1
|
Chakrabartty D, Sahoo M, Kumar A, Jamaluddin S, Giri B, Chhabra H, Pradhan K, Nayak AK. Role of Competing Magnetic Exchange on Non-Collinear to Collinear Magnetic Ordering and Skyrmion Stabilization in Centrosymmetric Hexagonal Magnets. ACS NANO 2025; 19:3614-3623. [PMID: 39792042 DOI: 10.1021/acsnano.4c13876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Topological magnetic skyrmions with helicity state degrees of freedom in centrosymmetric magnets possess great potential for advanced spintronics applications and quantum computing. Till date, the skyrmion study in this class of materials mostly remains focused to collinear ferromagnets with uniaxial magnetic anisotropy. Here, we present a combined theoretical and experimental study on the competing magnetic exchange-induced evolution of noncollinear magnetic ground states and its impact on the skyrmion formation in a series of centrosymmetric hexagonal noncollinear magnets, MnFe1-xCoxGe. We show that by engineering the Fe/Co ratio, the system progressively transforms from a noncollinear magnetic state with in-plane antiferromagnetic ordering in MnFeGe to a collinear ferromagnetic (FM) spin arrangement in MnFe0.2Co0.8Ge. We utilize Lorentz transmission electron microscopy, neutron diffraction experiments, and micromagnetic simulations to demonstrate the role of competing magnetic exchange-induced in-plane magnetic moment in the formation of nontopological type-II magnetic bubbles in the system. However, skyrmions with degenerate helicity states are found to be stable magnetic entities in the case of the perfect uniaxial magnetic anisotropy system. The present study offers a great opportunity to tune the skyrmion phase in centrosymmetric magnets by intrinsically designing the magnetic ground state, thereby providing a unique platform for realizing skyrmion-based spintronics devices.
Collapse
Affiliation(s)
- Dola Chakrabartty
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Jatni 752050, India
| | - Mihir Sahoo
- RPTU Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| | - Amit Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sk Jamaluddin
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Jatni 752050, India
| | - Bimalesh Giri
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Jatni 752050, India
| | - Hitesh Chhabra
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Jatni 752050, India
| | - Kalpataru Pradhan
- Theory Division, Saha Institute of Nuclear Physics A CI of Homi Bhabha National Institute, Kolkata 700064, India
| | - Ajaya K Nayak
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Jatni 752050, India
- Center for Interdisciplinary Sciences (CIS), National Institute of Science Education and Research, HBNI, Jatni, 752050 Bhubaneswar, India
| |
Collapse
|
2
|
Xu J, Xi L, Xing S, Sheng J, Li S, Wang L, Kan X, Ma T, Zang Y, Bao B, Zhou Z, Yang M, Gao Y, Wang D, Wang G, Zheng X, Zhang J, Du H, Xu J, Yin W, Zhang Y, Zhou S, Shen B, Wang S. Magnetic Structure-Dependent Spin Texture Lattice in Hexagonal MnFeCoGe Magnets. ACS NANO 2024; 18:24515-24522. [PMID: 39165001 DOI: 10.1021/acsnano.4c08703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Topological spin textures are of great significance in magnetic information storage and spintronics due to their high storage density and low drive current. In this work, the transformation of magnetic configuration from chaotic labyrinth domains to uniform stripe domains was observed in MnFe1-xCoxGe magnets. This change occurs due to the noncollinear magnetic structure switching to a uniaxial ferromagnetic structure with increasing Co content, as identified by neutron diffraction results and Lorentz transmission electron microscopy (L-TEM). Of utmost importance, a hexagonal lattice of high-density robust type-II magnetic bubble lattice was established for x = 0.8 through out-of-plane magnetic field stimulation and field-cooling. The dimensions of the type-II magnetic bubbles were found to be tuned by the sample thickness. Therefore, the stabilization of complex magnetic spin textures, associated with enhanced uniaxial ferromagnetic interaction and magnetic dipole-dipole interaction in MnFe1-xCoxGe through magnetic structure manipulation, as further confirmed by the micromagnetic simulations, will provide a convenient and efficient strategy for designing topological spin textures with potential applications in spintronic devices.
