1
|
Wang Q, Qi Z, Xu H, Li X, Lei Y, Qu DH. Transient cucurbit[7]uril-mediated host-guest complexes for time-dependent fluorescence and information-self-erasing hydrogel. Chem Commun (Camb) 2024; 60:10342-10345. [PMID: 39212465 DOI: 10.1039/d4cc02531h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A non-equilibrium cucurbit[7]uril-mediated supramolecular host-guest system is fabricated by using urea/urease to control aqueous solution pH on time dimension, showing transient assembly behavior and time-dependent fluorescence. The dynamic assembly can be also achieved in hydrogel network, resulting in a time-dependent fluorescent hydrogel for information encryption.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhen Qi
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hanren Xu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xianghao Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yifan Lei
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
2
|
Li M, Yang Y, Liu R, Wang Y, Shao L, Hua B, Liu X, Huang F. Pillar[5]arene-Based Ion-Pair Recognition for Encapsulation of a Stilbazolium-Type Dye with Enhanced Photophysical Properties and Nonlinear Optical Activity. Chemistry 2024; 30:e202402345. [PMID: 38967353 DOI: 10.1002/chem.202402345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/06/2024]
Abstract
Constructing organic composite materials through molecular recognition has emerged as an important theme in materials science. Here we report an ion-pair recognition system involving the use of a propoxylated pillar[5]arene (PrP5) to modulate the solid-state photophysical properties of dye trans-4'-(dimethylamino)-N-methyl-4-stilbazolium hexafluorophosphate (DMASP). Single crystal X-ray diffraction analysis reveals that the dye guest DMASP is encapsulated by PrP5 to form a 2 : 1 host-guest complex 2PrP5⸧DMASP in the crystalline state. The macrocyclic skeleton of PrP5 imposes restrictions on the intramolecular motions of the dye guest, leading to a significant enhancement of its fluorescence emission. Additionally, within the 2PrP5⸧DMASP complex crystal structure, DMASP molecules are found to display two possible opposite orientations in the one-dimensional channels formed by PrP5 molecules. This arrangement is believed to alter the overall solid-state packing structure of DMASP, thereby activating its nonlinear optical activity. This work not only reports a novel ion-pair molecular recognition system based on pillararenes but also provides valuable insights into the modulation of the crystalline state photophysical properties of organic dyes via cocrystal engineering.
Collapse
Affiliation(s)
- Ming Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Yuting Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Rui Liu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Yanfang Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Li Shao
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Bin Hua
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Xiaofeng Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
3
|
Dong W, Zhang F, Li T, Zhong Y, Hong L, Shi Y, Jiang F, Zhu H, Lu M, Yao Q, Xu W, Wu Z, Bai X, Zhang Y. Triple-Phosphorescent Gold Nanoclusters Enabled by Isomerization of Terminal Thiouracils in the Surface Motifs. J Am Chem Soc 2024; 146:22180-22192. [PMID: 39087925 DOI: 10.1021/jacs.4c01291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Metal nanoclusters (NCs) hold great promise for expressing multipeak emission based on their well-defined total structure with diverse luminescent centers. Herein, we report the surface motif-dictated triple phosphorescence of Au NCs with dynamic color turning. The deprotonation-triggered isomerization of terminal thiouracils can evolve into a mutual transformation among their hierarchical motifs, thus serving a multipeak-emission expression with good tailoring. More importantly, the underlying electron transfer is thoroughly identified by excluding the radiative and nonradiative energy transfer, where electrons flow from the first phosphorescent state to the last two ones. The findings shed light on finely tailing motifs at the molecular level to motivate studies on customizable luminescence characteristics of metal NCs.
Collapse
Affiliation(s)
- Weinan Dong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Fujun Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Tingting Li
- College of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130012, China
| | - Yuan Zhong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Le Hong
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yujia Shi
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Feng Jiang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Haifeng Zhu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Min Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Qiaofeng Yao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Wenwu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
4
|
Zhang M, Peng X, Xu H, Sun X, Liu Y, Li Q, Ding Y, Ding S, Luo J, Xie J, Li J. Photoacoustic Imaging-Guided Self-Adaptive Hyperthermia Supramolecular Cascade Nano-Reactor for Diabetic Periodontal Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404143. [PMID: 38785180 PMCID: PMC11304269 DOI: 10.1002/advs.202404143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Commencing with the breakdown of the diabetic osteoimmune microenvironment, multiple pathogenic factors, including hyperglycemia, inflammation, hypoxia, and deleterious cytokines, are conjointly involved in the progression of diabetic periodontal bone regeneration. Based on the challenge of periodontal bone regeneration treatment and the absence of real-time feedback of blood oxygen fluctuation in diabetes mellitus, a novel self-adaptive hyperthermia supramolecular cascade nano-reactor ACFDG is constructed via one-step supramolecular self-assembly strategy to address multiple factors in diabetic periodontal bone regeneration. Hyperthermia supramolecular ACFDG possesses high photothermal conversion efficiency (32.1%), and it can effectively inhibit the vicious cycle of ROS-inflammatory cascade through catalytic cascade reactions, up-regulate the expression of heat shock proteins (HSPs) under near-infrared (NIR) irradiation, which promotes periodontal bone regeneration. Remarkably, ACFDG can provide real-time non-invasive diagnosis of blood oxygen changes during periodontal bone regeneration through photoacoustic (PA) imaging, thus can timely monitor periodontal hypoxia status. In conclusion, this multifunctional supramolecular nano-reactor combined with PA imaging for real-time efficacy monitoring provides important insights into the biological mechanisms of diabetic periodontal bone regeneration and potential clinical theranostics.
Collapse
Affiliation(s)
- Miao Zhang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xu Peng
- Experimental and Research Animal InstituteSichuan UniversityChengdu610065P. R. China
| | - Hong Xu
- Department of Orthopedic Surgery and Orthopedic Research InstitutionWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Xiaoning Sun
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Yizhu Liu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Qian Li
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Yuan Ding
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Shaopei Ding
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Jun Luo
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Jing Xie
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Jianshu Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
- Med‐X Center for MaterialsSichuan UniversityChengdu610041P. R. China
| |
Collapse
|
5
|
Wu Y, Wang Y, Yu X, Song Q. Comprehensive Study of Artificial Light-Harvesting Systems with a Multi-Step Sequential Energy Transfer Mechanism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404269. [PMID: 38874326 PMCID: PMC11336932 DOI: 10.1002/advs.202404269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Indexed: 06/15/2024]
Abstract
Artificial light-harvesting systems (LHSs) with a multi-step sequential energy transfer mechanism significantly enhance light energy utilization. Nonetheless, most of these systems exhibit an overall energy transfer efficiency below 80%. Moreover, due to challenges in molecularly aligning multiple donor/acceptor chromophores, systems featuring ≥3-step sequential energy transfer are rarely reported. Here, a series of artificial LHSs is introduced featuring up to 4-step energy transfer mechanism, constructed using a cyclic peptide-based supramolecular scaffold. These LHSs showed remarkably high energy transfer efficiencies (≥90%) and satisfactory fluorescence quantum yields (ranging from 17.6% to 58.4%). Furthermore, the structural robustness of the supramolecular scaffold enables a comprehensive study of these systems, elucidating the associated energy transfer pathways, and identifying additional energy transfer processes beyond the targeted sequential energy transfer. Overall, this comprehensive investigation not only enhances the understanding of these LHSs, but also underscores the versatility of cyclic peptide-based supramolecular scaffolds in advancing energy harvesting technologies.
Collapse
Affiliation(s)
- Yong Wu
- Shenzhen Grubbs InstituteSouthern University of Science and TechnologyShenzhen518055China
| | - Yuqian Wang
- Shenzhen Grubbs InstituteSouthern University of Science and TechnologyShenzhen518055China
| | - Xu Yu
- Institute of Innovation Materials and EnergyCollege of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002China
| | - Qiao Song
- Shenzhen Grubbs InstituteSouthern University of Science and TechnologyShenzhen518055China
- Guangming Advanced Research InstituteSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
6
|
Deng BY, Zhou ZR, Xu HL, Liao ZH, Tung CH, Wu LZ, Wang F. Surficial Host-Guest Responsive CsPbBr 3 Perovskite Nanocrystals for Programmable Multi-Level Information Encryption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311058. [PMID: 38351656 DOI: 10.1002/smll.202311058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/01/2024] [Indexed: 07/19/2024]
Abstract
The design of smart stimuli-responsive photoluminescent materials capable of multi-level encryption and complex information storage is highly sought after in the current information era. Here, a novel adamantyl-capped CsPbBr3 (AD-CsPbBr3) perovskite NCs, along with its supramolecular host-guest assembly partner a modified β-CD (mCD), mCD@AD-CsPbBr3, are designed and prepared. By dispersing these two materials in different solvents, namely, AD-CsPbBr3 in toluene, mCD@AD-CsPbBr3 in toluene, and mCD@AD-CsPbBr3 in methanol, the three solutions exhibit diverse photoluminescence (PL) turn-on/off or PL discoloration response upon supramolecular stimulus. Based on these responses, a proof-of-principle programmable Multi-Level Photoluminescence Encoding System (MPLES) is established. Three types of four-level and three types of three-level information encoding are achieved by the system. A layer-by-layer four-level information encryption and decryption as well as a two-level encrypted 3D code are successfully achieved.
