping: A first-principles study. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Xu F, Wu Z, Liu G, Chen F, Guo J, Zhou H, Huang J, Zhang Z, Fei L, Liao X, Zhou Y. Few-Layered MnAl 2S 4 Dielectrics for High-Performance van der Waals Stacked Transistors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25920-25927. [PMID: 35607909 DOI: 10.1021/acsami.2c04477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The gate dielectric layer is an important component in building a field-effect transistor. Here, we report the synthesis of a layered rhombohedral-structured MnAl2S4 crystal, which can be mechanically exfoliated down to the monolayer limit. The dielectric properties of few-layered MnAl2S4 flakes are systematically investigated, whereby they exhibit a relative dielectric constant of over 6 and an electric breakdown field of around 3.9 MV/cm. The atomically smooth thin MnAl2S4 flakes are then applied as a dielectric top gate layer to realize a two-dimensional van der Waals stacked field-effect transistor, which uses MoS2 as a channel material. The fabricated transistor can be operated at a small drain-source voltage of 0.1 V and gate voltages within ranges of ±2 V, which exhibit a large on-off ratio over 107 at 0.5 V and a low subthreshold swing value of 80 mV/dec. Our work demonstrates that the few-layered MnAl2S4 can work as a dielectric layer to realize high-performance two-dimensional transistors, and thus broadens the research on high-κ 2D materials and may provide new opportunities in developing low-dimensional electronic devices with a low power consumption in the future.
Collapse
Affiliation(s)
- Fang Xu
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
- Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Ziyu Wu
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
- Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Guangjian Liu
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
- Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Feng Chen
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
- Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Junqing Guo
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
- Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Hua Zhou
- School of Physics, Shandong University, Shandanan Street 27, 250100 Jinan, P. R. China
| | - Jiawei Huang
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
- Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Zhouyang Zhang
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
- Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Linfeng Fei
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
- Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Xiaxia Liao
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
- Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Yangbo Zhou
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
- Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| |
Collapse
|
23
|
Wu D, Xu M, Zeng L, Shi Z, Tian Y, Li XJ, Shan CX, Jie J. In Situ Fabrication of PdSe 2/GaN Schottky Junction for Polarization-Sensitive Ultraviolet Photodetection with High Dichroic Ratio. ACS NANO 2022; 16:5545-5555. [PMID: 35324154 DOI: 10.1021/acsnano.1c10181] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polarization-sensitive ultraviolet (UV) photodetection is of great technological importance for both civilian and military applications. Two-dimensional (2D) group-10 transition-metal dichalcogenides (TMDs), especially palladium diselenide (PdSe2), are promising candidates for polarized photodetection due to their low-symmetric crystal structure. However, the lack of an efficient heterostructure severely restricts their applications in UV-polarized photodetection. Here, we develop a PdSe2/GaN Schottky junction by in situ van der Waals growth for highly polarization-sensitive UV photodetection. Owing to the high-quality junction, the device exhibits an appealing UV detection performance in terms of a large responsivity of 249.9 mA/W, a high specific detectivity, and a fast response speed. More importantly, thanks to the puckered structure of the PdSe2 layer, the device is highly sensitive to polarized UV light with a large dichroic ratio up to 4.5, which is among the highest for 2D TMD material-based UV polarization-sensitive photodetectors. These findings further enable the demonstration of the outstanding polarized UV imaging capability of the Schottky junction, as well as its utility as an optical receiver for secure UV optical communication. Our work offers a strategy to fabricate the PdSe2-based heterostructure for high-performance polarization-sensitive UV photodetection.
