1
|
Zhu K, Gao S, Bai T, Li H, Zhang X, Mu Y, Guo W, Cui Z, Wang N, Zhao Y. Heterogeneous MoS 2 Nanosheets on Porous TiO 2 Nanofibers toward Fast and Reversible Sodium-Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402774. [PMID: 38805741 DOI: 10.1002/smll.202402774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/15/2024] [Indexed: 05/30/2024]
Abstract
2D layered molybdenum disulfide (MoS2) has garnered considerable attention as an attractive electrode material in sodium-ion batteries (SIBs), but sluggish mass transfer kinetic and capacity fading make it suffer from inferior cycle capability. Herein, hierarchical MoS2 nanosheets decorated porous TiO2 nanofibers (MoS2 NSs@TiO2 NFs) with rich oxygen vacancies are engineered by microemulsion electrospinning method and subsequent hydrothermal/heat treatment. The MoS2 NSs@TiO2 NFs improves ion/electron transport kinetic and long-term cycling performance through distinctive porous structure and heterogeneous component. Consequently, the electrode exhibits excellent long-term Na storage capacity (298.4 mAh g-1 at 5 A g-1 over 1100 cycles and 235.6 mAh g-1 at 10 A g-1 over 7200 cycles). Employing Na3V2(PO4)3 as cathode, the full cell maintains a desirable capacity of 269.6 mAh g-1 over 700 cycles at 1.0 A g-1. The stepwise intercalation-conversion and insertion/extraction endows outstanding Na+ storage performance, which yields valuable insight into the advancement of fast-charging and long-cycle life SIBs anode materials.
Collapse
Affiliation(s)
- Keping Zhu
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Songwei Gao
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Tonghua Bai
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Huaike Li
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Xuefeng Zhang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Yue Mu
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Wei Guo
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Zhiming Cui
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Nü Wang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Yong Zhao
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, 010051, China
| |
Collapse
|
2
|
Zhu Y, Tang X, Ding R, Xie J, Wang J, Duan Y, Zhang Y. An Engineering Porous Spherical Carbon Cathode for High-Energy Sodium-Ion Capacitor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39248574 DOI: 10.1021/acs.langmuir.4c02138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Sodium-ion hybrid capacitors (SICs) are emerging as promising devices that can balance energy and power output. However, the lack of a high-capacity cathode that can match the anode has limited its further application. In this work, we develop an efficient method to prepare spherical porous carbons (SPCs) with great specific surface area and narrow pore size distribution from coal-based humic acid via spray drying and a subsequent chemical activation process. Thanks to this unique porous structure, the SPC cathode has a superb capacity of 223 F g-1 at 0.05 A g-1, as well as splendid rate performance and cycling stability. SICs constructed by an SPC cathode and hard carbon anode can exhibit a high energy density of 179.8 Wh kg-1 at 155 W kg-1 and achieved 89.4% capacity retention after 10 000 cycles at 0.5 A g-1. This outcome presents a viable approach to attaining high-capacity cathodes for constructing outstanding performance hybrid capacitors.
Collapse
Affiliation(s)
- Youyu Zhu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shanxi, China
| | - Xiaofang Tang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shanxi, China
| | - Ranran Ding
- Department of Chemistry and Environment, Hohhot Minzu College, Hohhot, 010051, China
| | - Jiao Xie
- Chengdu Baisige Technology Co., Ltd., Chengdu 610095, China
| | - Jin Wang
- Chengdu Baisige Technology Co., Ltd., Chengdu 610095, China
| | - Yingfeng Duan
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shanxi, China
| | - Yating Zhang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shanxi, China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi'an 710021, Shanxi, China
| |
Collapse
|
3
|
Chen L, Yu C, Song X, Dong J, Han Y, Huang H, Zhu X, Xie Y, Qiu J. Microscopic-Level Insights into P-O-Induced Strong Electronic Coupling Over Nickel Phosphide with Efficient Benzyl Alcohol Electrooxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306410. [PMID: 38456764 DOI: 10.1002/smll.202306410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/04/2023] [Indexed: 03/09/2024]
Abstract
Electrooxidation of biomass into fine chemicals coupled with energy-saving hydrogen production for a zero-carbon economy holds great promise. Advanced anode catalysts determine the cell voltage and electrocatalytic efficiency greatly, further the rational design and optimization of their active site coordination remains a challenge. Herein, a phosphorus-oxygen terminals-rich species (Ni2P-O-300) via an anion-assisted pyrolysis strategy is reported to induce strong electronic coupling and high valence state of active nickel sites over nickel phosphide. This ultimately facilitates the rapid yet in-situ formation of high-valence nickel with a high reaction activity under electrochemical conditions, and exhibits a low potential of 1.33 V vs. RHE at 10 mA cm-2, exceeding most of reported transition metal-based catalysts. Advanced spectroscopy, theoretical calculations, and experiments reveal that the functional P-O species can induce the favorable local bonding configurations for electronic coupling, promoting the electron transfer from Ni to P and the adsorption of benzyl alcohol (BA). Finally, the hydrogen production efficiency and kinetic constant of BA electrooxidation by Ni2P-O-300 are increased by 9- and 2.8- fold compared with the phosphorus-oxygen terminals-deficient catalysts (Ni2P-O-500). This provides an anion-assisted pyrolysis strategy to modulate the electronic environment of the Ni site, enabling a guideline for Ni-based energy/catalysis systems.
