1
|
Jiang Y, Chen K, He J, Sun Y, Zhang X, Yang X, Xie H, Liu J. A self-healing composite solid electrolyte with dynamic three-dimensional inorganic/organic hybrid network for flexible all-solid-state lithium metal batteries. J Colloid Interface Sci 2025; 678:200-209. [PMID: 39293364 DOI: 10.1016/j.jcis.2024.09.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/14/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Composite solid electrolytes (CSEs), which combine the advantages of solid polymer electrolytes and inorganic solid electrolytes, are considered to be promising electrolytes for all-solid-state lithium metal batteries. However, the current CSEs suffer from defects such as poor inorganic/organic interface compatibility, lithium dendrite growth, and easy damage of electrolyte membrane, which hinder the practical application of CSEs. Herein, a CSE (PBHL@LLZTO@DDB) with polyurethane (PBHL) as the polymer matrix and Li6.4La3Zr1.4Ta0.6O12 (LLZTO) modified by silane coupling agent (DDB) as inorganic fillers (LLZTO@DDB) has been prepared. Disulfide bond exchange reactions between PBHL and LLZTO@DDB enable PBHL@LLZTO@DDB to form a dynamic three-dimensional (3D) inorganic/organic hybrid network, which promotes the uniform dispersion of LLZTO in PBHL@LLZTO@DDB, improves the Li+ conductivity (1.24 ± 0.08 × 10-4 S cm-1 at 30 ℃), and broadens the electrochemical stability window (5.16 V vs. Li+/Li). Moreover, a combination of hydrogen bonds and disulfide bonds endows PBHL@LLZTO@DDB with excellent self-healing properties. As such, both all-solid-state symmetric and full cells exhibit excellent cycle performance at ambient temperature. More importantly, the healed PBHL@LLZTO@DDB can almost completely restore its original electrochemical properties, indicating its application potential in flexible electronic products.
Collapse
Affiliation(s)
- Ying Jiang
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Kai Chen
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jinping He
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yuxue Sun
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaorong Zhang
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaoxing Yang
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Haiming Xie
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Jun Liu
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
2
|
Lang J, Liu Y, Liu Q, Yang J, Yang X, Tang Y. Regulation of Interfacial Chemistry Enabling High-Power Dual-Ion Batteries at Low Temperatures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401200. [PMID: 38984748 DOI: 10.1002/smll.202401200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Interfacial chemistry plays a crucial role in determining the electrochemical properties of low-temperature rechargeable batteries. Although existing interface engineering has significantly improved the capacity of rechargeable batteries operating at low temperatures, challenges such as sharp voltage drops and poor high-rate discharge capabilities continue to limit their applications in extreme environments. In this study, an energy-level-adaptive design strategy for electrolytes to regulate interfacial chemistry in low-temperature Li||graphite dual-ion batteries (DIBs) is proposed. This strategy enables the construction of robust interphases with superior ion-transfer kinetics. On the graphite cathode, the design endues the cathode interface with solvent/anion-coupled interfacial chemistry, which yields an nitrogen/phosphor/sulfur/fluorin (N/P/S/F)-containing organic-rich interphase to boost anion-transfer kinetics and maintains excellent interfacial stability. On the Li metal anode, the anion-derived interfacial chemistry promotes the formation of an inorganic-dominant LiF-rich interphase, which effectively suppresses Li dendrite growth and improves the Li plating/stripping kinetics at low temperatures. Consequently, the DIBs can operate within a wide temperature range, spanning from -40 to 45 °C. At -40 °C, the DIB exhibits exceptional performance, delivering 97.4% of its room-temperature capacity at 1 C and displaying an extraordinarily high-rate discharge capability with 62.3% capacity retention at 10 C. This study demonstrates a feasible strategy for the development of high-power and low-temperature rechargeable batteries.
Collapse
Affiliation(s)
- Jihui Lang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, China
| | - Yuhan Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, China
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qirong Liu
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Juan Yang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Xinyu Yang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- College of Material Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
3
|
Liu F, Wang J, Chen W, Yuan M, Wang Q, Ke R, Zhang G, Chang J, Wang C, Deng Y, Wang J, Shao M. Polymer-Ion Interaction Prompted Quasi-Solid Electrolyte for Room-Temperature High-Performance Lithium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409838. [PMID: 39268782 DOI: 10.1002/adma.202409838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Lithium-ion batteries using quasi-solid gel electrolytes (QSEs) have gained increasing interest due to their enhanced safety features. However, their commercial viability is hindered by low ionic conductivity and poor solid-solid contact interfaces. In this study, a QSE synthesized by in situ polymerizing methyl methacrylate (MMA) in 1,2-dimethoxyethane (DME)-based electrolyte is introduced, which exhibits remarkable performance in high-loading graphite||LiNi0.8Co0.1Mn0.1O2 (NCM811) pouch cells. Owing to the unique solvent-lacking solvation structure, the graphite exfoliation caused by the well-known solvent co-intercalation is prohibited, and this unprecedented phenomenon is found to be universal for other graphite-unfriendly solvents. The high ionic conductivity and great interfacial contact provided by DME enable the quasi-solid graphite||NCM811 pouch cell to demonstrate superior C-rate capability even at a high cathode mass loading (17.5 mg cm-2), surpassing liquid carbonate electrolyte cells. Meanwhile, the optimized QSE based on carbonates exhibits excellent cycle life (92.4% capacity retention after 1700 cycles at 0.5C/0.5C) and reliable safety under harsh conditions. It also outperforms liquid electrolytes in other high-energy-density batteries with larger volume change. These findings elucidate the polymer's pivotal role in QSEs, offering new insights for advancing quasi-solid-state battery commercialization.