Collapse
Affiliation(s)
- Bo-Yi Deng
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Guangdong Provincial Key Laboratory of Manufacturing Equipment Digitization, Guangdong HUST Industrial Technology Research Institute, Wuhan, 523808, P. R. China
| | - Zi-Rong Zhou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Guangdong Provincial Key Laboratory of Manufacturing Equipment Digitization, Guangdong HUST Industrial Technology Research Institute, Wuhan, 523808, P. R. China
| | - Hai-Long Xu
- Guangdong Provincial Key Laboratory of Manufacturing Equipment Digitization, Guangdong HUST Industrial Technology Research Institute, Wuhan, 523808, P. R. China
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Zi-Hao Liao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Guangdong Provincial Key Laboratory of Manufacturing Equipment Digitization, Guangdong HUST Industrial Technology Research Institute, Wuhan, 523808, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Feng Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Guangdong Provincial Key Laboratory of Manufacturing Equipment Digitization, Guangdong HUST Industrial Technology Research Institute, Wuhan, 523808, P. R. China
| |
Collapse
|
7
|
Trung NT, Chiu CH, Cuc TTK, Khang TM, Jalife S, Nhien PQ, Hue BTB, Wu JI, Li YK, Lin HC. Tunable Nano-Bending Structures of Loosened/Tightened Lassos with Bi-Stable Vibration-Induced Emissions for Multi-Manipulations of White-Light Emissions and Sensor Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311789. [PMID: 38240392 DOI: 10.1002/adma.202311789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/13/2024] [Indexed: 05/18/2024]
Abstract
The first tunable nano-bending structures of [1]rotaxane containing a single-fluorophoric N,N'-diphenyl-dihydrodibenzo[a,c]phenazine (DPAC) moiety (i.e., [1]RA) are developed as a loosened lasso structure to feature the bright white-light emission [CIE (0.27, 0.33), Φ = 21.2%] in THF solution, where bi-stable states of bending and twisted structures of DPAC unit in [1]RA produce cyan and orange emissions at 480 and 600 nm, respectively. With acid/base controls, tunable loosened/tightened nano-loops of corresponding [1]rotaxanes (i.e., [1]RA/[1]RB) can be achieved via the shuttling of macrocycles reversibly, and thus to adjust their respective white-light/cyan emissions, where the cyan emission of [1]RB is obtained due to the largest conformational constraint of DPAC moiety in its bending form of [1]RB with a tightened lasso structure. Additionally, the non-interlocked analog M-Boc only shows the orange emission, revealing the twisted form of DPAC fluorophore in M-Boc without any conformational constraint. Moreover, the utilization of solvents (with different viscosities and polarities), temperatures, and water fractions could serve as effective tools to adjust the bi-stable vibration-induced emission (VIE) colors of [1]rotaxanes. Finally, tuning ratiometric emission colors of adaptive conformations of DPAC moieties by altering nano-bending structures in [1]rotaxanes and external stimuli can be further developed as intelligent temperature and viscosity sensor materials.
Collapse
Affiliation(s)
- Nguyen Thanh Trung
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chun-Hao Chiu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Tu Thi Kim Cuc
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Trang Manh Khang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Said Jalife
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA
| | - Pham Quoc Nhien
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City, 94000, Vietnam
| | - Bui Thi Buu Hue
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City, 94000, Vietnam
| | - Judy I Wu
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA
| | - Yaw-Kuen Li
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Hong-Cheu Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| |
Collapse
|
8
|
Gu MJ, Han XN, Han Y, Chen CF. Strategies for Constructing Macrocyclic Arene-Based Color-Tunable Supramolecular Luminescent Materials. Chempluschem 2024; 89:e202400023. [PMID: 38288886 DOI: 10.1002/cplu.202400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Over the past decades, supramolecular luminescent materials (SLMs) have attracted considerable attention due to their dynamic noncovalent interactions, versatile functions, and intriguing applications in many research fields. From construction to application, great efforts and progress have been made in color-tunable SLMs in recent years. In order to realize multicolor luminescence, various design strategies have been proposed. Macrocyclic chemistry, one of the brightest jewels in the field of supramolecular chemistry, has played a crucial role in the construction of stimuli-responsive and emission-tunable SLMs. Moreover, the flexible and tunable conformation and multiple noncovalent complexation sites of the macrocyclic arenes (MAs) afford a new opportunity to create such dynamic smart luminescent materials. Inspired by our reported work on the color-tunable supramolecular crystalline assemblies modulated by the conformation of naphth[4]arene, this Concept provides a summary of the latest developments in the construction of color-tunable MA-based SLMs, accompanied by the various construction strategies. The aim is to provide researchers with a new perspective to construct color-tunable SLMs with fascinating functions.
Collapse
Affiliation(s)
- Meng-Jie Gu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 1, 00190, China
- University of Chinese Academy of Science, Beijing, 100084, China
| | - Xiao-Ni Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 1, 00190, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 1, 00190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 1, 00190, China
- University of Chinese Academy of Science, Beijing, 100084, China
| |
Collapse
|
9
|
Li L, Zhou J, Han J, Liu D, Qi M, Xu J, Yin G, Chen T. Finely manipulating room temperature phosphorescence by dynamic lanthanide coordination toward multi-level information security. Nat Commun 2024; 15:3846. [PMID: 38719819 PMCID: PMC11078970 DOI: 10.1038/s41467-024-47674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Room temperature phosphorescence materials have garnered significant attention due to their unique optical properties and promising applications. However, it remains a great challenge to finely manipulate phosphorescent properties to achieve desirable phosphorescent performance on demand. Here, we show a feasible strategy to finely manipulate organic phosphorescent performance by introducing dynamic lanthanide coordination. The organic phosphors of terpyridine phenylboronic acids possessing excellent coordination ability are covalently embedded into a polyvinyl alcohol matrix, leading to ultralong organic room temperature phosphorescence with a lifetime of up to 0.629 s. Notably, such phosphorescent performance, including intensity and lifetime, can be well controlled by varying the lanthanide dopant. Relying on the excellent modulable performance of these lanthanide-manipulated phosphorescence films, multi-level information encryption including attacker-misleading and spatial-time-resolved applications is successfully demonstrated with greatly improved security level. This work opens an avenue for finely manipulating phosphorescent properties to meet versatile uses in optical applications.
Collapse
Affiliation(s)
- Longqiang Li
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiayin Zhou
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyi Han
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Depeng Liu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Qi
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juanfang Xu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangqiang Yin
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tao Chen
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
10
|
Tang Y, Cai Y, Dou K, Chang J, Li W, Wang S, Sun M, Huang B, Liu X, Qiu J, Zhou L, Wu M, Zhang JC. Dynamic multicolor emissions of multimodal phosphors by Mn 2+ trace doping in self-activated CaGa 4O 7. Nat Commun 2024; 15:3209. [PMID: 38615033 PMCID: PMC11016074 DOI: 10.1038/s41467-024-47431-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/29/2024] [Indexed: 04/15/2024] Open
Abstract
The manipulation of excitation modes and resultant emission colors in luminescent materials holds pivotal importance for encrypting information in anti-counterfeiting applications. Despite considerable achievements in multimodal and multicolor luminescent materials, existing options generally suffer from static monocolor emission under fixed external stimulation, rendering them vulnerability to replication. Achieving dynamic multimodal luminescence within a single material presents a promising yet challenging solution. Here, we report the development of a phosphor exhibiting dynamic multicolor photoluminescence (PL) and photo-thermo-mechanically responsive multimodal emissions through the incorporation of trace Mn2+ ions into a self-activated CaGa4O7 host. The resulting phosphor offers adjustable emission-color changing rates, controllable via re-excitation intervals and photoexcitation powers. Additionally, it demonstrates temperature-induced color reversal and anti-thermal-quenched emission, alongside reproducible elastic mechanoluminescence (ML) characterized by high mechanical durability. Theoretical calculations elucidate electron transfer pathways dominated by intrinsic interstitial defects and vacancies for dynamic multicolor emission. Mn2+ dopants serve a dual role in stabilizing nearby defects and introducing additional defect levels, enabling flexible multi-responsive luminescence. This developed phosphor facilitates evolutionary color/pattern displays in both temporal and spatial dimensions using readily available tools, offering significant promise for dynamic anticounterfeiting displays and multimode sensing applications.
Collapse
Affiliation(s)
- Yiqian Tang
- College of Physics and Optoelectronic Engineering, Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of Education Ministry of China, and Key Laboratory of Optics and Optoelectronics of Qingdao, Ocean University of China, Qingdao, 266100, China
| | - Yiyu Cai
- College of Physics and Optoelectronic Engineering, Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of Education Ministry of China, and Key Laboratory of Optics and Optoelectronics of Qingdao, Ocean University of China, Qingdao, 266100, China
| | - Kunpeng Dou
- College of Physics and Optoelectronic Engineering, Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of Education Ministry of China, and Key Laboratory of Optics and Optoelectronics of Qingdao, Ocean University of China, Qingdao, 266100, China
| | - Jianqing Chang
- College of Physics and Optoelectronic Engineering, Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of Education Ministry of China, and Key Laboratory of Optics and Optoelectronics of Qingdao, Ocean University of China, Qingdao, 266100, China
| | - Wei Li
- College of Physics and Optoelectronic Engineering, Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of Education Ministry of China, and Key Laboratory of Optics and Optoelectronics of Qingdao, Ocean University of China, Qingdao, 266100, China
| | - Shanshan Wang
- College of Physics and Optoelectronic Engineering, Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of Education Ministry of China, and Key Laboratory of Optics and Optoelectronics of Qingdao, Ocean University of China, Qingdao, 266100, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| | - Xiaofeng Liu
- College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, 310027, China
| | - Jianrong Qiu
- College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, 310027, China
| | - Lei Zhou
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Mingmei Wu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Jun-Cheng Zhang
- College of Physics and Optoelectronic Engineering, Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266100, China.