Collapse
Affiliation(s)
- Lin Chen
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Chang Yu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xuedan Song
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Junting Dong
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yingnan Han
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Hongling Huang
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiuqing Zhu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yuanyang Xie
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
4
|
Zhang X, Xie J, Lu Z, Liu X, Tang Y, Wang Y, Hu J, Cao Y. Engineering sulfur defective Bi 2S 3@C with remarkably enhanced electrochemical kinetics of lithium-ion batteries. J Colloid Interface Sci 2024; 667:385-392. [PMID: 38640657 DOI: 10.1016/j.jcis.2024.04.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Introducing the appropriate vacancies to augment the active sites and improve the electrochemical kinetics while maintaining high cyclability is a major challenge for its widespread application in electrochemical energy storage. Here, core-shell structured Bi2S3@C with sulfur vacancies was prepared by hydrothermal method and one-step carbonization/sulfuration process, which significantly improves the intrinsic electrical conductivity and ion transport efficiency of Bi2S3. Additionally, the uniform protective carbon layer around surface of composite maintains structural stability and effectively alleviates volume expansion during alloying/dealloying. As a result, the BSC-500 anode exhibits a brilliant reversible capacity of 636 mAh/g at 0.2 A/g and a long-term stable capacity of 524 mAh/g for 500 cycles at a high current density of 3 A/g in lithium-ion batteries. In addition, the assembled Bi2S3@C//LiCoO2 full cell delivered a capacity of 184 mAh/g at 1 A/g and excellent cyclability (125 mAh/g after 1000 cycles). The proposed strategy of combining sulfur vacancies with a core-shell structure to improve the electrochemical kinetics of Bi2S3 in lithium-ion batteries off the prospect for practical applications of transition metal sulfide anodes.
Collapse
Affiliation(s)
- Xiaojing Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Jing Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China.
| | - Zhenjiang Lu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Xinhui Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Yakun Tang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Yang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Engineering Research Center for Intelligent Manufacturing of Functional Chemicals, Ministry of Education, Shandong Normal University, Jinan, Shandong Province 250014, PR China
| | - Jindou Hu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Yali Cao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China.
| |
Collapse
|
5
|
Zhang Z, Niu A, Lv Y, Guo H, Chen JS, Liu Q, Dong K, Sun X, Li T. NbC Nanoparticles Decorated Carbon Nanofibers as Highly Active and Robust Heterostructural Electrocatalysts for Ammonia Synthesis. Angew Chem Int Ed Engl 2024; 63:e202406441. [PMID: 38742483 DOI: 10.1002/anie.202406441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Transition-metal carbides with metallic properties have been extensively used as electrocatalysts due to their excellent conductivity and unique electronic structures. Herein, NbC nanoparticles decorated carbon nanofibers (NbC@CNFs) are proposed as an efficient and robust catalyst for electrochemical synthesis of ammonia from nitrate/nitrite reduction, which achieves a high Faradaic efficiency (FE) of 94.4 % and a large ammonia yield of 30.9 mg h-1 mg-1 cat.. In situ electrochemical tests reveal the nitrite reduction at the catalyst surface follows the *NO pathway and theoretical calculations reveal the formation of NbC@CNFs heterostructure significantly broadens density of states nearby the Fermi energy. Finite element simulations unveil that the current and electric field converge on the NbC nanoparticles along the fiber, suggesting the dispersed carbides are highly active for nitrite reduction.