Collapse
Affiliation(s)
- Fangzheng Liu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Department of Materials Science & Engineering, School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiayi Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Wenyan Chen
- Department of Materials Science & Engineering, School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingman Yuan
- Department of Materials Science & Engineering, School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qingrong Wang
- Department of Materials Science & Engineering, School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ruohong Ke
- Advanced Materials Thrust, The Hong Kong University of Science and Technology, Guangzhou, 511400, China
| | - Guangzhao Zhang
- Department of Materials Science & Engineering, School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian Chang
- Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences Great Bay University, Dongguan, 523000, China
| | - Chaoyang Wang
- Research Institute of Materials Science, South China University of Technology, Guangzhou, 510640, China
| | - Yonghong Deng
- Department of Materials Science & Engineering, School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jun Wang
- Department of Materials Science & Engineering, School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- CIAC-HKUST Joint Laboratory for Hydrogen Energy, Energy Institute, The Hong Kong University of Science and Technology, Clear Watery Bay, Hong Kong, Kowloon, 999077, China
- Guangzhou Key Laboratory of Electrochemical Energy Storage Technologies, Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
| |
Collapse
|
4
|
Han X, Jiang H, Mu P, Zhang W, Zhang H, Xu G, Chen Z, Han P, Cui G. Helmholtz Plane Regulation Empowers PF 6 - Permselectivity Towards High Coulombic Efficiency Dual Ion Battery of 5.5 V. Angew Chem Int Ed Engl 2024:e202412753. [PMID: 39234796 DOI: 10.1002/anie.202412753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
High-voltage dual ion battery (DIB) is promising for stationary energy storage applications owing to its cost-effectiveness, which has been a hot topic of research in rechargeable battery fields. However, it still suffers from rapid battery failure caused by the severe solvent co-intercalation and electrolyte oxidation. To address these bottlenecks, herein a functional electrolyte additive hexafluoroglutaric anhydride (HFGA) is presented based on a Helmholtz plane regulation strategy. It is demonstrated that the HFGA can precisely enter into the Helmholtz plane and positively regulate anion solvation behaviors near the graphite electrode surface owing to its considerable H-F affinity with ethyl methyl carbonate (EMC), thus alleviating EMC-related co-intercalation and oxidation decomposition during DIB charging. Meanwhile, HFGA can copolymerize with the presence of PF5 at the Helmholtz plane to participate in forming a CF2-rich CEI layer with excellent PF6 - permselectivity, conducive to achieving PF6 - de-solvation and simultaneously suppressing electrolyte oxidation decomposition. By virtue of such beneficial effects, the graphite cathode enables a 5.5 V DIB with a prominent capacity retention of 92 % and a high average Coulombic efficiency exceeding 99 % within 2000 cycles at 5 C, demonstrating significantly enhanced electrochemical reversibility. The Helmholtz plane regulation strategy marks a milestone in advancing DIB technologies.
Collapse
Affiliation(s)
- Xiaoqi Han
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao, 266101, P. R.China
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R.China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R.China
| | - Hongzhu Jiang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao, 266101, P. R.China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R.China
| | - Pengzhou Mu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao, 266101, P. R.China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R.China
| | - Wenjun Zhang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao, 266101, P. R.China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R.China
| | - Huanrui Zhang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao, 266101, P. R.China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R.China
| | - Gaojie Xu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao, 266101, P. R.China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R.China
| | - Zheng Chen
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao, 266101, P. R.China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R.China
| | - Pengxian Han
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao, 266101, P. R.China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R.China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao, 266101, P. R.China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R.China
| |
Collapse
|
5
|
He Y, Chen Z, Zhang Y. Strategies for improving cathode electrolyte interphase in high-performance dual-ion batteries. iScience 2024; 27:110491. [PMID: 39171291 PMCID: PMC11338147 DOI: 10.1016/j.isci.2024.110491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Dual-ion batteries (DIBs) offer high energy density due to the ability to intercalate both anions and cations, thereby increasing the cutoff voltage and battery capacity. Graphite, with its ordered layered structure and cost-effectiveness, is commonly employed as the cathode material for DIBs. However, the discharge capacity of graphite cathodes is relatively low, and their cycling stability is poor, limiting the practical applications of DIBs. The formation of cathode electrolyte interphase (CEI) on the graphite cathode surface is closely related to anion behavior. Constructing a stable cathode electrolyte interface is crucial for improving the stability of anion storage. Therefore, we introduce a series of strategies to enhance the quality of the CEI layer, including additives, binders, main salts or solvents, high-concentration electrolytes, doping elements, artificial CEI, and graphite surface modifications. These strategies improve the CEI by enhancing anion transport rates, increasing anion solvation capabilities, and improving the structural stability of graphite cathodes, which is of profound significance for increasing the capacity and stability of DIBs. This review provides inspiration for future CEI research, encouraging further exploration of resources of CEI components and improvement strategies to further promote the development of DIBs technology.
Collapse
Affiliation(s)
- Yitao He
- Department of New Energy Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma’anshan, Anhui, China
- Department of Thin Films and Nanostructures, FZU – Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague 6, Czech Republic
| | - Zhipeng Chen
- Department of New Energy Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma’anshan, Anhui, China
| | - Yaohui Zhang
- School of Physics, Harbin Institute of Technology, No. 92 Xidazhi Street, Harbin, Heilongjiang 150001, China
| |
Collapse
|
6
|
Yang J, Shang J, Liu Q, Yang X, Tan Y, Zhao Y, Liu C, Tang Y. Variant-Localized High-Concentration Electrolyte without Phase Separation for Low-Temperature Batteries. Angew Chem Int Ed Engl 2024; 63:e202406182. [PMID: 38806444 DOI: 10.1002/anie.202406182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
Dual-ion batteries (DIBs) present great application potential in low-temperature energy storage scenarios due to their unique dual-ion working mechanism. However, at low temperatures, the insufficient electrochemical oxidation stability of electrolytes and depressed interfacial compatibility impair the DIB performance. Here, we design a variant-localized high-concentration solvation structure for universal low-temperature electrolytes (ν-LHCE) without the phase separation via introducing an extremely weak-solvating solvent with low energy levels. The unique solvation structure gives the ν-LHCE enhanced electrochemical oxidation stability. Meanwhile, the extremely weak-solvating solvent can competitively participate in the Li+-solvated coordination, which improves the Li+ transfer kinetics and boosts the formation of robust interphases. Thus, the ν-LHCE electrolyte not only has a good high-voltage stability of >5.5 V and proper Li+ transference number of 0.51 but also shows high ionic conductivities of 1 mS/cm at low temperatures. Consequently, the ν-LHCE electrolyte enables different types of batteries to achieve excellent long-term cycling stability and good rate capability at both room and low temperatures. Especially, the capacity retentions of the DIB are 77.7 % and 51.6 %, at -40 °C and -60 °C, respectively, indicating great potential for low-temperature energy storage applications, such as polar exploration, emergency communication equipment, and energy storage station in cold regions.