Collapse
Affiliation(s)
- Jiawang Xu
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Lei Xi
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Shouyuan Xing
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Junchao Sheng
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Shihao Li
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Liming Wang
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Xucai Kan
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Tianping Ma
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Yipeng Zang
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Bin Bao
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Zhonghao Zhou
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Mengmeng Yang
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Yawei Gao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dingsong Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guyue Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xinqi Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jingyan Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haifeng Du
- Anhui Provincial Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Juping Xu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Spallation Neutron Source Science Center, Guangdong 523803, China
| | - Wen Yin
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Spallation Neutron Source Science Center, Guangdong 523803, China
| | - Ying Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shiming Zhou
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Baogen Shen
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shouguo Wang
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
3
|
Li Z, Yin Q, Lv W, Shen J, Wang S, Zhao T, Cai J, Lei H, Lin SZ, Zhang Y, Shen B. Electron-Assisted Generation and Straight Movement of Skyrmion Bubble in Kagome TbMn 6Sn 6. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309538. [PMID: 38366361 DOI: 10.1002/adma.202309538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/31/2023] [Indexed: 02/18/2024]
Abstract
Topological magnetic textures are promising candidates as binary data units for the next-generation memory device. The precise generation and convenient control of nontrivial spin topology at zero field near room temperature endows the critical advantages in skyrmionic devices but is not simultaneously integrated into one material. Here, in the Kagome plane of quantum TbMn6Sn6, the expedient generation of the skyrmion bubbles in versatile forms of lattice, chain, and isolated one by converging the electron beam, where the electron intensity gradient contributes to the dynamic generation from local anisotropy variation near spin reorientation transition (SRT) is reported. Encouragingly, by utilizing the dynamic shift of the SRT domain interface, the straight movement is actualized with the skyrmion bubble slave to the SRT domain interface forming an elastic composite object, avoiding the usual deflection from the skyrmion Hall effect. The critical contribution of the SRT domain interface via conveniently electron-assisted heating is further theoretically validated in micromagnetic simulation, highlighting the compatible application possibility in advanced devices.
Collapse
Affiliation(s)
- Zhuolin Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Qiangwei Yin
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & MicroNano Devices, Renmin University of China, Beijing, 100872, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
| | - Wenxin Lv
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & MicroNano Devices, Renmin University of China, Beijing, 100872, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
| | - Jun Shen
- Department of Energy and Power Engineering, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shouguo Wang
- Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Tongyun Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jianwang Cai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hechang Lei
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & MicroNano Devices, Renmin University of China, Beijing, 100872, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
| | - Shi-Zeng Lin
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Ying Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- Open Access Research Infrastrucure, Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Baogen Shen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| |
Collapse
|
4
|
Lv X, Lv H, Huang Y, Zhang R, Qin G, Dong Y, Liu M, Pei K, Cao G, Zhang J, Lai Y, Che R. Distinct skyrmion phases at room temperature in two-dimensional ferromagnet Fe 3GaTe 2. Nat Commun 2024; 15:3278. [PMID: 38627376 PMCID: PMC11021542 DOI: 10.1038/s41467-024-47579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Distinct skyrmion phases at room temperature hosted by one material offer additional degree of freedom for the design of topology-based compact and energetically-efficient spintronic devices. The field has been extended to low-dimensional magnets with the discovery of magnetism in two-dimensional van der Waals magnets. However, creating multiple skyrmion phases in 2D magnets, especially above room temperature, remains a major challenge. Here, we report the experimental observation of mixed-type skyrmions, exhibiting both Bloch and hybrid characteristics, in a room-temperature ferromagnet Fe3GaTe2. Analysis of the magnetic intensities under varied imaging conditions coupled with complementary simulations reveal that spontaneous Bloch skyrmions exist as the magnetic ground state with the coexistence of hybrid stripes domain, on account of the interplay between the dipolar interaction and the Dzyaloshinskii-Moriya interaction. Moreover, hybrid skyrmions are created and their coexisting phases with Bloch skyrmions exhibit considerably high thermostability, enduring up to 328 K. The findings open perspectives for 2D spintronic devices incorporating distinct skyrmion phases at room temperature.