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of Education Ministry of China, and Key Laboratory of Optics and Optoelectronics of Qingdao, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
11
|
Zhong K, Zhang Z, Cheng W, Liu G, Zhang X, Zhang J, Sun S, Wang B. Photodynamic O 2 Economizer Encapsulated with DNAzyme for Enhancing Mitochondrial Gene-Photodynamic Therapy. Adv Healthc Mater 2024; 13:e2302495. [PMID: 38056018 DOI: 10.1002/adhm.202302495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Emerging research suggests that mitochondrial DNA is a potential target for cancer treatment. However, achieving precise delivery of deoxyribozymes (DNAzymes) and combining photodynamic therapy (PDT) and DNAzyme-based gene silencing together for enhancing mitochondrial gene-photodynamic synergistic therapy remains challenging. Accordingly, herein, intelligent supramolecular nanomicelles are constructed by encapsulating a DNAzyme into a photodynamic O2 economizer for mitochondrial NO gas-enhanced synergistic gene-photodynamic therapy. The designed nanomicelles demonstrate sensitive acid- and red-light sequence-activated behaviors. After entering the cancer cells and targeting the mitochondria, these micelles will disintegrate and release the DNAzyme and Mn (II) porphyrin in the tumor microenvironment. Mn (II) porphyrin acts as a DNAzyme cofactor to activate the DNAzyme for the cleavage reaction. Subsequently, the NO-carrying donor is decomposed under red light irradiation to generate NO that inhibits cellular respiration, facilitating the conversion of more O2 into singlet oxygen (1 O2 ) in the tumor cells, thereby significantly enhancing the efficacy of PDT. In vitro and in vivo experiments reveal that the proposed system can efficiently target mitochondria and exhibits considerable antitumor effects with negligible systemic toxicity. Thus, this study provides a useful conditional platform for the precise delivery of DNAzymes and a novel strategy for activatable NO gas-enhanced mitochondrial gene-photodynamic therapy.
Collapse
Affiliation(s)
- Kaipeng Zhong
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
- College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, 810008, China
| | - Zefan Zhang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wenyuan Cheng
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, 730030, P. R. China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou University Second Hospital, Lanzhou, 730030, P. R. China
| | - Xuan Zhang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, 730030, P. R. China
| | - Shihao Sun
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
12
|
Dai XY, Song Q, Zhou WL, Liu Y. Cucurbit[8]uril Confinement-Based Secondary Coassembly for High-Efficiency Phosphorescence Energy Transfer Behavior. JACS AU 2024; 4:216-227. [PMID: 38274263 PMCID: PMC10806769 DOI: 10.1021/jacsau.3c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/27/2024]
Abstract
Aqueous supramolecular long-lived near-infrared (NIR) material is highly attractive but still remains great challenge. Herein, we report cucurbit[8]uril confinement-based secondary coassembly for achieving NIR phosphorescence energy transfer in water, which is fabricated from dicationic dodecyl-chain-bridged 4-(4-bromophenyl)-pyridine derivative (G), cucurbit[8]uril (CB[8]), and polyelectrolyte poly(4-styrene-sulfonic sodium) (PSS) via the hierarchical confinement strategy. As compared to the dumbbell-shaped G, the formation of unprecedented linear polypseudorotaxane G⊂CB[8] with nanofiber morphology engenders an emerging phosphorescent emission at 510 nm due to the macrocyclic confinement effect. Moreover, benefiting from the following secondary assembly confinement, such tight polypseudorotaxane G⊂CB[8] can further assemble with anionic polyelectrolyte PSS to yield uniform spherical nanoparticle, thereby significantly strengthening phosphorescence performance with an extended lifetime (i.e., 2.39 ms, c.f., 45.0 μs). Subsequently, the organic dye Rhodamine 800 serving as energy acceptor can be slightly doped into the polyelectrolyte assembly, which enables the occurrence of efficient phosphorescence energy transfer process with efficiency up to 80.1% at a high donor/acceptor ratio, and concurrently endows the final system with red-shifted and long-lived NIR emission (710 nm). Ultimately, the as-prepared assembly is successfully exploited as versatile imaging agent for NIR window labeling and detecting in living cells.
Collapse
Affiliation(s)
- Xian-Yin Dai
- School
of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical
Sciences, Taian, Shandong 271016, P. R. China
| | - Qi Song
- School
of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical
Sciences, Taian, Shandong 271016, P. R. China
| | - Wei-Lei Zhou
- College
of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College
of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
13
|
Yang Z, Liu H, Zhang X, Lv Y, Fu Z, Zhao S, Liu M, Zhang ST, Yang B. Photo-Responsive Dynamic Organic Room-Temperature Phosphorescence Materials Based on a Functional Unit Combination Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306784. [PMID: 37781967 DOI: 10.1002/adma.202306784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/19/2023] [Indexed: 10/03/2023]
Abstract
A rational molecular design strategy facilitates the development of a purely organic room-temperature phosphorescence (RTP) material system with precisely regulated luminescence properties, which surely promotes its functional integration and intelligent application. Here, a functional unit combination strategy is proposed to design novel RTP molecules combining a folding unit with diverse luminescent cores. The different luminescent cores are mainly responsible for tunable RTP properties, while the folding unit contributes to the spin-orbit coupling (SOC) enhancement, which makes the RTP material design as workable as the building block principle. By this strategy, a series of color/lifetime-tunable RTP materials is achieved with unique photo-responsive RTP enhancement when subjected to UV irradiation, which expands their application scenarios in reusable privacy tags, advanced "4D" encryption, and phase separation analysis of blended polymers. This work suggests a simple and effective strategy to design purely organic RTP materials with tunable color and lifetime, and also provides new application options for photo-responsive dynamic RTP materials.
Collapse
Affiliation(s)
- Zhiqiang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Xiangyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Yingbo Lv
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Zhiyuan Fu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Shuaiqiang Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Meng Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| |
Collapse
|
14
|
Zhang R, Chen Y, Liu Y. Light-Driven Reversible Multicolor Supramolecular Shuttle. Angew Chem Int Ed Engl 2023; 62:e202315749. [PMID: 37971202 DOI: 10.1002/anie.202315749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Light-driven multicolor supramolecular systems mainly rely on the doping of dyes or a photo-reaction to produce unidirectional luminescence. Herein, we use visible light to drive the bidirectional reversible multicolor supramolecular shuttle from blue to green, white, yellow, up to orange by simple encapsulation of spiropyran-modified cyanostilbene (BCNMC) by the macrocyclic cucurbit[8]uril (CB[8]) monomer. The resultant host-guest complex displayed enhanced fluorescence properties, i.e. the multicolor fluorescence shuttle changed from blue to orange in the dark within 2 hours and reverted to the original state upon visible light irradiation for 30 s. Benefiting from the sensitivity of the spiropyran moiety to light, it can spontaneously isomerize from the ring-opened state to a ring-closed isomer in aqueous solution, and this photo-isomerization reaction is a reversible process under visible light irradiation, leading to the multicolor luminescence supramolecular shuttle as a result of intramolecular energy transfer. In addition, the light also drove the reversible conversion of the topological morphology of the host-guest complex from two-dimensional nanoplatelets to nanospheres. Different from the widely reported molecular rotaxane "shuttle", the spiropyran supramolecular shuttle confined in the macrocyclic host CB[8] not only modulated a reversible topological morphology by light but also exhibited multicolor luminescence, which was successfully applied in programmed and rewritable information encryption.
Collapse
Affiliation(s)
- Rong Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, P. R. China
| |
Collapse
|
15
|
Xu L, Hu Y, Zhao D, Zhang W, Wang H. A Versatile Assembly Approach toward Multifunctional Supramolecular Poly(Ionic Liquid) Nanoporous Membranes in Water. Macromol Rapid Commun 2023; 44:e2300189. [PMID: 37248809 DOI: 10.1002/marc.202300189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Indexed: 05/31/2023]
Abstract
Hydrogen (H)-bonding-integration of multiple ingredients into supramolecular polyelectrolyte nanoporous membranes in water, thereby achieving tailor-made porous architectures, properties, and functionalities, remains one of the foremost challenges in materials chemistry due to the significantly opposing action of water molecules against H-bonding. Herein, a strategy is described that allows direct fusing of the functional attributes of small additives into water-involved hydrogen bonding assembled supramolecular poly(ionic liquid) (PIL) nanoporous membranes (SPILMs) under ambient conditions. It discloses that the pore size distributions and mechanical properties of SPILMs are rationally controlled by tuning the H-bonding interactions between small additives and homo-PIL. It demonstrates that, benefiting from the synergy of multiple noncovalent interactions, small dye additives/homo-PIL solutions can be utilized as versatile inks for yielding colorful light emitting films with robust underwater adhesion strength, excellent stretchability, and flexibility on diverse substrates, including both hydrophilic and hydrophobic surfaces. This system provides a general platform for integrating the functional attributes of a diverse variety of additives into SPILMs to create multifunctional and programmable materials in water.