Collapse
Affiliation(s)
- Juan Yang
- Advanced Energy Storage Technology Research Center Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Jian Shang
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qirong Liu
- Advanced Energy Storage Technology Research Center Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xinyu Yang
- Advanced Energy Storage Technology Research Center Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- College of Material Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yunfei Tan
- Advanced Energy Storage Technology Research Center Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- College of Material Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yu Zhao
- PetroChina Shenzhen New Energy Research Institute Co., LTD., Shenzhen, 518054, China
| | - Chenguang Liu
- PetroChina Shenzhen New Energy Research Institute Co., LTD., Shenzhen, 518054, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
7
|
Sun X, Li Z, Liu Y, Jiao M, Cheng C, Zhang X, Gao N, Li H. Realized Record Capacity and Rate Performance of Dual-Carbon Batteries Constructed by Introducing Superhard Nanodiamonds. NANO LETTERS 2024; 24:9435-9441. [PMID: 39045863 DOI: 10.1021/acs.nanolett.4c01288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Dual-ion batteries (DIBs) are becoming an important technology for energy storage. To overcome the disadvantages of traditional electrodes and electrolytes, here we assemble a dual-carbon DIB with nanodiamond (ND)-modified crimped graphene (DCG) and electrolyte. The DCG anode and cathode realize high capacities of 1121 mA h g-1 and 149 mA h g-1, respectively, at 0.1 A g-1. The corresponding DCG//DCG full cells present a high capacity of 143 mA h g-1 at 1 A g-1 after 3300 cycles, which is superior to most reported results. Achieving these record performances is strongly dependent on the formed DCG electrodes with expanded interlayer spacing and abundant active sites, and NDs dispersed in DCG and electrolytes are very helpful for enhancing the storage of both cations and anions, effectively suppressing the irreversible decomposition of electrolytes. This work breaks through the bottleneck of graphitic-based DIBs, paving the way for realizing high-performance DIBs applied in industry.
Collapse
Affiliation(s)
- Xiaochen Sun
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. China
| | - Zhuo Li
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. China
| | - Yaning Liu
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. China
| | - Mingxing Jiao
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. China
| | - Cheng Cheng
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. China
| | - Xin Zhang
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. China
| | - Nan Gao
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. China
| | - Hongdong Li
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
8
|
Matsuo Y, Inoo A, Inamoto J. Electrochemical intercalation of anions into graphite: Fundamental aspects, material synthesis, and application to the cathode of dual-ion batteries. ChemistryOpen 2024; 13:e202300244. [PMID: 38426688 PMCID: PMC11319239 DOI: 10.1002/open.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
In this review, fundamental aspects of the electrochemical intercalation of anions into graphite have been first summarized, and then described the electrochemical preparation of covalent-type GICs and application of graphite as the cathode of dual-ion battery. Electrochemical overoxidation of anion GICs provides graphite oxide and covalent-fluorine GICs, which are key functional materials for various applications including energy storage devices. The reaction conditions to obtain fully oxidized graphite has been mentioned. Concerning the application of graphite for the cathode of dual-ion battery, it stably delivers about 110 mA h g-1 of reversible capacity in usual organic electrolyte solutions. The combination of anion and solvent as well as the concentration of the anions in the electrolyte solutions greatly affect the performance of graphite cathode such as oxidation potential, rate capability, cycling properties, etc. The interfacial phenomenon is also important, and fundamental studies of charge transfer resistance, anion diffusion coefficient, and surface film formation behavior have also been summarized. The use of smaller anions, such as AlCl4 -, Br- can increase the capacity of graphite cathode. Several efforts on the structural modification of graphite and development of electrolyte solutions in which graphite cathode delivers higher capacity were also described.
Collapse
Affiliation(s)
| | - Akane Inoo
- University of Hyogo13-71 KitaojichoAkashiJapan
| | | |
Collapse
|
9
|
Zhou Q, Zhao H, Fu C, Jian J, Huo H, Ma Y, Du C, Gao Y, Yin G, Zuo P. Tailoring Electric Double Layer by Cation Specific Adsorption for High-Voltage Quasi-Solid-State Lithium Metal Batteries. Angew Chem Int Ed Engl 2024; 63:e202402625. [PMID: 38709979 DOI: 10.1002/anie.202402625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
The interfacial instability of high-nickel layered oxides severely plagues practical application of high-energy quasi-solid-state lithium metal batteries (LMBs). Herein, a uniform and highly oxidation-resistant polymer layer within inner Helmholtz plane is engineered by in situ polymerizing 1-vinyl-3-ethylimidazolium (VEIM) cations preferentially adsorbed on LiNi0.83Co0.11Mn0.06O2 (NCM83) surface, inducing the formation of anion-derived cathode electrolyte interphase with fast interfacial kinetics. Meanwhile, the copolymerization of [VEIM][BF4] and vinyl ethylene carbonate (VEC) endows P(VEC-IL) copolymer with the positively-charged imidazolium moieties, providing positive electric fields to facilitate Li+ transport and desolvation process. Consequently, the Li||NCM83 cells with a cut-off voltage up to 4.5 V exhibit excellent reversible capacity of 130 mAh g-1 after 1000 cycles at 25 °C and considerable discharge capacity of 134 mAh g-1 without capacity decay after 100 cycles at -20 °C. This work provides deep understanding on tailoring electric double layer by cation specific adsorption for high-voltage quasi-solid-state LMBs.