Collapse
Affiliation(s)
- Di Wu
- School of Physics and Microelectronics and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mengmeng Xu
- School of Physics and Microelectronics and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Longhui Zeng
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zhifeng Shi
- School of Physics and Microelectronics and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yongzhi Tian
- School of Physics and Microelectronics and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xin Jian Li
- School of Physics and Microelectronics and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chong-Xin Shan
- School of Physics and Microelectronics and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jiansheng Jie
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
24
|
Tan B, Wu Y, Gao F, Yang H, Hu Y, Shang H, Zhang X, Zhang J, Li Z, Fu Y, Jia D, Zhou Y, Xiao H, Hu P. Engineering the Optoelectronic Properties of 2D Hexagonal Boron Nitride Monolayer Films by Sulfur Substitutional Doping. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16453-16461. [PMID: 35373556 DOI: 10.1021/acsami.2c01834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tuning the optical and electrical properties of two-dimensional (2D) hexagonal boron nitride (hBN) is critical for its successful application in optoelectronics. Herein, we report a new methodology to significantly enhance the optoelectronic properties of hBN monolayers by substitutionally doping with sulfur (S) on a molten Au substrate using chemical vapor deposition. The S atoms are more geometrically and energetically favorable to be doped in the N sites than in the B sites of hBN, and the S 3p orbitals hybridize with the B 2p orbitals, forming a new conduction band edge that narrows its band gap. The band edge positions change with the doping concentration of S atoms. The conductivity increases up to 1.5 times and enhances the optoelectronic properties, compared to pristine hBN. A photodetector made of a 2D S-doped hBN film shows an extended wavelength response from 260 to 280 nm and a 50 times increase in its photocurrent and responsivity with light illumination at 280 nm. These enhancements are mainly due to the improved light absorption and increased electrical conductivity through doping with sulfur. This S-doped hBN monolayer film can be used in the next-generation electronics, optoelectronics, and spintronics.
Collapse
Affiliation(s)
- Biying Tan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - You Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Feng Gao
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Huihui Yang
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Yunxia Hu
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Huiming Shang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Xin Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jia Zhang
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Zhonghua Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - YongQing Fu
- Faculty of Engineering & Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Dechang Jia
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Yu Zhou
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Haiying Xiao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - PingAn Hu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, P. R. China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080, P. R. China
| |
Collapse
|
25
|
Yang W, Xin K, Yang J, Xu Q, Shan C, Wei Z. 2D Ultrawide Bandgap Semiconductors: Odyssey and Challenges. SMALL METHODS 2022; 6:e2101348. [PMID: 35277948 DOI: 10.1002/smtd.202101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/11/2022] [Indexed: 06/14/2023]
Abstract
2D ultrawide bandgap (UWBG) semiconductors have aroused increasing interest in the field of high-power transparent electronic devices, deep-ultraviolet photodetectors, flexible electronic skins, and energy-efficient displays, owing to their intriguing physical properties. Compared with dominant narrow bandgap semiconductor material families, 2D UWBG semiconductors are less investigated but stand out because of their propensity for high optical transparency, tunable electrical conductivity, high mobility, and ultrahigh gate dielectrics. At the current stage of research, the most intensively investigated 2D UWBG semiconductors are metal oxides, metal chalcogenides, metal halides, and metal nitrides. This paper provides an up-to-date review of recent research progress on new 2D UWBG semiconductor materials and novel physical properties. The widespread applications, i.e., transistors, photodetector, touch screen, and inverter are summarized, which employ 2D UWBG semiconductors as either a passive or active layer. Finally, the existing challenges and opportunities of the enticing class of 2D UWBG semiconductors are highlighted.
Collapse
Affiliation(s)
- Wen Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Kaiyao Xin
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Qun Xu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key laboratory of Materials Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| |
Collapse
|
26
|
Liu X, Liu T, Xiao W, Wang W, Zhang Y, Wang G, Luo Z, Liu JC. Strain engineering in single-atom catalysts: GaPS 4 for bifunctional oxygen reduction and evolution. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01047j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report here a theoretical study on 34 transition metal doped two-dimensional GaPS4 catalysts denoted as transition metal transition metal@VS-GaPS4.