Collapse
Affiliation(s)
- Luyao Xu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yingyi Hu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hong Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
16
|
Ren YY, Deng BY, Liao ZH, Zhou ZR, Tung CH, Wu LZ, Wang F. A Smart Single-Fluorophore Polymer: Self-Assembly Shapechromic Multicolor Fluorescence and Erasable Ink. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307971. [PMID: 37743568 DOI: 10.1002/adma.202307971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/19/2023] [Indexed: 09/26/2023]
Abstract
A novel smart fluorescent polymer polyethyleneimine-grafted pyrene (PGP) is developed by incorporating four stimuli-triggers at molecular level. The triggers are amphiphilicity, supramolecular host-guest sites, pyrene fluorescence indicator, and reversible chelation sites. PGP exhibits smart deformation and shape-dependent fluorescence in response to external stimuli. It can deform into three typical shapes with a characteristic fluorescence color, namely, spherical core-shell micelles of cyan-green fluorescence, standard rectangular nanosheets of yellow fluorescence, and irregular branches of deep-blue fluorescence. A quasi-reversible deformation between the first two shapes can be dynamically manipulated. Moreover, driven by reversible coordination and the resulting intramolecular photoinduced electron transfer, PGP can be used as an aqueous fluorescence ink with erasable and recoverable properties. The fluorescent patterns printed by PGP ink on paper can be rapidly erased and recovered by simple spraying a sequence of Cu2+ and ethylene diamine tetraacetic acid aqueous solutions. This erase/recover transformation can be repeated multiple times on the same paper. The multiple stimulus responsiveness of PGP makes it have potential applications in nanorobots, sensing, information encryption, and anticounterfeiting.
Collapse
Affiliation(s)
- Ying-Yi Ren
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Bo-Yi Deng
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zi-Hao Liao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zi-Rong Zhou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Feng Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
17
|
Chauhan V, Dixit P, Pandey PK, Chaturvedi S, Pandey PC. Emission color tuning and dual-mode luminescence thermometry design in Dy 3+/Eu 3+co-doped SrMoO 4phosphors. Methods Appl Fluoresc 2023; 12:015002. [PMID: 37703890 DOI: 10.1088/2050-6120/acf97b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
The challenge of building a highly reliable contactless temperature probe with high sensitivity, good temperature-induced color discriminability, and economical synthesis has prompted the research community to work in the field of rare-earth-based luminescence thermometry. Moreover, the fast-growing market for optoelectronic devices has increased the demand for tunable color-emitting phosphors. In this study, Dy3+/Eu3+co-doped SrMoO4phosphors were developed as tunable color-emitting source and dual-mode luminescence thermometer. A facile and cost-effective auto-combustion method was used to synthesize the phosphors. Our work demonstrates a viable scheme for tailoring the emission of single-phase phosphors by precisely controlling the dopant concentrations and by modulating excitation wavelength. The overall emission is tuned from greenish-yellow to white and greenish-yellow to reddish-orange. A detailed energy transfer process from the host to the Ln3+ions and between the Ln3+ions is discussed. Further, anti-thermal quenching in the emission of Dy3+ion is observed when excited with 297 nm. The dual-mode luminescence thermometry has been studied by analyzing the fluorescence intensity ratio of Dy3+and Eu3+ions upon excitation at 297 nm. The maximum relative sensitivity value for 4% Eu3+co-doped SrMoO4:4%Dy3+phosphor is 1.46% K-1at 300 K. Furthermore, the configurational coordinate diagram is presented to elucidate the nature of temperature-dependent emission. Therefore, our research opens up new avenues for the development of color-tunable luminescent materials for various optoelectronic and temperature-sensing applications.
Collapse
Affiliation(s)
- Vaibhav Chauhan
- Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, U.P., India
| | - Prashant Dixit
- Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, U.P., India
- Department of Basic Science and Humanities, Maharana Pratap Engineering College (Affiliated to Abdul Kalam Technical University, Lucknow), Kanpur, U.P., India
| | - Prashant Kumar Pandey
- Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, U.P., India
| | - Satyam Chaturvedi
- Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, U.P., India
| | - Praveen C Pandey
- Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, U.P., India
| |
Collapse
|
18
|
Gao Y, Cong R, Yang T. Color-tunable emissions realized by Tb 3+ to Eu 3+ energy transfer in ZnGdB 5O 10 under near-UV excitation. Dalton Trans 2023; 52:12332-12340. [PMID: 37591820 DOI: 10.1039/d3dt01959d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Photoluminescent (PL) energy transfer (ET) between two typical rare earth activators Tb3+ and Eu3+ is utilized to achieve color-tunable emission and the color range is apparently dependent on the ET efficiency. In the target host ZnGdB5O10 (ZGBO), the relatively low symmetric coordination environment of the rare earth cation not only suppresses the parity-forbidden law of the 4f-4f transitions of Tb3+ in the near-UV region, but also enhances the internal quantum efficiency (IQE), where the optimal IQE is 65.61% for ZGBO:0.8Tb3+. Moreover, its ET to Eu3+ is highly efficient, i.e. 94.71% in ZGBO:0.8Tb3+,0.10Eu3+, which eventually leads to a wide range of color-tunable emissions from green (0.2915, 0.5915) to red (0.6207, 0.3731). The systematic PL spectral study on Tb3+/Eu3+ singly doped and co-doped phosphors suggests that the ET mechanism takes place through the electric dipole-dipole interaction according to the Inokuti-Hirayama (I-H) model. Additionally, the in situ high temperature PL spectra indicate the very high thermal stability of ZnGd0.19Tb0.8Eu0.01B5O10, indicating that it can be a potential candidate for near-UV light emitting diode-pumped phosphors.
Collapse
Affiliation(s)
- Yan Gao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China.
| | - Rihong Cong
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China.
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, People's Republic of China
| | - Tao Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China.
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, People's Republic of China
| |
Collapse
|
19
|
Wu Y, Sun D, Han X, Zhao Z, Liang F, Liu S. Synthesis of Naphthalimide Derivatives and Their Luminescence upon Complexation with Cucurbit[ n]uril Hosts. J Org Chem 2023; 88:12376-12384. [PMID: 37610314 DOI: 10.1021/acs.joc.3c01111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
A series of naphthalimide derivatives are synthesized and their binding behavior upon complexation with cucurbit[n]urils (CB[n]s) has been investigated. With a heavy atom (bromine) on the naphthalimide core, 4-bromo-1,8-naphthalimide derivatives 1-4 show short room-temperature phosphorescence (RTP) lifetimes with low quantum yields. Their RTP properties are significantly enhanced in the presence of CB[8] or CB[10] both in aqueous solution and solid state owing to the efficient suppression of nonradiative decay and isolation of quenching factors by the rigid cavity of CB[n]. Without the bromine atom, 1,8-naphthalimide derivatives 5 and 6 show strong excimer emission upon complexation with CB[10] accompanied by fluorescence transition from blue to cyan. The fluorescence colors of 4-(dimethylamino)-1,8-naphthalimide derivatives 7 and 8 change from blue to white to yellow with the addition of CB[n]. This host-guest complexation strategy to modulate the luminescence of the luminophore would further broaden the application of luminescent materials.
Collapse
Affiliation(s)
- Yong Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Dongdong Sun
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xie Han
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Zhiyong Zhao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Feng Liang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Simin Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
20
|
Liu Y, Liu G, Wu Y, Cai W, Wang Y, Zhang S, Zeng H, Li X. High-Temperature, Reversible, and Robust Thermochromic Fluorescence Based on Rb 2 MnBr 4 (H 2 O) 2 for Anti-Counterfeiting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301914. [PMID: 37171937 DOI: 10.1002/adma.202301914] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/08/2023] [Indexed: 05/14/2023]
Abstract
Thermochromic fluorescent materials (TFMs) characterized by noticeable emission color variation with temperature have attracted pervasive attention for their frontier application in stimulus-response and optical encryption technologies. However, existing TFMs typically suffer from weak PL reversibility as well as limited mild operating temperature and severe temperature PL quenching. PL switching under extreme conditions such as high temperature will undoubtedly improve encryption security, while it is still challenging for present TFMs. In this work, high-temperature thermochromic fluorescence up to 473 K and robust structural and optical reversibility of 80 cycles are observed in Rb2 MnBr4 (H2 O)2 and related crystals, which is seldom reported for PL changes at such a high temperature. Temperature-driven nonluminous, red and green light emission states can be achieved at specific temperatures and the modulation mechanism is verified by in situ optical and structural measurements and single particle transition. By virtue of this unique feature, a multicolor anti-counterfeiting label based on a broad temperature gradient and multidimensional information encryption applications are demonstrated. This work opens a window for the design of inorganic materials with multi-PL change and the development of advanced encryption strategies with extreme stimuli source.