Collapse
Affiliation(s)
- Qingjie Zhou
- State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China
| | - Huaian Zhao
- State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China
| | - Chuankai Fu
- State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China
| | - Jiyuan Jian
- State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China
| | - Hua Huo
- State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China
| | - Yulin Ma
- State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China
| | - Chunyu Du
- State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China
| | - Yunzhi Gao
- State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China
| | - Geping Yin
- State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China
| | - Pengjian Zuo
- State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China
| |
Collapse
|
10
|
Lin Y, Shang J, Liu Y, Wang Z, Bai Z, Ou X, Tang Y. Chlorination Design for Highly Stable Electrolyte toward High Mass Loading and Long Cycle Life Sodium-Based Dual-Ion Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402702. [PMID: 38651672 DOI: 10.1002/adma.202402702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Sodium-based dual ion batteries (SDIBs) have garnered significant attention as novel energy storage devices offering the advantages of high-voltage and low-cost. Nonetheless, conventional electrolytes exhibit low resistance to oxidation and poor compatibility with electrode materials, resulting in rapid battery failure. In this study, for the first time, a chlorination design of electrolytes for SDIB, is proposed. Using ethyl methyl carbonate (EMC) as a representative, chlorine (Cl)-substituted EMC not only demonstrates increased oxidative stability ascribed to the electron-withdrawing characteristics of chlorine atom, electrolyte compatibility with both the cathode and anode is also greatly improved by forming Cl-containing interface layers. Consequently, a discharge capacity of 104.6 mAh g-1 within a voltage range of 3.0-5.0 V is achieved for Na||graphite SDIB that employs a high graphite cathode mass loading of 5.0 mg cm-2, along with almost no capacity decay after 900 cycles. Notably, the Na||graphite SDIB can be revived for an additional 900 cycles through the replacement of a fresh Na anode. As the mass loading of graphite cathode increased to 10 mg cm-2, Na||graphite SDIB is still capable of sustaining over 700 times with ≈100% capacity retention. These results mark the best outcome among reported SDIBs. This study corroborates the effectiveness of chlorination design in developing high-voltage electrolytes and attaining enduring cycle stability of Na-based energy storage devices.
Collapse
Affiliation(s)
- Yuwei Lin
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Shang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Low-Dimensional Energy Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuhua Liu
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Zelin Wang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Zhengyang Bai
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Xuewu Ou
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| |
Collapse
|
11
|
Wang Y, Dong S, Gao Y, Lee PK, Tian Y, Meng Y, Hu X, Zhao X, Li B, Zhou D, Kang F. Difluoroester solvent toward fast-rate anion-intercalation lithium metal batteries under extreme conditions. Nat Commun 2024; 15:5408. [PMID: 38926355 PMCID: PMC11208432 DOI: 10.1038/s41467-024-49795-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Anion-intercalation lithium metal batteries (AILMBs) are appealing due to their low cost and fast intercalation/de-intercalation kinetics of graphite cathodes. However, the safety and cycliability of existing AILMBs are constrained by the scarcity of compatible electrolytes. Herein, we showcase that a difluoroester can be applied as electrolyte solvent to realize high-performance AILMBs, which not only endows high oxidation resistance, but also efficiently tunes the solvation shell to enable highly reversible and kinetically fast cathode reaction beyond the trifluoro counterpart. The difluoroester-based electrolyte demonstrates nonflammability, high ionic conductivity, and electrochemical stability, along with excellent electrode compatibility. The Li| |graphite AILMBs reach a high durability of 10000 cycles with only a 0.00128% capacity loss per cycle under fast-cycling of 1 A g-1, and retain ~63% of room-temperature capacity when discharging at -65 °C, meanwhile supply stable power output under deformation and overcharge conditions. The electrolyte design paves a promising path toward fast-rate, low-temperature, durable, and safe AILMBs.
Collapse
Affiliation(s)
- Yao Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Shuyu Dong
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yifu Gao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Pui-Kit Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yao Tian
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yuefeng Meng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xia Hu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xin Zhao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Baohua Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Dong Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Feiyu Kang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Su Y, Shang J, Liu X, Li J, Pan Q, Tang Y. Constructing π-π Superposition Effect of Tetralithium Naphthalenetetracarboxylate with Electron Delocalization for Robust Dual-Ion Batteries. Angew Chem Int Ed Engl 2024; 63:e202403775. [PMID: 38523068 DOI: 10.1002/anie.202403775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
Organics are gaining significance as electrode materials due to their merits of multi-electron reaction sites, flexible rearrangeable structures and redox reversibility. However, organics encounter finite electronic conductivity and inferior durability especially in organic electrolytes. To circumvent above barriers, we propose a novel design strategy, constructing conductive network structures with extended π-π superposition effect by manipulating intermolecular interaction. Tetralithium 1,4,5,8-naphthalenetetracarboxylate (LNTC) interwoven by carbon nanotubes (CNTs) forms LNTC@CNTs composite firstly for Li-ion storage, where multiple conjugated carboxyls contribute sufficient Li-ion storage sites, the unique network feature enables electrolyte and charge mobility conveniently combining electron delocalization in π-conjugated system, and the enhanced π-π superposition effect between LNTC and CNTs endows laudable structural robustness. Accordingly, LNTC@CNTs maintain an excellent Li-ion storage capacity retention of 96.4 % after 400 cycles. Electrochemical experiments and theoretical simulations elucidate the fast reaction kinetics and reversible Li-ion storage stability owing to the electron delocalization and π-π superposition effect, while conjugated carboxyls are reversibly rearranged into enolates during charging/discharging. Consequently, a dual-ion battery combining this composite anode and expanded graphite cathode exhibits a peak specific capacity of 122 mAh g-1 and long cycling life with a capacity retention of 84.2 % after 900 cycles.
Collapse
Affiliation(s)
- Yuanqiang Su
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Jian Shang
- Low-dimensional Energy Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xianchun Liu
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Jia Li
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qingguang Pan
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Wang Y, Yang X, Meng Y, Wen Z, Han R, Hu X, Sun B, Kang F, Li B, Zhou D, Wang C, Wang G. Fluorine Chemistry in Rechargeable Batteries: Challenges, Progress, and Perspectives. Chem Rev 2024; 124:3494-3589. [PMID: 38478597 DOI: 10.1021/acs.chemrev.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The renewable energy industry demands rechargeable batteries that can be manufactured at low cost using abundant resources while offering high energy density, good safety, wide operating temperature windows, and long lifespans. Utilizing fluorine chemistry to redesign battery configurations/components is considered a critical strategy to fulfill these requirements due to the natural abundance, robust bond strength, and extraordinary electronegativity of fluorine and the high free energy of fluoride formation, which enables the fluorinated components with cost effectiveness, nonflammability, and intrinsic stability. In particular, fluorinated materials and electrode|electrolyte interphases have been demonstrated to significantly affect reaction reversibility/kinetics, safety, and temperature tolerance of rechargeable batteries. However, the underlining principles governing material design and the mechanistic insights of interphases at the atomic level have been largely overlooked. This review covers a wide range of topics from the exploration of fluorine-containing electrodes, fluorinated electrolyte constituents, and other fluorinated battery components for metal-ion shuttle batteries to constructing fluoride-ion batteries, dual-ion batteries, and other new chemistries. In doing so, this review aims to provide a comprehensive understanding of the structure-property interactions, the features of fluorinated interphases, and cutting-edge techniques for elucidating the role of fluorine chemistry in rechargeable batteries. Further, we present current challenges and promising strategies for employing fluorine chemistry, aiming to advance the electrochemical performance, wide temperature operation, and safety attributes of rechargeable batteries.