Collapse
Affiliation(s)
- Zhihao Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Aihui Niu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Yaxin Lv
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Haoran Guo
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Jun Song Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Kai Dong
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Xuping Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Tingshuai Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| |
Collapse
|
6
|
Huang P, Ying H, Zhang S, Zhang Z, Han WQ. Unlocking Ultrahigh Initial Coulombic Efficiency of MXene Anode via Presodiation and Electrolyte Optimization. ACS NANO 2024; 18:17996-18010. [PMID: 38924447 DOI: 10.1021/acsnano.4c04909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The low initial Coulombic efficiency (ICE) greatly hinders the practical application of MXenes in sodium-ion batteries. Herein, theoretical calculations confirm that -F and -OH terminations as well as the tetramethylammonium ion (TMA+) intercalator in sediment Ti3C2Tx (s-Ti3C2Tx) MXene possess strong interaction with Na+, which impedes Na+ desorption during the charging process and results in low ICE. Consequently, Na+-intercalated sediment Ti3C2Tx (Na-s-Ti3C2Tx) is constructed through Na2S·9H2O treatment of s-Ti3C2Tx. Specifically, Na+ can first exchange with TMA+ of s-Ti3C2Tx and then combine with -F and -OH terminations, thus leading to the elimination of TMA+ and preshielding of -F and -OH. As expected, the resulting Na-s-Ti3C2Tx anode delivers considerably boosted ICE values of around 71% in carbonate-based electrolytes relative to s-Ti3C2Tx. Furthermore, electrolyte optimization is employed to improve ICE, and the results demonstrate that an ultrahigh ICE value of 94.0% is obtained for Na-s-Ti3C2Tx in the NaPF6-diglyme electrolyte. More importantly, Na-s-Ti3C2Tx exhibits a lower Na+ migration barrier and higher electronic conductivity compared with s-Ti3C2Tx based on theoretical calculations. In addition, the cyclic stability and rate performance of the Na-s-Ti3C2Tx anode in various electrolytes are comprehensively explored. The presented simple strategy in boosting ICE significantly enhances the commercialization prospect of MXenes in advanced batteries.
Collapse
Affiliation(s)
- Pengfei Huang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hangjun Ying
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shunlong Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhao Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Jiang Y, Lao J, Dai G, Ye Z. Advanced Insights on MXenes: Categories, Properties, Synthesis, and Applications in Alkali Metal Ion Batteries. ACS NANO 2024; 18:14050-14084. [PMID: 38781048 DOI: 10.1021/acsnano.3c12543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The development and optimization of promising anode material for next-generation alkali metal ion batteries are significant for clean energy evolution. 2D MXenes have drawn extensive attention in electrochemical energy storage applications, due to their multiple advantages including excellent conductivity, robust mechanical properties, hydrophilicity of its functional terminations, and outstanding electrochemical storage capability. In this review, the categories, properties, and synthesis methods of MXenes are first outlined. Furthermore, the latest research and progress of MXenes and their composites in alkali metal ion storage are also summarized comprehensively. A special emphasis is placed on MXenes and their hybrids, ranging from material design and fabrication to fundamental understanding of the alkali ion storage mechanisms to battery performance optimization strategies. Lastly, the challenges and personal perspectives of the future research of MXenes and their composites for energy storage are presented.
Collapse
Affiliation(s)
- Ying Jiang
- School of Material Science and Engineering, Tianjin Key Lab of Photoelectric Materials & Devices, Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin University of Technology, Tianjin 300384, P.R. China
| | - Junchao Lao
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P.R. China
| | - Guangfu Dai
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Material Science and Engineering, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Zhengqing Ye
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Material Science and Engineering, Hebei University of Technology, Tianjin 300401, P.R. China
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, P.R. China
| |
Collapse
|
8
|
Lin T, Chen T, Jiao C, Zhang H, Hou K, Jin H, Liu Y, Zhu W, He R. Ion pair sites for efficient electrochemical extraction of uranium in real nuclear wastewater. Nat Commun 2024; 15:4149. [PMID: 38755163 PMCID: PMC11099191 DOI: 10.1038/s41467-024-48564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
Electrochemical uranium extraction from nuclear wastewater represents an emerging strategy for recycling uranium resources. However, in nuclear fuel production which generates the majority of uranium-containing nuclear wastewater, fluoride ion (F-) co-exists with uranyl (UO22+), resulting in the complex species of UO2Fx and thus decreasing extraction efficiency. Herein, we construct Tiδ+-PO43- ion pair extraction sites in Ti(OH)PO4 for efficient electrochemical uranium extraction in wastewater from nuclear fuel production. These sites selectively bind with UO2Fx through the combined Ti-F and multiple O-U-O bonds. In the uranium extraction, the uranium species undergo a crystalline transition from U3O7 to K3UO2F5. In real nuclear wastewater, the uranium is electrochemically extracted with a high efficiency of 99.6% and finally purified as uranium oxide powder, corresponding to an extraction capacity of 6829 mg g-1 without saturation. This work paves an efficient way for electrochemical uranium recycling in real wastewater of nuclear production.