Collapse
Affiliation(s)
- Xiaowei Lv
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, PR China
| | - Hualiang Lv
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, PR China
| | - Yalei Huang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | | | - Guanhua Qin
- Zhejiang Laboratory, Hangzhou, 311100, China
| | - Yihui Dong
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Min Liu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, PR China
| | - Ke Pei
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, PR China
| | - Guixin Cao
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China.
- Zhejiang Laboratory, Hangzhou, 311100, China.
| | | | - Yuxiang Lai
- Pico Electron Microscopy Center, Innovation Institute for Ocean Materials Characterization, Center for Advanced Studies in Precision Instruments, Hainan University, Haikou, 570228, China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, PR China.
- Zhejiang Laboratory, Hangzhou, 311100, China.
| |
Collapse
|
5
|
Patrick CE, Huang Y, Lewis LH, Staunton JB. Theory of Defect-Induced Crystal Field Perturbations in Rare-Earth Magnets. PHYSICAL REVIEW LETTERS 2024; 132:056703. [PMID: 38364145 DOI: 10.1103/physrevlett.132.056703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/20/2023] [Indexed: 02/18/2024]
Abstract
We present a theory describing the single-ion anisotropy of rare-earth (RE) magnets in the presence of point defects. Taking the RE-lean 1∶12 magnet class as a prototype, we use first-principles calculations to show how the introduction of Ti substitutions into SmFe_{12} perturbs the crystal field, generating new coefficients due to the lower symmetry of the RE environment. We then demonstrate that these perturbations can be described extremely efficiently using a screened point charge model. We provide analytical expressions for the anisotropy energy that can be straightforwardly implemented in atomistic spin dynamics simulations, meaning that such simulations can be carried out for an arbitrary arrangement of point defects. The significant crystal field perturbations calculated here demonstrate that a sample that is single phase from a structural point of view can nonetheless have a dramatically varying anisotropy profile at the atomistic level if there is compositional disorder, which may influence localized magnetic objects like domain walls or skyrmions.
Collapse
Affiliation(s)
- Christopher E Patrick
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Yixuan Huang
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Laura H Lewis
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Julie B Staunton
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
6
|
Song Y, Xu T, Zhao G, Xu Y, Zhong Z, Zheng X, Shi N, Zhou C, Hao Y, Huang Q, Xing X, Zhang Y, Chen J. High-density, spontaneous magnetic biskyrmions induced by negative thermal expansion in ferrimagnets. SCIENCE ADVANCES 2023; 9:eadi1984. [PMID: 37672584 PMCID: PMC10482331 DOI: 10.1126/sciadv.adi1984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
Magnetic skyrmions are topologically protected quasiparticles that are promising for applications in spintronics. However, the low stability of most magnetic skyrmions leads to either a narrow temperature range in which they can exist, a low density of skyrmions, or the need for an external magnetic field, which greatly limits their wide application. In this study, high-density, spontaneous magnetic biskyrmions existing within a wide temperature range and without the need for a magnetic field were formed in ferrimagnets owing to the existence of a negative thermal expansion of the lattice. Moreover, a strong connection between the atomic-scale ferrimagnetic structure and nanoscale magnetic domains in Ho(Co,Fe)3 was revealed via in situ neutron powder diffraction and Lorentz transmission electron microscopy measurements. The critical role of the negative thermal expansion in generating biskyrmions in HoCo3 based on the magnetoelastic coupling effect is further demonstrated by comparing the behavior of HoCo2.8Fe0.2 with a positive thermal expansion.