Collapse
Affiliation(s)
- Yang Liu
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Gaoyu Liu
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ye Wu
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenbing Cai
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yue Wang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shengli Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiaoming Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
21
|
Liyana Gunawardana VW, Ward C, Wang H, Holbrook JH, Sekera ER, Cui H, Hummon AB, Badjić JD. Crystalline Nanoparticles of Water-Soluble Covalent Basket Cages (CBCs) for Encapsulation of Anticancer Drugs. Angew Chem Int Ed Engl 2023; 62:e202306722. [PMID: 37332078 PMCID: PMC10528532 DOI: 10.1002/anie.202306722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
We herein describe the preparation, assembly, recognition characteristics, and biocompatibility of novel covalent basket cage CBC-11, composed of four molecular baskets linked to four trivalent aromatic amines through amide groups. The cage is tetrahedral in shape and similar in size to small proteins (Mw =8637 g/mol) with a spacious nonpolar interior for accommodating multiple guests. While 24 carboxylates at the outer surface of CBC-11 render it soluble in aqueous phosphate buffer (PBS) at pH=7.0, the amphiphilic nature prompts its assembly into nanoparticles (d=250 nm, DLS). Cryo-TEM examination of nanoparticles revealed their crystalline nature with wafer-like shapes and hexagonally arranged cages. Nanoparticulate CBC-11 traps anticancer drugs irinotecan and doxorubicin, with each cage binding up to four drug molecules in a non-cooperative manner. The inclusion complexation resulted in nanoparticles growing in size and precipitating. In media containing mammalian cells (HCT 116, human colon carcinoma), the IC50 value of CBC-11 was above 100 μM. While this work presents the first example of a large covalent organic cage operating in water at the physiological pH and forming crystalline nanoparticles, it also demonstrates its biocompatibility and potential to act as a polyvalent binder of drugs for their sequestration or delivery.
Collapse
Affiliation(s)
| | - Carson Ward
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Maryland Hall 221, 3400 North Charles Street, Baltimore, MD, USA
| | - Joseph H Holbrook
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Emily R Sekera
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Maryland Hall 221, 3400 North Charles Street, Baltimore, MD, USA
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Jovica D Badjić
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Wan Y, Wang D, Li B, Liu Y, Zhu L, Wan Y, Li Q, Yin H, Shi Y. Turning enol* emission of SBOH via restricting twisted intramolecular charge transfer behavior by pressure. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122551. [PMID: 36878138 DOI: 10.1016/j.saa.2023.122551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Stimuli-responsive luminogens with aggregation-induced emission and excited state intramolecular proton transfer (ESIPT) properties have applications in storage devices, anti-counterfeiting, imaging, and sensors. Nevertheless, group rotation appears in twisted intramolecular charge transfer (TICT) state, resulting in decreased fluorescence intensity. Inhibiting TICT remains a challenge based on their intrinsic molecular configuration. Herein, we present a simple facile pressure-induced method to restrict the TICT behavior. Steady-state spectroscopy measurement shows that fluorescence enhancement and color shifts can be achieved under high pressure. Combined with in situ high-pressure ultrafast spectroscopy and theoretical calculations, the TICT behavior was restricted in two aspects. The ESIPT process was damaged, hence more particles stored in the E* state, and transferred to the TICT state hardly. Also, the rotation of (E)-dimethyl5-((4-(diethylamino)-2-hydroxybenzylidene)amino)isophthalate (SBOH) was restricted, significantly increasing the fluorescence intensity. This approach provides a new strategy for the development of stimulus-responsive materials.
Collapse
Affiliation(s)
- Yongfeng Wan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Dongwei Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Bo Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yuliang Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Lixia Zhu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yu Wan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Qi Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Hang Yin
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
23
|
Yu D, Zhuo S, Wang J, Liu Z, Ye J, Wang Y, Chen L, Ouyang X, Zhang KQ, Zhou XQ, Guan J, Liu Y, Chen W, Liao LS, Zhuo MP. Thermochromic Ni(II) Organometallics With High Optical Transparency and Low Phase-Transition Temperature for Energy-Saving Smart Windows. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205833. [PMID: 36876447 DOI: 10.1002/smll.202205833] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/15/2023] [Indexed: 06/02/2023]
Abstract
Thermochromic smart windows with rational modulation in indoor temperature and brightness draw considerable interest in reducing building energy consumption, which remains a huge challenge to meet the comfortable responsive temperature and the wide transmittance modulation range from visible to near-infrared (NIR) light for their practical application. Herein, a novel thermochromic Ni(II) organometallic of [(C2 H5 )2 NH2 ]2 NiCl4 for smart windows is rationally designed and synthesized via an inexpensive mechanochemistry method, which processes a low phase-transition temperature of 46.3 °C for the reversible color evolution from transparent to blue with a tunable visible transmittance from 90.5% to 72.1%. Furthermore, cesium tungsten bronze (CWO) and antimony tin oxide (ATO) with excellent NIR absorption in 750-1500 and 1500-2600 nm are introduced in the [(C2 H5 )2 NH2 ]2 NiCl4 -based smart windows, realizing a broadband sunlight modulation of a 27% visible light modulation and more than 90% of NIR shielding ability. Impressively, these smart windows demonstrate stable and reversible thermochromic cycles at room temperature. Compared with the conventional windows in the field tests, these smart windows can significantly reduce the indoor temperature by 16.1 °C, which is promising for next-generation energy-saving buildings.
Collapse
Affiliation(s)
- Danxia Yu
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
| | - Sheng Zhuo
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
| | - Jia Wang
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
| | - Zheng Liu
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
| | - Jianyong Ye
- Jiangxi Sun-Nano Advanced Materials Technology Co. Ltd. , Ganzhou, 341000, China
| | - Yue Wang
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Long Chen
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
| | - Xingxing Ouyang
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Xiao-Qing Zhou
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
| | - Jinping Guan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Yue Liu
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
- Rare Earth Research Institute, Nanchang University, Nanchang, 330031, China
| | - Weifan Chen
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Sun-Nano Advanced Materials Technology Co. Ltd. , Ganzhou, 341000, China
- Rare Earth Research Institute, Nanchang University, Nanchang, 330031, China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University, Suzhou, 215123, China
| | - Ming-Peng Zhuo
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University, Suzhou, 215123, China
| |
Collapse
|
24
|
Li Y, Li N, Li G, Qiao Y, Zhang M, Zhang L, Guo QH, He G. The Green Box: Selenoviologen-Based Tetracationic Cyclophane for Electrochromism, Host-Guest Interactions, and Visible-Light Photocatalysis. J Am Chem Soc 2023; 145:9118-9128. [PMID: 37015020 DOI: 10.1021/jacs.3c00800] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
The novel selenoviologen-based tetracationic cyclophanes (green boxes 3 and 5) with rigid electron-deficient cavities are synthesized via SN2 reactions in two steps. The green boxes exhibit good redox properties, narrow energy gaps, and strong absorption in the visible range (370-470 nm), especially for the green box 5 containing two selenoviologen (SeV2+) units. Meanwhile, the femtosecond transient absorption (fs-TA) reveals that the green boxes have a stabilized dicationic biradical, high efficiency of intramolecular charge transfer (ICT), and long-lived charge separation state due to the formation of cyclophane structure. Based on the excellent photophysical and redox properties, the green boxes are applied to electrochromic devices (ECDs) and visible-light-driven hydrogen production with a high H2 generation rate (34 μmol/h), turnover number (203), and apparent quantum yield (5.33 × 10-2). In addition, the host-guest recognitions are demonstrated between the green boxes and electron-rich guests (e.g., G1:1-naphthol and G2:platinum(II)-tethered naphthalene) in MeCN through C-H···π and π···π interactions. As a one-component system, the host-guest complexes of green box⊃G2 are successfully applied to visible-light photocatalytic hydrogen production due to the intramolecular electron transfer (IET) between platinum(II) of G2 and SeV2+ of the green box, which provides a simplified system for solar energy conversion.
Collapse
Affiliation(s)
- Yawen Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Naiyao Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Guoping Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Yi Qiao
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Mingming Zhang
- School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Lei Zhang
- School of Optoelectronic Engineering, Xidian University, Xi'an, Shaanxi Province 710126, P. R. China
| | - Qing-Hui Guo
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Gang He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
- School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| |
Collapse
|
25
|
Hao S, Yang C, Yang X, Li T, Ma L, Jiao Y, Song H. Highly Tough, Stretchable, and Recyclable Ionogels with Crosslink-Enhanced Emission Characteristics for Anti-Counterfeiting and Motion Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16132-16143. [PMID: 36921264 DOI: 10.1021/acsami.3c02352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Traditional luminescent ionogels often suffer from poor mechanical properties and a lack of recyclability and regeneration, which limits their further application and sustainable development. Herein, a luminescent ionogel with strong mechanical properties and good recyclability has been designed and fabricated by introducing dynamic coordination bonds via in situ one-step crosslinking of acrylic acid in ionic liquid of 1-ethyl-3-methylimidazolium diethylphosphate by zinc dimethacrylate. Due to the special crosslinking of dynamic coordination bonds along with the hydrogen bond interaction, the as-prepared ionogel displays excellent stretchability and toughness, good self-adhesiveness, fast self-healability, and recyclability. Interestingly, the obtained ionogels exhibit tunable photoluminescence caused by the crosslink-enhanced emission (CEE) effect from the coordination bonds. Importantly, ionogels can be applied in information storage, information encryption, anti-counterfeiting due to their simple and in situ preparation method, and their special fluorescence performances. Moreover, an ionogel-based wearable sensor has rapid response time and a high gauge factor of 3.22 within a wide strain range from 1 to 700%, which can monitor various human movements accurately from subtle to large-scale motions. This paper offers a promising way to fabricate sustainable functional ionic liquid-based composites with CEE characteristics via an in situ one-step polymerization method.