Collapse
Affiliation(s)
- Xuefei Liu
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China
| | - Tianyun Liu
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China
| | - Wenjun Xiao
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China
| | - Wentao Wang
- Guizhou Provincial Key Laboratory of computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| | - Yuefei Zhang
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China
| | - Gang Wang
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China
| | - Zijiang Luo
- College of Information, Guizhou University of Finance and Economics, Guiyang 550025, China
| | - Jin-Cheng Liu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Wang X, Xiong T, Zhao K, Zhou Z, Xin K, Deng HX, Kang J, Yang J, Liu YY, Wei Z. Polarimetric Image Sensor and Fermi Level Shifting Induced Multichannel Transition Based on 2D PdPS. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107206. [PMID: 34676919 DOI: 10.1002/adma.202107206] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/20/2021] [Indexed: 06/13/2023]
Abstract
2D materials have been attracting high interest in recent years due to their low structural symmetry, excellent photoresponse, and high air stability. However, most 2D materials can only respond to specific light, which limits the development of wide-spectrum photodetectors. Proper bandgap and the regulation of Fermi level are the foundations for realizing electronic multichannel transition, which is an effective method to achieve a wide spectral response. Herein, a noble 2D material, palladium phosphide sulfide (PdPS), is designed and synthesized. The bandgap of PdPS is around 2.1 eV and the formation of S vacancies, interstitial Pd and P atoms promote the Fermi level very close to the conduction band. Therefore, the PdPS-based photodetector shows impressive wide spectral response from solar-blind ultraviolet to near-infrared based on the multichannel transition. It also exhibits superior optoelectrical properties with photoresponsivity (R) of 1 × 103 A W-1 and detectivity (D*) of 4 × 1011 Jones at 532 nm. Moreover, PdPS exhibits good performance of polarization detection with dichroic ratio of ≈3.7 at 808 nm. Significantly, it achieves polarimetric imaging and hidden-target detection in complex environments through active detection.
Collapse
Affiliation(s)
- Xingang Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Xiong
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Kai Zhao
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Ziqi Zhou
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Kaiyao Xin
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Xiong Deng
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Jun Kang
- Beijing Computational Science Research Center, Beijing, 100193, China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Yue-Yang Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
28
|
Yan Y, Deng Q, Li S, Guo T, Li X, Jiang Y, Song X, Huang W, Yang J, Xia C. In-plane ferroelectricity in few-layered GeS and its van der Waals ferroelectric diodes. NANOSCALE 2021; 13:16122-16130. [PMID: 34533169 DOI: 10.1039/d1nr03807a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional ferroelectric semiconductors (2DFeSs) have been attracting extensive research attention on account of their unique properties and versatile applications in random-access memory, digital signal processors, and neuromorphic computing. Germanium sulfide (GeS) is predicted as a typical 2DFeS with a large spontaneous polarization of 484 pC m-1. Furthermore, the moderate band gap equivalent to 1.63 eV of GeS provides it with significant potential to create a strong bulk photovoltage in the visible light range. However, the fabrication of chemically stable few-to-monolayer GeS has not been reported so far, owing to the strong interlayer force and high chemical reactivity of the surface. Herein we demonstrate a new method for fabricating high quality, air-stable, ultrathin GeS nanoflakes. The electrical characterization confirms the formation of few-layered GeS with a remarkable in-plane ferroelectric hysteresis, which is forbidden by the inversion symmetry in bulk GeS crystals. After applying a coercive field of about 18.1 kV cm-1, a switchable shift current can also be observed in the polarized GeS nanoflakes under light irradiation. To further enhance the photoresponsivity, few-layered InSe was transferred onto the GeS nanoflakes to form van der Waals ferroelectric diodes. The interfacial perturbation breaking the inversion symmetry results in the enhancement of robust dipoles in the GeS side along the interface, which can be tuned by the in-plane electric field. Overall, this work opens the door for exploring the low-dimensional ferroelectric memory and energy conversion applications based on 2D GeS nanoflakes and provides a deeper understanding of the photovoltaic mechanism with in-plane 2D ferroelectric diodes.
Collapse
Affiliation(s)
- Yong Yan
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Henan 453007, China.
| | - Qunrui Deng
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Henan 453007, China.
| | - Shasha Li
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Henan 453007, China.
| | - Tao Guo
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3Ga, Canada
| | - Xueping Li
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Henan 453007, China.
| | - Yurong Jiang
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Henan 453007, China.
| | - Xiaohui Song
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Henan 453007, China.
| | - Wen Huang
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 2a0023, China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100083, China
| | - Congxin Xia
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Henan 453007, China.
| |
Collapse
|