Collapse
Affiliation(s)
- Yuzhu Song
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Tiankuo Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoping Zhao
- College of Physics and Electronic Engineering and Institute of Solid State Physics, Sichuan Normal University, Chengdu 610066, China
| | - Yuanji Xu
- Institute for Applied Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhicheng Zhong
- Key Laboratory of Magnetic Materials Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xinqi Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Naike Shi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Chang Zhou
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Yiqing Hao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Qingzhen Huang
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg MD, 20899-6102, USA
| | - Xianran Xing
- Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
7
|
Petkov V, Zafar A, Tadisetti DR, Abeykoon MA. Lattice instability and magnetic phase transitions in strongly correlated MnAs. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35. [PMID: 37158117 DOI: 10.1088/1361-648x/acd042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Using variable temperature x-ray total scattering in magnetic field, we study the interaction between lattice and magnetic degrees of freedom in MnAs, which loses its ferromagnetic order and hexagonal ('H') lattice symmetry at 318 K to recover the latter and become a true paramagnet when the temperature is increased to 400 K. Our results show that the 318 K transition is accompanied by highly anisotropic displacements of Mn atoms that appear as a lattice degree of freedom bridging the 'H' and orthorhombic phases of MnAs. This is a rare example of a lowering of an average crystal symmetry due to an increased displacive disorder emerging on heating. Our results also show that magnetic and lattice degrees of freedom appear coupled but not necessarily equivalent control variables for triggering phase transitions in strongly correlated systems in general and in particular in MnAs.
Collapse
Affiliation(s)
- Valeri Petkov
- Department of Physics, Central Michigan University, Mt. Pleasant, MI 48858, United States of America
| | - Adeel Zafar
- Department of Physics, Central Michigan University, Mt. Pleasant, MI 48858, United States of America
| | - Durga R Tadisetti
- Department of Physics, Central Michigan University, Mt. Pleasant, MI 48858, United States of America
- Department of Physics, GITAM, Visakhapatnam, Andhra Pradesh 530045, India
| | - Milinda Am Abeykoon
- Photon Sciences Division, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| |
Collapse
|
8
|
Zuo S, Qiao K, Zhang Y, Zhao T, Jiang C, Shen B. Spontaneous Biskyrmion Lattice in a Centrosymmetric Rhombohedral Rare-Earth Magnet with Easy-Plane Anisotropy. NANO LETTERS 2023; 23:550-557. [PMID: 36633430 DOI: 10.1021/acs.nanolett.2c04001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Magnetic skyrmion and its derivatives have demonstrated fascinating topological behaviors with potential applications in future spintronic devices. Despite the recent progress, the spontaneous skyrmion lattice and successive topological transition in the magnets with easy-plane magnetic anisotropy are still elusive especially at room temperature. Here, in a centrosymmetric rhombohedral Nd2Co17 magnet with easy-plane magnetic anisotropy, spontaneous biskyrmions are observed over a wide temperature range across room temperature, and then evolve into enclosed in-plane domains with nanometric size due to the enhancement of the planar magnetic anisotropy. The spontaneous generation of the biskyrmion lattice and its evolution along different crystal orientations demonstrate the crucial role of intrinsic bi-anisotropy and demagnetization effects. This discovery provides a fundamental insight into the nature of topological magnetic textures in easy-plane anisotropy materials and suggests an arena to explore the topological states in rare-earth magnets as well as their applications in spintronics.