Collapse
Affiliation(s)
- Shuai Hao
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Chen Yang
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Xuemeng Yang
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Tianci Li
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Lianhua Ma
- College of Quality and Technical Supervision, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Yunhong Jiao
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Hongzan Song
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| |
Collapse
|
26
|
Wei J, Zhao L, Zhang Y, Han G, He C, Wang C, Duan C. Enzyme Grafting with a Cofactor-Decorated Metal-Organic Capsule for Solar-to-Chemical Conversion. J Am Chem Soc 2023; 145:6719-6729. [PMID: 36916689 DOI: 10.1021/jacs.2c12636] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Semi-artificial approaches to solar-to-chemical conversion can achieve chemical transformations that are beyond the capability of natural enzymes, but face marked challenges to facilitate in vivo cascades, due to their inevitable need for cofactor shuttling and regeneration. Here, we report on an enzyme grafting strategy to build a metal-organic capsule-docking artificial enzyme (metal-organic-enzyme, MOE) that comprised the self-assembly of a cofactor-decorated capsule and the supramolecular enzyme-recognition features between the enzyme scaffold and the capsule to bypass cofactor shuttling and regeneration. The incorporated NADH mimics within the metal-organic capsule interacted with the imine intermediate that formed from the condensation of the amines and the dehydrogenation of alcohol substrates in the microenvironment to form complexes within the capsule and subsequently served as an in situ-generated photoresponsive cofactor. Upon illumination, the photoresponsive cofactor facilitates efficient proton/electron transport between the inner space (supramolecular hydrogenation) and outer space (enzymatic dehydrogenation) of the capsule to dehydrogenize the alcohols and hydrogenize the imine intermediates, respectively, circumventing the conventionally complex multistep cofactor shuttling and regeneration. The semi-artificial enzyme endows the conversion of diverse types of alcohol to amine products in both aqueous/organic solutions and Escherichia coli with high efficiency, offering a wide range of opportunities for sustainable and environmentally friendly biomanufacturing of commodity and fine chemicals.
Collapse
Affiliation(s)
- Jianwei Wei
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yu Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chong Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
27
|
Wu Q, Lei Q, Zhong HC, Ren TB, Sun Y, Zhang XB, Yuan L. Fluorophore-based host-guest assembly complexes for imaging and therapy. Chem Commun (Camb) 2023; 59:3024-3039. [PMID: 36785939 DOI: 10.1039/d2cc06286k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently, supramolecular chemistry with its unique properties has received considerable attention in many fields. Supramolecular fluorescent systems constructed on the basis of macrocyclic hosts are not only effective in overcoming the limitations of imaging and diagnostic reagents, but also in enhancing their performances. This paper summarizes the recent advances in supramolecular fluorescent systems based on host-guest interactions and their application in bioimaging and therapy as well as the challenges and prospects in developing novel supramolecular fluorescent systems.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Qian Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Hai-Chen Zhong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
28
|
Khang TM, Nhien PQ, Cuc TTK, Weng CC, Wu CH, Wu JI, Hue BTB, Li YK, Lin HC. Dual and Sequential Locked/Unlocked Photochromic Effects on FRET Controlled Singlet Oxygen Processes by Contracted/Extended Forms of Diarylethene-Based [1]Rotaxane Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205597. [PMID: 36504441 DOI: 10.1002/smll.202205597] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Manipulations of singlet oxygen (1 O2 ) generations by the integration of both aggregation-induced emission luminogen (AIEgen) photosensitizer and photochromic moieties have diversified features in photodynamic therapy applications. Through Förster resonance energy transfer (FRET) pathway to induce red PL emissions (at 595 nm) for 1 O2 productions, [1]rotaxane containing photosensitive tetraphenylethylene (TPE) donor and photochromic diarylethene (DAE) acceptor is introduced to achieve dual and sequential locked/unlocked photoswitching effects by pH-controlled shuttling of its contracted/extended forms. Interestingly, the UV-enabled DAE ring closure speeds follow the reversed trend of DAE self-constraint degree as: contracted < extended < noninterlocked forms in [1]rotaxane analogues, thus FRET processes can be adjusted in contracted/extended forms of [1]rotaxane upon UV irradiations. Accordingly, the contracted form of [1]rotaxane is FRET-OFF locked and inert to UV exposure due to the larger bending conformation of DAE parallel (p-)conformer, compared with its extended and noninterlocked analogues possessing switchable FRET-OFF/ON behaviors activated by dual and sequential pH- and photoswitching. Owing to the advantages of 1 O2 productions tuned by multistimuli inputs (pH, UV, and blue light), an useful logic circuit for toxicity outputs of the surface modified [1]rotaxane nanoparticles (NPs) has been demonstrated to offer promising 1 O2 productions and managements based on mechanically interlocked molecules for future bioapplications.
Collapse
Affiliation(s)
- Trang Manh Khang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Pham Quoc Nhien
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City, 94000, Viet Nam
| | - Tu Thi Kim Cuc
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chang-Ching Weng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chia-Hua Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Judy I Wu
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA
| | - Bui Thi Buu Hue
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City, 94000, Viet Nam
| | - Yaw-Kuen Li
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Hong-Cheu Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| |
Collapse
|
29
|
Xu F, Feringa BL. Photoresponsive Supramolecular Polymers: From Light-Controlled Small Molecules to Smart Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204413. [PMID: 36239270 DOI: 10.1002/adma.202204413] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Photoresponsive supramolecular polymers are well-organized assemblies based on highly oriented and reversible noncovalent interactions containing photosensitive molecules as (co-)monomers. They have attracted increasing interest in smart materials and dynamic systems with precisely controllable functions, such as light-driven soft actuators, photoresponsive fluorescent anticounterfeiting and light-triggered electronic devices. The present review discusses light-activated molecules used in photoresponsive supramolecular polymers with their main photo-induced changes, e.g., geometry, dipole moment, and chirality. Based on these distinct changes, supramolecular polymers formed by light-activated molecules exhibit photoresponsive disassembly and reassembly. As a consequence, photo-induced supramolecular polymerization, "depolymerization," and regulation of the lengths and topologies are observed. Moreover, the light-controlled functions of supramolecular polymers, such as actuation, emission, and chirality transfer along length scales, are highlighted. Furthermore, a perspective on challenges and future opportunities is presented. Besides the challenge of moving from harmful UV light to visible/near IR light avoiding fatigue, and enabling biomedical applications, future opportunities include light-controlled supramolecular actuators with helical motion, light-modulated information transmission, optically recyclable materials, and multi-stimuli-responsive supramolecular systems.
Collapse
Affiliation(s)
- Fan Xu
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| |
Collapse
|
30
|
Xiao T, Tang L, Ren D, Diao K, Li ZY, Sun XQ. Fluorescent Nanoassemblies in Water Exhibiting Tunable LCST Behavior and Responsive Light Harvesting Ability. Chemistry 2023; 29:e202203463. [PMID: 36428221 DOI: 10.1002/chem.202203463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Responsive fluorescent nanomaterials have been received considerable attention in recent years. In this work, a bola-type amphiphilic molecule, CSO, was synthesized which contains a hydrophobic cyanostilbene core and hydrophilic oligo(ethylene glycol) (OEG) coils at both sides. The cyanostilbene group is aggregation-induced emission (AIE) active, while the OEG coils are thermo-responsive. As a result, the CSO molecules can self-assemble into blue-fluorescent nanoassemblies with lower critical solution temperature (LCST) behavior in aqueous media. It is noteworthy that the LCST behavior can be reversibly regulated with changes in concentration and the introduction of K+ . Intriguingly, fluorescence of CSO assembly shows a blue-shift upon heating. Finally, by employing CSO as a light capturing antenna and energy donor, an artificial light harvesting system with tunable emission and thermo-responsive characteristics was fabricated. This study not only demonstrates an integrated approach to create responsive fluorescent nanomaterials, but also shows great potential for producing luminescent materials and mimicking photosynthesis in nature.
Collapse
Affiliation(s)
- Tangxin Xiao
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Lu Tang
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Dongxing Ren
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Kai Diao
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Zheng-Yi Li
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Xiao-Qiang Sun
- Institute of Urban & Rural Mining, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
31
|
Wang Y, Wu H, Jones LO, Mosquera MA, Stern CL, Schatz GC, Stoddart JF. Color-Tunable Upconversion-Emission Switch Based on Cocrystal-to-Cocrystal Transformation. J Am Chem Soc 2023; 145:1855-1865. [PMID: 36642916 DOI: 10.1021/jacs.2c11425] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cocrystal engineering, involving the assembly of two or more components into a highly ordered solid-state superstructure, has emerged as a popular strategy for tuning the photophysical properties of crystalline materials. The reversible co-assembly and disassembly of multicomponent cocrystals and their reciprocal transformation in the solid state remain challenging objectives. Herein, we report a color-tunable upconversion-emission switch based on the interconversion between two cocrystals. One red- and one yellow-emissive cocrystal, composed of an electron-deficient naphthalenediimide-based triangular macrocycle and different electron donors, have been obtained. The red- and yellow-emissive cocrystals undergo reversible transformations on exchanging the electron donors. Benefiting from intermolecular charge transfer interactions, the two cocrystals display superior two-photon excited upconversion emission. Accompanying the interconversion of the two cocrystals, their luminescent color changes between red and yellow, forming a dual-color upconversion-emission switch. This research provides a rare yet critical example involving precise control of cocrystal-to-cocrystal transformation and affords a reference for fabricating color-tunable nonlinear optical materials in the solid state.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Martín A Mosquera
- Department of Chemistry and Biochemistry, Montana State University, 103 Chemistry and Biochemistry Building, Bozeman, Montana 59717, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
32
|
Nakai T, Shima K, Shoji S, Fushimi K, Hasegawa Y, Kitagawa Y. Characteristic stacked structures and luminescent properties of dinuclear lanthanide complexes with pyrene units. Front Chem 2023; 11:1154012. [PMID: 37123879 PMCID: PMC10140548 DOI: 10.3389/fchem.2023.1154012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
A novel design strategy of stacked organic fluorophores using dinuclear lanthanide (Ln(III)) complexes is demonstrated for the formation of excimer. The dinuclear Ln(III) complexes are composed of two Ln(III) (Eu(III) or Gd(III)) ions, six hexafluoroacetylacetonate (hfa), and two pyrene-based phosphine oxide ligands. Single-crystal analysis revealed a rigid pyrene-stacked structure via CH-F (pyrene/hfa) intramolecular interactions. The rigid aggregation structures of the two-typed organic ligands around Ln(III) resulted in high thermal stability (decomposition temperature: 340°C). The aggregated ligands exhibited excimer-type green emission from the stacked pyrene-center. The change in the Ln(III) ion promotes effective shifts of excimer emissions (Gd(III):500 nm, Eu(III):490 nm). The organic aggregation system using red-luminescent Eu(III) also provides temperature-sensitive ratiometric emission composed of π-π* and 4f-4f transitions by energy migration between aggregated ligands and Eu(III).