Collapse
Affiliation(s)
- Yao Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Xu Yang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Yuefeng Meng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Zuxin Wen
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Ran Han
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Xia Hu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Feiyu Kang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Baohua Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Dong Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Chunsheng Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|
14
|
Zhao Z, Alshareef HN. Sustainable Dual-Ion Batteries beyond Li. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309223. [PMID: 37907202 DOI: 10.1002/adma.202309223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/23/2023] [Indexed: 11/02/2023]
Abstract
The limitations of resources used in current Li-ion batteries may hinder their widespread use in grid-scale energy storage systems, prompting the search for low-cost and resource-abundant alternatives. "Beyond-Li cation" batteries have emerged as promising contenders; however, they confront noteworthy challenges due to the scarcity of suitable host materials for these cations. In contrast, anions, the other crucial component in electrolytes, demonstrate reversible intercalation capacity in specific materials like graphite. The convergence of anion and cation storage has given rise to a new battery technology known as dual-ion batteries (DIBs). This comprehensive review presents the current status, advancements, and future prospects of sustainable DIBs beyond Li. Notably, most DIBs exhibit similar cathode reaction mechanisms involving anion intercalation, while the distinguishing factor lies in the cation types functioning at the anode. Accordingly, the review is organized into sections by various cation types, including Na-, K-, Mg-, Zn-, Ca-, Al-, NH4 + -, and proton-based DIBs. Moreover, a perspective on these novel DIBs is presented, along with proposed protocols for investigating DIBs and promising future research directions. It is envisioned that this review will inspire fresh concepts, ideas, and research directions, while raising important questions to further tailor and understand sustainable DIBs, ultimately facilitating their practical realization.
Collapse
Affiliation(s)
- Zhiming Zhao
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Yang Z, Zhou XZ, Hao ZQ, Chen J, Li L, Zhao Q, Lai WH, Chou SL. Insight into the Role of Fluoroethylene Carbonate on the Stability of Sb||Graphite Dual-Ion Batteries in Propylene Carbonate-Based Electrolyte. Angew Chem Int Ed Engl 2024; 63:e202313142. [PMID: 37917045 DOI: 10.1002/anie.202313142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/02/2023] [Accepted: 11/02/2023] [Indexed: 11/03/2023]
Abstract
Sodium dual-ion batteries (Na-DIBs) have attracted increasing attention due to their high operative voltages and low-cost raw materials. However, the practical applications of Na-DIBs are still hindered by the issues, such as low capacity and poor Coulombic efficiency, which is highly correlated with the compatibility between electrode and electrolyte but rarely investigated. Herein, fluoroethylene carbonate (FEC) is introduced into the electrolyte to regulate cation/anion solvation structure and the stability of cathode/anode-electrolyte interphase of Na-DIBs. The FEC modulates the environment of PF6 - solvation sheath and facilitates the interaction of PF6 - on graphite. In addition, the NaF-rich interphase caused by the preferential decomposition of FEC effectively inhibits side reactions and pulverization of anodes with the electrolyte. Consequently, Sb||graphite full cells in FEC-containing electrolyte achieve an improved capacity, cycling stability and Coulombic efficiency. This work elucidates the underlying mechanism of bifunctional FEC and provides an alternative strategy of building high-performance dual ion batteries.
Collapse
Affiliation(s)
- Zhuo Yang
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Xun-Zhu Zhou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Zhi-Qiang Hao
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Jian Chen
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Lin Li
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Qing Zhao
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Wei-Hong Lai
- Institute for Superconducting and Electronic Materials, University of Wollongong, Innovation Campus, Squires Way, Wollongong, New South Wales, 2500, (Australia)
| | - Shu-Lei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, Zhejiang 325035, People's Republic of China
| |
Collapse
|
16
|
Zhang D, Sasidharan S, Shi J, Sasikala Devi AA, Su J, Huang J, Xia Z. Producing Bilayer Graphene Oxide via Wedge Ion-Assisted Anodic Exfoliation: Implications for Energy and Electronics. ACS APPLIED NANO MATERIALS 2023; 6:19639-19650. [PMID: 37969784 PMCID: PMC10644297 DOI: 10.1021/acsanm.3c03284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023]
Abstract
Electrochemical synthesis has emerged as a promising approach for the large-scale production of graphene-based two-dimensional (2D) materials. Electrochemical intercalation of ions and molecules between graphite layers plays a key role in the synthesis of graphene with controllable thickness. However, there is still a limited understanding regarding the impact of intercalant molecules. Herein, we investigated a series of anionic species (i.e., ClO4-, PF6-, BF4-, HSO4-, CH3SO3-, and TsO-) and examined their wedging process between the weakly bonded layered materials driven by electrochemistry. By combining cyclic voltammetry, X-ray diffraction (XRD), and Raman spectroscopy, along with density functional theory (DFT) calculations, we found that stage-2 graphite intercalation compounds (GICs) can be obtained through intercalation of ClO4-, PF6-, or BF4- anions into the adjacent graphene bilayers. The anodic exfoliation step based on ClO4--GIC in (NH4)2SO4 (aq.) resulted in the formation of bilayer-rich (>57%) electrochemically exfoliated graphene oxide (EGO), with a high yield (∼85 wt %). Further, the physicochemical properties of these EGO can be readily customized through electrochemical reduction and modification with different surfactants. This versatility allows for precise tailoring of EGO, making it feasible for energy and electronic applications such as electrodes in electrochemical capacitors and functional composites in wearable electronics.