Collapse
Affiliation(s)
- Tao Lin
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense, School of Life Science & Engineering, School of Materials & Chemistry, National Co-innovation Center for Nuclear Waste Disposal & Environmental Safety, Sichuan Civil-military Integration Institute, Southwest University of Science & Technology, Mianyang, P. R. China
| | - Tao Chen
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense, School of Life Science & Engineering, School of Materials & Chemistry, National Co-innovation Center for Nuclear Waste Disposal & Environmental Safety, Sichuan Civil-military Integration Institute, Southwest University of Science & Technology, Mianyang, P. R. China
| | - Chi Jiao
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Haoyu Zhang
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense, School of Life Science & Engineering, School of Materials & Chemistry, National Co-innovation Center for Nuclear Waste Disposal & Environmental Safety, Sichuan Civil-military Integration Institute, Southwest University of Science & Technology, Mianyang, P. R. China
| | - Kai Hou
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense, School of Life Science & Engineering, School of Materials & Chemistry, National Co-innovation Center for Nuclear Waste Disposal & Environmental Safety, Sichuan Civil-military Integration Institute, Southwest University of Science & Technology, Mianyang, P. R. China
| | - Hongxiang Jin
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense, School of Life Science & Engineering, School of Materials & Chemistry, National Co-innovation Center for Nuclear Waste Disposal & Environmental Safety, Sichuan Civil-military Integration Institute, Southwest University of Science & Technology, Mianyang, P. R. China
| | - Yan Liu
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China.
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense, School of Life Science & Engineering, School of Materials & Chemistry, National Co-innovation Center for Nuclear Waste Disposal & Environmental Safety, Sichuan Civil-military Integration Institute, Southwest University of Science & Technology, Mianyang, P. R. China.
| | - Rong He
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense, School of Life Science & Engineering, School of Materials & Chemistry, National Co-innovation Center for Nuclear Waste Disposal & Environmental Safety, Sichuan Civil-military Integration Institute, Southwest University of Science & Technology, Mianyang, P. R. China.
| |
Collapse
|
9
|
Tang Q, Wang Y, Chen N, Pu B, Qing Y, Zhang M, Bai J, Yang Y, Cui J, Liu Y, Zhou B, Yang W. Ultra-Efficient Synthesis of Nb 4 C 3 T x MXene via H 2 O-Assisted Supercritical Etching for Li-Ion Battery. SMALL METHODS 2024; 8:e2300836. [PMID: 37926701 DOI: 10.1002/smtd.202300836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Nb4 C3 Tx MXene has shown extraordinary promise for various applications owing to its unique physicochemical properties. However, it can only be synthesized by the traditional HF-based etching method, which uses large amounts of hazardous HF and requires a long etching time (> 96 h), thus limiting its practical application. Here, an ultra-efficient and environmental-friendly H2 O-assisted supercritical etching method is proposed for the preparation of Nb4 C3 Tx MXene. Benefiting from the synergetic effect between supercritical CO2 (SPC-CO2 ) and subcritical H2 O (SBC-H2 O), the etching time for Nb4 C3 Tx MXene can be dramatically shortened to 1 h. The as-synthesized Nb4 C3 Tx MXene possesses uniform accordion-like morphology and large interlayer spacing. When used as anode for Li-ion battery, the Nb4 C3 Tx MXene delivers a high reversible specific capacity of 430 mAh g-1 at 0.1 A g-1 , which is among the highest values achieved in pure-MXene-based anodes. The superior lithium storage performance of the Nb4 C3 Tx MXene can be ascribed to its high conductivity, fast Li+ diffusion kinetics and good structural stability.