Collapse
Affiliation(s)
- Takuma Nakai
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kaori Shima
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sunao Shoji
- Faculty of Engineering, Sapporo, Hokkaido, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Koji Fushimi
- Faculty of Engineering, Sapporo, Hokkaido, Japan
| | - Yasuchika Hasegawa
- Faculty of Engineering, Sapporo, Hokkaido, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, Japan
- *Correspondence: Yasuchika Hasegawa, ; Yuichi Kitagawa,
| | - Yuichi Kitagawa
- Faculty of Engineering, Sapporo, Hokkaido, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, Japan
- *Correspondence: Yasuchika Hasegawa, ; Yuichi Kitagawa,
| |
Collapse
|
33
|
Zong Z, Zhang Q, Qu DH. Dynamic Timing Control of Molecular Photoluminescent Systems. Chemistry 2022; 28:e202202462. [PMID: 36045479 DOI: 10.1002/chem.202202462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 12/13/2022]
Abstract
Dynamic control of molecular photoluminescence offers chemical solutions to designing functional emissive materials. Although stimuli-switchable molecular luminescent systems are well established, how to encode these dynamic emissive systems with a "timing" feature, that is, time-dependent luminescent properties, remains challenging. This Concept aims to summarize the design principles of dynamic timing molecular photoluminescent systems by discussing the state-of-the-art of this topic and the shaping of fabrication strategies at both the molecular and supramolecular levels. An outlook and perspectives are given to outline the future opportunities and challenges in the rational design and potential applications of these smart emissive systems.
Collapse
Affiliation(s)
- Zezhou Zong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
34
|
Xue ZY, Yu JL, Xia QQ, Zhu YQ, Wu MX, Liu X, Wang XH. Color-Tunable Binary Copolymers Manipulated by Intramolecular Aggregation and Hydrogen Bonding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53359-53369. [PMID: 36383092 DOI: 10.1021/acsami.2c17600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Construction of color-tunable luminescent polymeric materials with enhanced emission intensity and room-temperature phosphorescence (RTP) performance regulated by a single chromophore component is highly desirable in the scope of photoluminescent materials. Herein, a set of binary copolymers were facilely synthesized using free radical polymerization by selecting different types of polymer matrix and N-substituted naphthalimides (NPA) as chromophores. Surprisingly, the fluorescence emission of copolymers could be remarkably enhanced, because of the intramolecular aggregation of NPA manipulated by a single polymer chain in both solution and solid state. Moreover, RTP signals of binary copolymers were all clearly observed in the air without any processing procedure, because of the embedding of phosphors into hydrogen bonding networks after copolymerization with vinyl-based acrylamide monomers. Taking advantages of the synergistic effect of copolymerization-induced aggregation and copolymerization-induced rigidification to promote optical performance, UV stimulus-responsive luminescent polymer films with processability, flexibility, and adjustable emission wavelength were simply prepared using a drop-casting method in large scale, the setting of which is the basis for application in the fields of organic optoelectronics, information security, and bioimaging/sensing.
Collapse
Affiliation(s)
- Zhi-Yuan Xue
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Jia-Lin Yu
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Qing-Qing Xia
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Yu-Qi Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Ming-Xue Wu
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Xiaomin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Xing-Huo Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| |
Collapse
|
35
|
Yamada S, Kobayashi K, Konno T. Development of Yellow-to-Orange Photoluminescence Molecules Based on Alterations in the Donor Units of Fluorinated Tolanes. Molecules 2022; 27:molecules27185782. [PMID: 36144519 PMCID: PMC9504459 DOI: 10.3390/molecules27185782] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Since the aggregation-induced emission (AIE) phenomenon was first reported by Tang et al., much effort has been devoted to the development of solid-state luminescent molecules by chemists worldwide. Our group successfully developed fluorinated tolanes as novel compact π-conjugated luminophores with blue photoluminescence (PL) in the crystalline state. Moreover, we reported the yellow-green PL molecules based on their electron-density distributions. In the present study, we designed and synthesized fluorinated tolanes with various amine-based donors and evaluated their photophysical properties. The carbazole-substituted fluorinated tolane exhibited strong PL in the solution state, whereas piperidine- or phenothiazine-substituted fluorinated tolanes showed a dramatic decrease in PL efficiency. Notably, fluorinated tolanes with piperidine or phenothiazine substituents displayed yellow-to-orange PL in the crystalline state; this may have occurred because these tolanes exhibited tightly packed structures formed by intermolecular interactions, such as H···F hydrogen bonds, which suppressed the non-radiative deactivation process. Moreover, fluorinated tolanes with amine-based donors exhibited AIE characteristics. We believe that these yellow-to-orange solid PL molecules can contribute to the development of new solid luminescent materials.
Collapse
|
36
|
Feng Q, Yang T, Ma L, Li X, Yuan H, Zhang M, Zhang Y, Fan L. Morpholine-Functionalized Multicomponent Metallacage as a Vector for Lysosome-Targeted Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38594-38603. [PMID: 35981928 DOI: 10.1021/acsami.2c11662] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metallacages with suitable cavities and specific functions are promising delivery vectors in biological systems. Herein, we report a morpholine-functionalized metallacage for lysosome-targeted cell imaging. The efficient host-guest interactions between the metallacage and dyes prevent them from aggregation, so their emission in aqueous solutions is well maintained. The fluorescence quantum yield of these host-guest complexes reaches 74.40%. Therefore, the metallacage is further employed as a vector to deliver dyes with different emission colors (blue, green, and red) into lysosomes for targeted imaging. This research affords a type of vector for the delivery of various cargos toward biological applications, which will enrich the usage of metallacages in biomedical engineering.
Collapse
Affiliation(s)
- Qian Feng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Lingzhi Ma
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Lihong Fan
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| |
Collapse
|
37
|
A dynamic assembly-induced emissive system for advanced information encryption with time-dependent security. Nat Commun 2022; 13:4185. [PMID: 35858917 PMCID: PMC9300691 DOI: 10.1038/s41467-022-31978-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 07/13/2022] [Indexed: 12/15/2022] Open
Abstract
The development of advanced materials for information encryption with time-dependent features is essential to meet the increasing demand on encryption security. Herein, smart materials with orthogonal and temporal encryption properties are successfully developed based on a dynamic assembly-induced multicolour supramolecular system. Multicolour fluorescence, including blue, orange and even white light emissions, is achieved by controlling the supramolecular assembly of pyrene derivatives by tailoring the solvent composition. By taking advantage of the tuneable fluorescence, dynamically controlled information encryption materials with orthogonal encryption functions, e.g., 3D codes, are successfully developed. Moreover, time-dependent information encryption materials, such as temporal multi-information displays and 4D codes, are also developed by enabling the fluorescence-controllable supramolecular system in the solid phase, showing multiple pieces of information on a time scale, and the correct information can be identified only at a specified time. This work provides an inspiring point for the design of information encryption materials with higher security requirements.
Collapse
|
38
|
Mu B, Zhang Z, Hao X, Ma T, Tian W. Positional Isomerism-Mediated Copolymerization Realizing the Continuous Luminescence Color-Tuning of Liquid-Crystalline Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Mu
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhelin Zhang
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xiangnan Hao
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Tianshu Ma
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wei Tian
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
39
|
Influence of molecular packing on the color-tunable emissive behavior of viologen derivatives. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
40
|
Xiao T, Ren D, Diao K, Wang J, Li ZY, Sun XQ, Wang L. Self-assembled Fluorescent Nanoparticles with Tunable LCST Behavior in Water. Chem Asian J 2022; 17:e202200386. [PMID: 35581147 DOI: 10.1002/asia.202200386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Indexed: 11/06/2022]
Abstract
The development of stimuli-responsive fluorescent materials in water based on organic molecule has drawn significant interest. Herein, we designed and synthesized an amphiphilic molecule M containing a fixed tetraphenylethylene moiety (FTPE) as hydrophobic part and tri(ethylene glycol) (TEG) chains as hydrophilic part. Notably, the FTPE moiety is aggregation-induced emission (AIE) active, while the TEG chains are thermo-responsive. M can self-assemble into fluorescent nanoparticles (NPs) in water, which showed lower critical solution temperature (LCST) behavior. Moreover, its clouding point can be reversibly tuned upon the concentration variation. Interestingly, the NPs can be acted as a fluorescence thermometer in aqueous media owing to their unique AIE and LCST behaviors. Our work herein not only provides an integration strategy to construct stimuli-responsive fluorescent materials but also shows great potential in biological applications including bioimaging and biosensors.