Collapse
Affiliation(s)
- Shulan Zuo
- School of Materials Science and Engineering, Beihang University, Beijing100191, P. R. China
| | - Kaiming Qiao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, P. R. China
| | - Ying Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong523808, P. R. China
| | - Tongyun Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Chengbao Jiang
- School of Materials Science and Engineering, Beihang University, Beijing100191, P. R. China
| | - Baogen Shen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, P. R. China
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang315201, P. R. China
| |
Collapse
|
9
|
Zuo S, Qiao K, Zhang Y, Li Z, Zhao T, Jiang C, Shen B. Spontaneous Topological States and Their Mutual Transformations in a Rare-Earth Ferrimagnet. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205574. [PMID: 36403248 PMCID: PMC9875609 DOI: 10.1002/advs.202205574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Nontrivial chiral spin textures with nanometric sizes and novel characteristics (e.g., magnetic skyrmions) are promising for encoding information bits in future energy-efficient and high-density spintronic devices. Because of antiferromagnetic exchange coupling, skyrmions in ferrimagnetic materials exhibit many advantages in terms of size and efficient manipulation, which allow them to overcome the limitations of ferromagnetic skyrmions. Despite recent progress, ferrimagnetic skyrmions have been observed only in few films in the presence of external fields, while those in ferrimagnetic bulks remain elusive. This study reports on spontaneously generated zero-field ground-state magnetic skyrmions and their subsequent transformation into traditional magnetic bubbles via intermediate states of (bi-)target bubbles during a magnetic anisotropy change in the rare-earth ferrimagnetic crystal DyFe11 Ti. Spontaneous reversible topological transformation driven by a temperature-induced spin reorientation transition is directly distinguished using Lorentz transmission electron microscopy. The spontaneous generation of magnetic skyrmions and successive topological transformations in ferrimagnetic DyFe11 Ti are expected to advance the design of topological spin textures with versatile properties and potential applications in rare-earth magnets.
Collapse
Affiliation(s)
- Shulan Zuo
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education)School of Materials Science and EngineeringBeihang UniversityBeijing100191P. R. China
| | - Kaiming Qiao
- School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Ying Zhang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808P. R. China
| | - Zhuolin Li
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
| | - Tongyun Zhao
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
| | - Chengbao Jiang
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education)School of Materials Science and EngineeringBeihang UniversityBeijing100191P. R. China
| | - Baogen Shen
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
- Ningbo Institute of Materials Technology & EngineeringChinese Academy of SciencesNingboZhejiang315201P. R. China
| |
Collapse
|
10
|
One RA, Mican S, CimpoesȖu AG, Joldos M, Tetean R, Tiușan CV. Micromagnetic Design of Skyrmionic Materials and Chiral Magnetic Configurations in Patterned Nanostructures for Neuromorphic and Qubit Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4411. [PMID: 36558263 PMCID: PMC9782460 DOI: 10.3390/nano12244411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Our study addresses the problematics of magnetic skyrmions, nanometer-size vortex-like swirling topological defects, broadly studied today for applications in classic, neuromorphic and quantum information technologies. We tackle some challenging issues of material properties versus skyrmion stability and manipulation within a multiple-scale modeling framework, involving complementary ab-initio and micromagnetic frameworks. Ab-initio calculations provide insight into the anatomy of the magnetic anisotropy, the Dzyaloshinskii-Moriya asymmetric exchange interaction (DMI) and their response to a gating electric field. Various multi-layered heterostructures were specially designed to provide electric field tunable perpendicular magnetization and sizeable DMI, which are required for skyrmion occurrence. Landau-Lifshitz-Gilbert micromagnetic calculations in nanometric disks allowed the extraction of material parameter phase diagrams in which magnetic textures were classified according to their topological charge. We identified suitable ranges of magnetic anisotropy, DMI and saturation magnetization for stabilizing skyrmionic ground states or writing/manipulating them using either a spin-transfer torque of a perpendicular current or the electric field. From analyzing the different contributions to the total magnetic free energy, we point out some critical properties influencing the skyrmions' stability. Finally, we discuss some experimental issues related to the choice of materials or the design of novel magnetic materials compatible with skyrmionic applications.