Collapse
Affiliation(s)
- Qi Tang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yongbin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Ningjun Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Ben Pu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yue Qing
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Mingzhe Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jia Bai
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yi Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jin Cui
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yan Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Bin Zhou
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu, 610200, P. R. China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
10
|
Lv Z, Zhao C, Xie M, Cai M, Peng B, Ren D, Fang Y, Dong W, Zhao W, Lin T, Lv X, Zheng G, Huang F. 1D Insertion Chains Induced Small-Polaron Collapse in MoS 2 2D Layers Toward Fast-Charging Sodium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309637. [PMID: 37985136 DOI: 10.1002/adma.202309637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Molybdenum disulfide (MoS2 ) with high theoretical capacity is viewed as a promising anode for sodium-ion batteries but suffers from inferior rate capability owing to the polaron-induced slow charge transfer. Herein, a polaron collapse strategy induced by electron-rich insertions is proposed to effectively solve the above issue. Specifically, 1D [MoS] chains are inserted into MoS2 to break the symmetry states of 2D layers and induce small-polaron collapse to gain fast charge transfer so that the as-obtained thermodynamically stable Mo2 S3 shows metallic behavior with 107 times larger electrical conductivity than that of MoS2 . Theoretical calculations demonstrate that Mo2 S3 owns highly delocalized anions, which substantially reduce the interactions of Na-S to efficiently accelerate Na+ diffusion, endowing Mo2 S3 lower energy barrier (0.38 vs 0.65 eV of MoS2 ). The novel Mo2 S3 anode exhibits a high capacity of 510 mAh g-1 at 0.5 C and a superior high-rate stability of 217 mAh g-1 at 40 C over 15 000 cycles. Further in situ and ex situ characterizations reveal the in-depth reversible redox chemistry in Mo2 S3 . The proposed polaron collapse strategy for intrinsically facilitating charge transfer can be conducive to electrode design for fast-charging batteries.
Collapse
Affiliation(s)
- Zhuoran Lv
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201210, China
| | - Chendong Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Miao Xie
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Mingzhi Cai
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Baixin Peng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Dayong Ren
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yuqiang Fang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Wujie Dong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Wei Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Tianquan Lin
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201210, China
| | - Ximeng Lv
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Fuqiang Huang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201210, China
| |
Collapse
|
11
|
Meng D, Xu M, Li S, Ganesan M, Ruan X, Ravi SK, Cui X. Functional MXenes: Progress and Perspectives on Synthetic Strategies and Structure-Property Interplay for Next-Generation Technologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304483. [PMID: 37730973 DOI: 10.1002/smll.202304483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Indexed: 09/22/2023]
Abstract
MXenes are a class of 2D materials that include layered transition metal carbides, nitrides, and carbonitrides. Since their inception in 2011, they have garnered significant attention due to their diverse compositions, unique structures, and extraordinary properties, such as high specific surface areas and excellent electrical conductivity. This versatility has opened up immense potential in various fields, catalyzing a surge in MXene research and leading to note worthy advancements. This review offers an in-depth overview of the evolution of MXenes over the past 5 years, with an emphasis on synthetic strategies, structure-property relationships, and technological prospects. A classification scheme for MXene structures based on entropy is presented and an updated summary of the elemental constituents of the MXene family is provided, as documented in recent literature. Delving into the microscopic structure and synthesis routes, the intricate structure-property relationships are explored at the nano/micro level that dictate the macroscopic applications of MXenes. Through an extensive review of the latest representative works, the utilization of MXenes in energy, environmental, electronic, and biomedical fields is showcased, offering a glimpse into the current technological bottlenecks, such asstability, scalability, and device integration. Moreover, potential pathways for advancing MXenes toward next-generation technologies are highlighted.