Collapse
Affiliation(s)
- Tangxin Xiao
- Changzhou University, School of Petrochemical Engineering, CHINA
| | - Dongxing Ren
- Changzhou University, School of Petrochemical Engineering, CHINA
| | - Kai Diao
- Changzhou University, School of Petrochemical Engineering, CHINA
| | - Jie Wang
- Changzhou University, School of Petrochemical Engineering, CHINA
| | - Zheng-Yi Li
- Changzhou University, School of Petrochemical Engineering, CHINA
| | - Xiao-Qiang Sun
- Changzhou University, School of Petrochemical Engineering, CHINA
| | - Leyong Wang
- Nanjing University, School of Chemistry and Chemical Engineering, 163 Xianlin Avenue, 210023, Nanjing, CHINA
| |
Collapse
|
41
|
Zhou HY, Zhang DW, Li M, Chen CF. A Calix[3]acridan-Based Host-Guest Cocrystal Exhibiting Efficient Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2022; 61:e202117872. [PMID: 35146858 DOI: 10.1002/anie.202117872] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 02/06/2023]
Abstract
A supramolecular strategy to construct thermally activated delayed fluorescence (TADF) materials through host-guest charge transfer interactions was proposed. Consequently, a new class of macrocycle namely calix[3]acridan was conveniently synthesized in 90 % yield. The host-guest cocrystal formed by calix[3]acridan and 1,2-dicyanobenzene exhibited efficient TADF properties due to intense intermolecular charge transfer interactions. Moreover, the spatially separated highest occupied molecular orbital and lowest unoccupied molecular orbital resulted in a very small singlet-triplet energy gap of 0.014 eV and hence guaranteed an efficient reverse intersystem crossing for TADF. Especially, a high photoluminescence quantum yield of 70 % was achieved, and it represents the highest value among the reported intermolecular donor-acceptor TADF materials.
Collapse
Affiliation(s)
- He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da-Wei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
42
|
Tao Y, Liu C, Xiang Y, Wang Z, Xue X, Li P, Li H, Xie G, Huang W, Chen R. Resonance-Induced Stimuli-Responsive Capacity Modulation of Organic Ultralong Room Temperature Phosphorescence. J Am Chem Soc 2022; 144:6946-6953. [PMID: 35316606 DOI: 10.1021/jacs.2c01669] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic ultralong room temperature phosphorescence (OURTP) materials having stimuli-responsive attributes have attracted great attention due to their great potential in a wide variety of advanced applications. It is of fundamental importance but challengeable to develop stimuli-responsive OURTP materials, especially such materials with modulated optoelectronic properties in a controlled manner probably due to the lack of an authentic construction approach. Here, we propose an effective strategy for OURTP materials with controllably regulated stimuli-responsive properties by engineering the resonance linkage between flexible chain and phosphor units. A quantitative parameter to demonstrate the stimuli-responsive capacity is also established by the responsivity rate constant. The designed OURTP materials demonstrate efficient photoactivated OURTP with lifetimes up to 724 ms and tunable responsivity rate constants ranging from 0.132 to 0.308 min-1 upon continuous UV irradiation. Moreover, the applications of stimuli-responsive resonance OURTP materials have been illustrated by the rewritable paper for snapshot and Morse code for multiple information encryption. Our works, which enable the accomplishment of OURTP materials capable of on-demand manipulated optical properties, demonstrate a viable design to explore smart OURTP materials, giving deep insights into the dynamically stimuli-responsive process.
Collapse
Affiliation(s)
- Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Chang Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yuan Xiang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zijie Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xudong Xue
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ping Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Huanhuan Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Gaozhan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.,Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, Shanxi, China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
43
|
Zong Z, Zhang Q, Qiu SH, Wang Q, Zhao C, Zhao CX, Tian H, Qu DH. Dynamic Timing Control over Multicolor Molecular Emission by Temporal Chemical Locking. Angew Chem Int Ed Engl 2022; 61:e202116414. [PMID: 35072333 DOI: 10.1002/anie.202116414] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 12/15/2022]
Abstract
Dynamic control over molecular emission, especially in a time-dependent manner, holds great promise for the development of smart luminescent materials. Here we report a series of dynamic multicolor fluorescent systems based on the time-encoded locking and unlocking of individual vibrational emissive units. The intramolecular cyclization reaction driven by adding chemical fuel acts as a chemical lock to decrease the conformational freedom of the emissive units, thus varying the fluorescence wavelength, while the resulting chemically locked state can be automatically unlocked by the hydrolysis reaction with water molecules. The dynamic molecular system can be driven by adding chemical fuels for multiple times. The emission wavelength and lifetime of the locking states can be readily controlled by elaborating the molecular structures, indicating this strategy as a robust and versatile way to modulate multi-color molecular emission in a time-encoded manner.
Collapse
Affiliation(s)
- Zezhou Zong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Shu-Hai Qiu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qian Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chengxi Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Cai-Xin Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
44
|
Wang XY, Lv L, Sun L, Hou Y, Hou Z, Chen Z. Recent Advances in Mechanochromism of Metal-Organic Compounds. Front Chem 2022; 10:865198. [PMID: 35308787 PMCID: PMC8931262 DOI: 10.3389/fchem.2022.865198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Smart luminescent materials, which can respond to the changing of external environment (light, electricity, force, temperature, etc.), have always been one of the research hotspots. Mechanochromism refers to the materials whose emission color or intensity can be altered under the stimulation of external mechanical force. This kind of smart materials have been widely used in data storage, information encryption and sensors due to its simple operation, obvious and rapid response. The introduction of metal atoms in metal-organic compounds brings about fascinating metalophilic interactions and results in more interesting and surprising mechanochromic behaviors. In this mini-review, recent advances in mechanochromism of metal-organic compounds, including mono-, di-, multinuclear metal-organic complexes and metallic clusters are summarized. Varies mechanisms are discussed and some design strategies for metal-organic compounds with mechanochromism are also presented.
Collapse
Affiliation(s)
- Xiao-Yan Wang
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Liqiang Lv
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Li Sun
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Yue Hou
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Zhenghao Hou
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Zhao Chen
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
45
|
Zhou HY, Zhang DW, Li M, Chen CF. A Calix[3]acridan‐Based Host−Guest Cocrystal Exhibiting Efficient Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- He-Ye Zhou
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function CHINA
| | - Da-Wei Zhang
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function CHINA
| | - Meng Li
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function CHINA
| | - Chuan-Feng Chen
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function Zhongguancun North First Street 2 100190 Beijing CHINA
| |
Collapse
|
46
|
Zong Z, Zhang Q, Qiu SH, Wang Q, Zhao C, Zhao CX, Tian H, Qu DH. Dynamic timing control over multicolor molecular emission by temporal chemical locking. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zezhou Zong
- East China University of Science and Technology School of Chemistry and Molecular Engineering Key Laboratory for Advanced Materials Meilong Road 130 200237 Shanghai CHINA
| | - Qi Zhang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Key Labs for Advanced Materials Meilong Road 130 200237 Shanghai CHINA
| | - Shu-Hai Qiu
- East China University of Science and Technology School of Chemistry and Molecular Engineering Key Labs for Advanced Materials Meilong Road 130 200237 Shanghai CHINA
| | - Qian Wang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Key Labs for Advanced Materials Meilong Road 130 200237 Shanghai CHINA
| | - Chengxi Zhao
- East China University of Science and Technology School of Chemistry and Molecular Engineering Key Laboratory for Advanced Materials Meilong Road 130 200237 Shanghai CHINA
| | - Cai-Xin Zhao
- East China University of Science and Technology School of Chemistry and Molecular Engineering Key Labs for Advanced Materials Meilong Road 130 200237 Shanghai CHINA
| | - He Tian
- East China University of Science and Technology School of Chemistry and Molecular Engineering Key Labs for Advanced Materials Meilong Road 130 200237 Shanghai CHINA
| | - Da-Hui Qu
- Key Labs for Advanced Materials Institute of Fine Chemicals, East China University of Science and Technology Meilong Road 130 200237 Shanghai CHINA
| |
Collapse
|
47
|
Akai R, Oka K, Nishida R, Tohnai N. Systematic arrangement control of functional organic molecules. CrystEngComm 2022. [DOI: 10.1039/d2ce00336h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systematic and precise arrangement control of functional organic molecules without changing both their molecular and layered structure was established.
Collapse
Affiliation(s)
- Ryota Akai
- Department of Applied Chemistry and Center for Future Innovation (CFi), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kouki Oka
- Department of Applied Chemistry and Center for Future Innovation (CFi), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryunosuke Nishida
- Department of Applied Chemistry and Center for Future Innovation (CFi), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry and Center for Future Innovation (CFi), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
48
|
Zhou HY, Zhang DW, Han XN, Han Y, Chen CF. A novel thermally activated delayed fluorescence macrocycle. Chem Commun (Camb) 2022; 58:12180-12183. [DOI: 10.1039/d2cc04618k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel luminescent macrocycle was conveniently synthesized, which exhibited flexible conformations and excellent thermally activated delayed fluorescence properties.
Collapse
Affiliation(s)
- He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da-Wei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Ni Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|