Collapse
Affiliation(s)
- Roxana-Alina One
- Department of Condensed Matter Physics and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University of Cluj-Napoca, 400084 Cluj-Napoca, Romania
| | - Sever Mican
- Department of Condensed Matter Physics and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University of Cluj-Napoca, 400084 Cluj-Napoca, Romania
| | - Angela-Georgiana CimpoesȖu
- Department of Condensed Matter Physics and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University of Cluj-Napoca, 400084 Cluj-Napoca, Romania
| | - Marius Joldos
- Computer Science Department, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, 400027 Cluj-Napoca, Romania
| | - Romulus Tetean
- Department of Condensed Matter Physics and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University of Cluj-Napoca, 400084 Cluj-Napoca, Romania
| | - Coriolan Viorel Tiușan
- Department of Condensed Matter Physics and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University of Cluj-Napoca, 400084 Cluj-Napoca, Romania
- National Center of Scientific Research, 54500 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
11
|
Lv X, Pei K, Yang C, Qin G, Liu M, Zhang J, Che R. Controllable Topological Magnetic Transformations in the Thickness-Tunable van der Waals Ferromagnet Fe 5GeTe 2. ACS NANO 2022; 16:19319-19327. [PMID: 36349969 DOI: 10.1021/acsnano.2c08844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recent observations of topological meron textures in two-dimensional (2D) van der Waals (vdW) magnetic materials have attracted considerable research interest for both fundamental physics and spintronic applications. However, manipulating the meron textures and realizing the topological transformations, which allow for exploring emergent electromagnetic behaviors, remain largely unexplored in 2D magnets. In this work, utilizing real-space imaging and micromagnetic simulations, we reveal temperature- and thickness-dependent topological magnetic transformations among domain walls, meron textures, and stripe domain in Fe5GeTe2 (FGT) lamellae. The key mechanism of the magnetic transformations can be attributed to the temperature-induced change of exchange stiffness constant within layers and uniaxial magnetic anisotropy, while the magnetic dipole interaction as governed by sample thickness is crucial to affect the critical transformation temperature and stripe period. Our findings provide reliable insights into the origin and manipulation of topological spin textures in 2D vdW ferromagnets.
Collapse
Affiliation(s)
- Xiaowei Lv
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, School of Microelectronics, Fudan University, Shanghai200438, People's Republic of China
| | - Ke Pei
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, School of Microelectronics, Fudan University, Shanghai200438, People's Republic of China
| | - Chendi Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, School of Microelectronics, Fudan University, Shanghai200438, People's Republic of China
| | - Gang Qin
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, School of Microelectronics, Fudan University, Shanghai200438, People's Republic of China
| | - Min Liu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, School of Microelectronics, Fudan University, Shanghai200438, People's Republic of China
| | - Jincang Zhang
- Zhejiang Laboratory, Hangzhou311100, People's Republic of China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, School of Microelectronics, Fudan University, Shanghai200438, People's Republic of China
- Zhejiang Laboratory, Hangzhou311100, People's Republic of China
| |
Collapse
|
12
|
Liu K, Kang C, Tian J, Song Y, She L, Liu X, Zhang W. Canonical Spin Glass and the Anomalous Hall Effect in a Centrosymmetric Ferrimagnet. J Phys Chem Lett 2022; 13:10048-10055. [PMID: 36264631 DOI: 10.1021/acs.jpclett.2c02646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Centrosymmetric ferro/ferrimagnets provide an ideal arena for fundamental research due to their fascinating magnetic and structural characters. In this work, the Co0.8MnSn compound with a single hexagonal phase was successfully synthesized, and the magnetic phase transition and magnetic and electronic properties have been systematically investigated. Interestingly, Arrott plots and normalized magnetic entropy changes derived from the isothermal magnetizing curves may imply the first-order nature of the magnetic ordering transition around TC ∼ 121 K. The AC susceptibility analysis and detailed nonequilibrium dynamical studies (including magnetic aging, rejuvenation, and memory effects) reveal the canonical spin-glass state of Co0.8MnSn at lower temperature. Further, negative magnetoresistance and the anomalous Hall effect dominated by a commonly intrinsic term are obtained. Moreover, the field-dependent AC susceptibility data indicated that complicated and nontrivial magnetic spin textures should exist in the compound. These studies may open up further research opportunities in exploring emergent physical phenomena and potential applications in centrosymmetric magnets.