Collapse
Affiliation(s)
- Daheng Zhang
- Laboratory
for Advanced Materials and Institute of Fine Chemicals, School of
Chemistry & Molecular Engineering, East China University of Science
& Technology, Shanghai 200237, P. R. China
| | - Sankar Sasidharan
- Department
of Industrial and Materials Science, Chalmers
University of Technology, Göteborg 41296, Sweden
| | - Jiahao Shi
- Department
of Industrial and Materials Science, Chalmers
University of Technology, Göteborg 41296, Sweden
| | | | - Jianhua Su
- Laboratory
for Advanced Materials and Institute of Fine Chemicals, School of
Chemistry & Molecular Engineering, East China University of Science
& Technology, Shanghai 200237, P. R. China
| | - Jinhai Huang
- Shanghai
Taoe Chemical Technology Co., Ltd., Shanghai 200030, P. R. China
| | - Zhenyuan Xia
- Department
of Industrial and Materials Science, Chalmers
University of Technology, Göteborg 41296, Sweden
| |
Collapse
|
17
|
Han C, Wang H, Wang Z, Ou X, Tang Y. Solvation Structure Modulation of High-Voltage Electrolyte for High-Performance K-Based Dual-Graphite Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300917. [PMID: 37015009 DOI: 10.1002/adma.202300917] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Indexed: 06/16/2023]
Abstract
Due to the advantages of dual-ion batteries (DIBs) and abundant resources, potassium-based dual-carbon batteries (K-DCBs) have wide application prospects. However, conventional carbonate ester-based electrolyte systems have obvious drawbacks such as poor oxidation resistance and difficulty in sustaining the anion intercalation process at high voltages, which seriously affect the capacity and cycle performance of K-DCBs. Therefore, a rational design of more efficient novel electrolyte systems is urgently required to realize high-performance K-DCBs. Herein, a solvation structure modulation strategy for the K-DCB electrolyte systems is reported. Consequently, substantial K+ ion storage improvement at the graphite anode and enhanced bis(fluorosulfonyl)imide anion (FSI- ) intercalation capacity at the graphite cathode are successfully realized simultaneously. As a proof-of-concept, the assembled K-DCB exhibited a discharge capacity of 103.4 mAh g-1 , and after 400 cycles, ≈90% capacity retention is observed. Moreover, the energy density of the K-DCB full cell reached 157.6 Wh kg-1 , which is the best performance in reported K-DCBs till date. This study demonstrates the effectiveness of solvation modulation in improving the performance of K-DCBs.
Collapse
Affiliation(s)
- Chengjun Han
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haiyan Wang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zelin Wang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xuewu Ou
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
18
|
Yang Y, Wang J, Du X, Jiang H, Du A, Ge X, Li N, Wang H, Zhang Y, Chen Z, Zhao J, Cui G. Cation Co-Intercalation with Anions: The Origin of Low Capacities of Graphite Cathodes in Multivalent Electrolytes. J Am Chem Soc 2023. [PMID: 37227815 DOI: 10.1021/jacs.3c01555] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Dual-ion batteries involving anion intercalation into graphite cathodes represent promising battery technologies for low-cost and high-power energy storage. However, the fundamental origins regarding much lower capacities of graphite cathodes in earth abundant and inexpensive multivalent electrolytes than in Li-ion electrolytes remain elusive. Herein, we reveal that the limited anion-storage capacity of a graphite cathode in multivalent electrolytes is rooted in the abnormal multivalent-cation co-intercalation with anions in the form of large-sized anionic complexes. This cation co-intercalation behavior persists throughout the stage evolution of graphite intercalation compounds and leads to a significant decrease of sites practically viable for capacity contribution inside graphite galleries. Further systematic studies illustrate that the phenomenon of cation co-intercalation into graphite is closely related to the high energy penalty of interfacial anion desolvation due to the strong cation-anion association prevalent in multivalent electrolytes. Leveraging this understanding, we verify that promoting ionic dissociation in multivalent electrolytes by employing high-permittivity and oxidation-tolerant co-solvents is effective in suppressing multivalent-cation co-intercalation and thus achieving increased capacity of graphite cathodes. For instance, introducing adiponitrile as a co-solvent to a Mg2+-based carbonate electrolyte leads to 83% less Mg2+ co-intercalation and a ∼29.5% increase in delivered capacity of the graphite cathode.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinzhi Wang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xiaofan Du
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Hongzhu Jiang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aobing Du
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xuesong Ge
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Na Li
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Hao Wang
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yuchen Zhang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Chen
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Jingwen Zhao
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Wang Z, Cai Z, Liu M, Xu F, Ye F. Anion Receptor Enhanced Li Ion Transportation for High-Performance Lithium Metal Batteries. ACS OMEGA 2023; 8:16411-16418. [PMID: 37179613 PMCID: PMC10173432 DOI: 10.1021/acsomega.3c01258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
High-potential lithium metal batteries (LMBs) are still facing many challenges, such as the growth of lithium (Li) dendrites and resultant safety hazards, low-rate capabilities, etc. To this end, electrolyte engineering is believed to be a feasible strategy and interests many researchers. In this work, a novel gel polymer electrolyte membrane, which is composed of polyethyleneimine (PEI)/poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) cross-linked membrane and electrolyte (PPCM GPE), is prepared successfully. Due to the fact that the amine groups on PEI molecular chains can provide the rich anion receptors and strongly pin the anions of electrolytes and thus confine the movement of anions, our designed PPCM GPE owns a high Li+ transference number (0.70) and finally contributes to the uniform Li+ deposition and inhibits the growth of Li dendrites. In addition, the cells with PPCM GPE as a separator behave the impressive electrochemical performances, i.e., a low overpotential and an ultralong and stable cycling performance in Li∥Li cells, a low overvoltage of about 34 mV after a stable cycling for 400 h even at a high current density of 5 mA/cm2, and, in Li∥LFP full batteries, a specific capacity of 78 mAh/g after 250 cycles at a 5 C rate. These excellent results suggest a potential application of our PPCM GPE in developing high-energy-density LMBs.
Collapse
Affiliation(s)
- Zhixin Wang
- Key
Laboratory of Optical Field Manipulation of Zhejiang Province, Department
of Physics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Zhipeng Cai
- Key
Laboratory of Optical Field Manipulation of Zhejiang Province, Department
of Physics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Meinan Liu
- i-Lab, Suzhou Institute of Nano-Tech and
Nano-Bionics, Chinese
Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Fuliang Xu
- Key
Laboratory of Optical Field Manipulation of Zhejiang Province, Department
of Physics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Fangmin Ye
- Key
Laboratory of Optical Field Manipulation of Zhejiang Province, Department
of Physics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| |
Collapse
|
20
|
Chen C, Lee CS, Tang Y. Fundamental Understanding and Optimization Strategies for Dual-Ion Batteries: A Review. NANO-MICRO LETTERS 2023; 15:121. [PMID: 37127729 PMCID: PMC10151449 DOI: 10.1007/s40820-023-01086-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
There has been increasing demand for high-energy density and long-cycle life rechargeable batteries to satisfy the ever-growing requirements for next-generation energy storage systems. Among all available candidates, dual-ion batteries (DIBs) have drawn tremendous attention in the past few years from both academic and industrial battery communities because of their fascinating advantages of high working voltage, excellent safety, and environmental friendliness. However, the dynamic imbalance between the electrodes and the mismatch of traditional electrolyte systems remain elusive. To fully employ the advantages of DIBs, the overall optimization of anode materials, cathode materials, and compatible electrolyte systems is urgently needed. Here, we review the development history and the reaction mechanisms involved in DIBs. Afterward, the optimization strategies toward DIB materials and electrolytes are highlighted. In addition, their energy-related applications are also provided. Lastly, the research challenges and possible development directions of DIBs are outlined.
Collapse
Affiliation(s)
- Chong Chen
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Film (COSDAF), City University of Hong Kong, Kowloon, 999077, Hong Kong, SAR, People's Republic of China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
21
|
Zhang K, Li D, Shao J, Jiang Y, Lv L, Shi Q, Qu Q, Zheng H. Electrochemistry-Driven Interphase Doubly Protects Graphite Cathodes for Ultralong Life and Fast Charge of Dual-Ion Batteries. CHEMSUSCHEM 2023:e202300324. [PMID: 36922346 DOI: 10.1002/cssc.202300324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Dual-ion batteries (DIBs) with graphite as cathode material, show superiority in terms of sustainability, affordability, and environmental impact over Li-ion batteries that rely on transition-metal based cathodes. However, graphite cathodes severely suffer from poor structural stability during anion storage at high potentials because of the co-intercalation and oxidative decomposition of electrolytes. This work presents an in situ electrochemistry-driven route to create a bifunctional interphase through implantation of diethylenetriaminepenta(methylene-phosphonic acid) (DTPMP) on the surface of graphite particles. The reaction mechanisms and functions of DTPMP are investigated both experimentally and theoretically. The DTPMP-derived interphase not only improves the antioxidative stability of electrolytes but also benefits the desolvation of PF6 - anions, which doubly protect the graphitic structure and give rise to fast-charge and ultralong cycling performance of graphite cathodes in DIBs.
Collapse
Affiliation(s)
- Kejia Zhang
- College of Energy, Soochow University Suzhou, Jiangsu, 215006, P. R. China
| | - Decheng Li
- College of Energy, Soochow University Suzhou, Jiangsu, 215006, P. R. China
| | - Jie Shao
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Yu Jiang
- College of Energy, Soochow University Suzhou, Jiangsu, 215006, P. R. China
| | - Linze Lv
- College of Energy, Soochow University Suzhou, Jiangsu, 215006, P. R. China
| | - Qiang Shi
- Suzhou Huaying New Energy Materials and Technology Co., Ltd. Suzhou, Jiangsu, 215100, P. R. China
| | - Qunting Qu
- College of Energy, Soochow University Suzhou, Jiangsu, 215006, P. R. China
- Suzhou Huaying New Energy Materials and Technology Co., Ltd. Suzhou, Jiangsu, 215100, P. R. China
| | - Honghe Zheng
- College of Energy, Soochow University Suzhou, Jiangsu, 215006, P. R. China
- Suzhou Huaying New Energy Materials and Technology Co., Ltd. Suzhou, Jiangsu, 215100, P. R. China
| |
Collapse
|
22
|
Zhang K, Li D, Shao J, Jiang Y, Lv L, Shi Q, Qu Q, Zheng H. Ultrafast Charge and Long Life of High-Voltage Cathodes for Dual-Ion Batteries via a Bifunctional Interphase Nanolayer on Graphite Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206360. [PMID: 36587962 DOI: 10.1002/smll.202206360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Dual-ion batteries (DIBs) with Co/Ni-free cathodes especially graphite cathodes are very attractive energy storage systems in the long run because of the cost effectiveness and sustainability. However, graphite cathodes severely suffer from poor structural stability during anions storage at high potentials owing to the oxidative decomposition of electrolytes and volume expansion. This work proposes an artificial cathode/electrolyte interphase (CEI) strategy by implanting polyphosphoric acid (PPA) nanofilms tightly on natural graphite (NG) particles via interfacial hydrogen bonding. The electrochemical results show that the PPA-modified graphite cathodes possess enhanced charge-discharge reversibility, accelerated electrode reaction kinetic, decreased resistance, decelerated self-discharge, and prolonged cycling life. Through post-analyses on the cycled graphite cathodes, the improved performance is mainly attributed to the PPA-based CEI, which effectively mitigates the electrolyte decomposition and protects the graphitic structure. More interestingly, the hydrogen bonding interactions between poly(vinyldifluoride) (PVDF) binder and PPA as validated through density functional theory calculations and practical experiments can increase the contact sites of PVDF chains on NG@PPA particles. Meanwhile, the cross-linking effect of PPA can enhance the mechanical strength of PVDF, thus the long life of NG@PPA cathode is also correlated with the improved mechanical stability of the entire electrode.