Collapse
Affiliation(s)
- Kai Liu
- Henan Key Lab of Photovoltaic Materials and Center for Topological Functional Materials, Henan University, Kaifeng475004, China
| | - Chaoyang Kang
- Henan Key Lab of Photovoltaic Materials and Center for Topological Functional Materials, Henan University, Kaifeng475004, China
| | - Jianjun Tian
- Henan Key Lab of Photovoltaic Materials and Center for Topological Functional Materials, Henan University, Kaifeng475004, China
| | - Yeheng Song
- Henan Key Lab of Photovoltaic Materials and Center for Topological Functional Materials, Henan University, Kaifeng475004, China
| | - Limin She
- Henan Key Lab of Photovoltaic Materials and Center for Topological Functional Materials, Henan University, Kaifeng475004, China
| | - Xiansheng Liu
- Henan Key Lab of Photovoltaic Materials and Center for Topological Functional Materials, Henan University, Kaifeng475004, China
| | - Weifeng Zhang
- Henan Key Lab of Photovoltaic Materials and Center for Topological Functional Materials, Henan University, Kaifeng475004, China
| |
Collapse
|
13
|
Zhang C, Liu C, Zhang S, Zhou B, Guan C, Ma Y, Algaidi H, Zheng D, Li Y, He X, Zhang J, Li P, Hou Z, Yin G, Liu K, Peng Y, Zhang XX. Magnetic Skyrmions with Unconventional Helicity Polarization in a Van Der Waals Ferromagnet. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204163. [PMID: 35975291 DOI: 10.1002/adma.202204163] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Skyrmion helicity, which defines the spin swirling direction, is a fundamental parameter that may be utilized to encode data bits in future memory devices. Generally, in centrosymmetric ferromagnets, dipole skyrmions with helicity of -π/2 and π/2 are degenerate in energy, leading to equal populations of both helicities. On the other hand, in chiral materials where the Dzyaloshinskii-Moriya interaction (DMI) prevails and the dipolar interaction is negligible, only a preferred helicity is selected by the type of DMI. However, whether there is a rigid boundary between these two regimes remains an open question. Herein, the observation of dipole skyrmions with unconventional helicity polarization in a van der Waals ferromagnet, Fe5- δ GeTe2 , is reported. Combining magnetometry, Lorentz transmission electron microscopy, electrical transport measurements, and micromagnetic simulations, the short-range superstructures in Fe5- δ GeTe2 resulting in a localized DMI contribution, which breaks the degeneracy of the opposite helicities and leads to the helicity polarization, is demonstrated. Therefore, the helicity feature in Fe5- δ GeTe2 is controlled by both the dipolar interaction and DMI that the former leads to Bloch-type skyrmions with helicity of ±π/2 whereas the latter breaks the helicity degeneracy. This work provides new insights into the skyrmion topology in van der Waals materials.
Collapse
Affiliation(s)
- Chenhui Zhang
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Chen Liu
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Senfu Zhang
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Bojian Zhou
- School of Materials and Energy and Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Chaoshuai Guan
- School of Materials and Energy and Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Yinchang Ma
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hanin Algaidi
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dongxing Zheng
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yan Li
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xin He
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Junwei Zhang
- School of Materials and Energy and Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Peng Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhipeng Hou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Gen Yin
- Physics Department, Georgetown University, Washington, DC, 20057, USA
| | - Kai Liu
- Physics Department, Georgetown University, Washington, DC, 20057, USA
| | - Yong Peng
- School of Materials and Energy and Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Xi-Xiang Zhang
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|