Collapse
Affiliation(s)
- Kejia Zhang
- College of Energy, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Decheng Li
- College of Energy, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Jie Shao
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Yu Jiang
- College of Energy, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Linze Lv
- College of Energy, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Qiang Shi
- Suzhou Huaying New Energy Materials and Technology Co., Ltd., Suzhou, Jiangsu, 215100, P. R. China
| | - Qunting Qu
- College of Energy, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
- Suzhou Huaying New Energy Materials and Technology Co., Ltd., Suzhou, Jiangsu, 215100, P. R. China
| | - Honghe Zheng
- College of Energy, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
- Suzhou Huaying New Energy Materials and Technology Co., Ltd., Suzhou, Jiangsu, 215100, P. R. China
| |
Collapse
|
23
|
Yu D, Li K, Ma G, Ru F, Zhang X, Luo W, Hu P, Chen D, Wang H. Advances in Low-Temperature Dual-Ion Batteries. CHEMSUSCHEM 2023; 16:e202201595. [PMID: 36504344 DOI: 10.1002/cssc.202201595] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/10/2022] [Indexed: 06/17/2023]
Abstract
Fabricating rechargeable batteries for low-temperature (LT) applications is highly desired at high altitudes/latitudes, aerospace/subsea exploration, and defense. Lithium-ion batteries (LIBs) suffer from severe loss of capacity and energy/power density at sub-zero temperatures caused by the sluggish kinetics. By utilizing both cations and anions as charge carriers, dual-ion batteries (DIBs) become a nascent battery system for LT tolerance by overcoming ion-desolvation during discharge. Here, we summarize recent advances in LT DIBs. To begin with, distinctive advantages of DIBs at LTs are highlighted compared to LIBs, with a special attention to anion (de-)intercalation, and the in-depth understanding of key challenges for LT operation is discussed. The next major section deals with the exciting progress on the advanced strategies to improve the LT performance of DIBs, including alternative electrode materials, reliable electrolyte formulations, and construction of interphase protective layers. Finally, prospects and future developments in this exciting field of LT DIBs are suggested.
Collapse
Affiliation(s)
- Dandan Yu
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Kexin Li
- Liangxin College, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Guiyou Ma
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Fei Ru
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Xiaokun Zhang
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Wen Luo
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Pengfei Hu
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Da Chen
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Hua Wang
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
24
|
Jiang H, Chen Z, Yang Y, Fan C, Zhao J, Cui G. Rational Design of Functional Electrolytes Towards Commercial Dual-Ion Batteries. CHEMSUSCHEM 2023; 16:e202201561. [PMID: 36098496 DOI: 10.1002/cssc.202201561] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Dual-ion batteries (DIBs) based on anion (de)intercalation into low-cost graphitic carbon cathodes hold great promise in grid-scale energy storage. Different from the electrolyte in rocking-chair batteries, which only serves as a charge transporter, both cations and anions in the electrolyte for DIBs participate in battery reactions. Hence, the impact of the electrolyte formulation on cycle life, energy density, as well as cost has become a subject of vital importance. This review discussed the challenges and recent progress of electrolytes for DIBs, with a particular focus on the exploration of electrolytes with high oxidation stability, high salt concentration, high ionic conductivity, and low cost. Moreover, the influence of varied ion concentrations at different state-of-charge levels on the electrolyte properties such as ionic conductivity and electrochemical stability is analyzed. Finally, perspectives on the current limitations and future research directions of electrolytes for DIBs are provided.
Collapse
Affiliation(s)
- Hongzhu Jiang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Zheng Chen
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, P. R. China
| | - Yuanyuan Yang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Cheng Fan
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, P. R. China
- College of Electromechanical Engineering, Qingdao University of Science and Technology, 266061, Qingdao, P. R. China
| | - Jingwen Zhao
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, P. R. China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| |
Collapse
|
25
|
Liu M, Zhang W, Zheng W. Spreading the Landscape of Dual Ion Batteries: from Electrode to Electrolyte. CHEMSUSCHEM 2023; 16:e202201375. [PMID: 35997662 DOI: 10.1002/cssc.202201375] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The working mechanism of a dual-ion battery (DIB) differs from that of a lithium-ion battery (LIB) in that the anions in the electrolyte of the former can be intercalated as well. Researchers have been paying close attention to this device because of its high voltage, low price, and environmental friendliness. However, DIBs are still in their early research stages, and numerous issues need to be addressed and investigated further. Initially, this Review explains how DIBs work in principle and discusses the progress of electrode materials for cathode and anode. Furthermore, since the electrolytes used as the active material, as well as anion, solvent, and additives, have a significant impact on the DIB's capacity and voltage, the current status is also presented in terms of electrolytes, followed by an outlook on confronting the challenges. A comprehensive summary from electrode to electrolyte will guide the development of next-generation DIBs.
Collapse
Affiliation(s)
- Meiqi Liu
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Wei Zhang
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun, Jilin, 130012, P. R. China
| |
Collapse
|
26
|
Wu D, Zhu C, Wu M, Wang H, Huang J, Tang D, Ma J. Highly Oxidation-Resistant Electrolyte for 4.7 V Sodium Metal Batteries Enabled by Anion/Cation Solvation Engineering. Angew Chem Int Ed Engl 2022; 61:e202214198. [PMID: 36300717 DOI: 10.1002/anie.202214198] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 11/30/2022]
Abstract
Sodium metal batteries (SMBs) are considered as promising battery system due to abundant Na sources. However, poor compatibility between electrolyte and cathode severely impedes its development. Herein, we proposed an anion/cation solvation strategy for realizing 4.7 V resistant SMBs electrolyte with NaClO4 and trimethoxy(pentafluorophenyl)silane (TPFS) as dual additives (DA). The ClO4 - can rapidly transfer to the cathode surface and strongly coordinate with Na+ to form stable polymer-like chains with solvents. Meanwhile, TPFS can preferentially enter into the PF6 - anion solvation sheath for reducing PF6 -solvent interaction and effectively scavenge adverse electrolyte species for protecting electrode electrolyte interphases. Thus, such electrolyte elevates the oxidative stability of carbonate electrolytes from 3.77 to 4.75 V, and enables Na||Na3 V2 (PO4 )2 O2 F (NVPF) battery with a capacity retention of 93 % and an average Coulombic efficiency (CE) of 99.6 % after 500 cycles at 4.7 V.
Collapse
Affiliation(s)
- Daxiong Wu
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Chunlei Zhu
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Mingguang Wu
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Huaping Wang
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Junda Huang
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Dongliang Tang
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jianmin Ma
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| |
Collapse
|