Collapse
Affiliation(s)
- Depeng Meng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Minghua Xu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Shijie Li
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Muthusankar Ganesan
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Xiaowen Ruan
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
12
|
Lopatik N, De A, Paasch S, Schneemann A, Brunner E. High-field and fast-spinning 1H MAS NMR spectroscopy for the characterization of two-dimensional covalent organic frameworks. Phys Chem Chem Phys 2023; 25:30237-30245. [PMID: 37921503 DOI: 10.1039/d3cp04144a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Two-dimensional (2D) materials, like 2D covalent organic frameworks (COFs), have been attracting increasing research interest. They are usually obtained as polycrystalline powders. Solid-state NMR spectroscopy is capable of delivering structural information about such materials. Previous studies have applied, for example, 13C cross-polarization magic angle spinning (CP MAS) NMR experiments to characterize 2D COFs. Herein, we demonstrate the usefulness of high-field and fast-spinning 1H MAS NMR spectroscopy to resolve and quantify the signals of different 1H species within 2D COFs, including the edge sites and/or defects. Moreover, 1H-13C heteronuclear correlation (HETCOR) spectroscopy has also been applied and can provide improved resolution to obtain further information about stacking effects as well as edge sites/defects.
Collapse
Affiliation(s)
- Nikolaj Lopatik
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden, Germany.
| | - Ankita De
- Chair of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Silvia Paasch
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden, Germany.
| | - Andreas Schneemann
- Chair of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Eike Brunner
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden, Germany.
| |
Collapse
|
13
|
Zheng T, Hu P, Wang Z, Guo T. 2D Amorphous Iron Selenide Sulfide Nanosheets for Stable and Rapid Sodium-Ion Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306577. [PMID: 37572373 DOI: 10.1002/adma.202306577] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Sodium ion batteries (SIBs) suffer from large electrode volume change and sluggish redox kinetics for the relatively large ionic radius of sodium ions, raising a significant challenge to improve their long-term cyclability and rate capacity. Here, it is proposed to apply 2D amorphous iron selenide sulfide nanosheets (a-FeSeS NSs) as an anode material for SIBs and demonstrate that they exhibit remarkable rate capability of 528.7 mAh g-1 at 1 A g-1 and long-life cycle (10 000 cycles) performance (300.4 mAh g-1 ). This performance is much more superior to that of the previously reported Fe-based anode materials, which is attributed to their amorphous structure that alleviates volume expansion of electrode, 2D nature that facilitates electrons/ions transfer, and the S/Se double anions that offer more reaction sites and stabilize the amorphous structure. Such a 2D amorphous strategy provides a fertile platform for structural engineering of other electrode materials, making a more secure energy prospect closer to a reality.
Collapse
Affiliation(s)
- Tian Zheng
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Pengfei Hu
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Zhongchang Wang
- Department of Advanced Materials and Computing, International Iberian Nanotechnology Laboratory (INL), 4715-330, Braga, Portugal
| | - Tianqi Guo
- Department of Advanced Materials and Computing, International Iberian Nanotechnology Laboratory (INL), 4715-330, Braga, Portugal
| |
Collapse
|
14
|
Huang Y, Shen J, Lin S, Song W, Zhu X, Sun Y. Defect-Free Few-Layer M 4 C 3 T x (M = V, Nb, Ta) MXene Nanosheets: Synthesis, Characterization, and Physicochemical Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302882. [PMID: 37530197 PMCID: PMC10558640 DOI: 10.1002/advs.202302882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/07/2023] [Indexed: 08/03/2023]
Abstract
High-quality few-layer M4 C3 Tx (M = V, Nb, Ta) MXenes are very important for applications and are necessary for clarifying their physicochemical properties. However, the difficulty in etching for themselves and the existence of MC/MC1-δ and M-Al alloy impurities in their M4 AlC3 precursors seriously hinder the achievement of defect-free few-layer M4 C3 Tx (M = V, Nb, Ta) MXenes nanosheets. Herein, three different defect-free few-layer M4 C3 Tx (M = V, Nb, Ta) nanosheets are obtained by using a universal synthesis strategy of calcination, selective etching, intercalation, and exfoliation. Comprehensive characterizations confirm their defect-free few-layer structure feature, large interlayer spacing (1.702-1.955 nm), types of functional groups (-OH, -F, -O), and abundant valance states (M5+ , M4+ , M3+ , M2+ , M0 ). M4 C3 Tx (M = V, Nb, Ta) free-standing films obtained by vacuum filtration of few-layer M4 C3 Tx inks show good hydrophilia, high thermostability, and conductivity. A roadmap on synthesis of defect-free few-layer M4 C3 Tx (M = V, Nb, Ta) nanosheets are proposed and three key points are summarized. This work provides detailed guidelines for the synthesis of other defect-free few-layer MXenes nanosheets, but also will stimulate extensive functional explorations for M4 C3 Tx (M = V, Nb, Ta) MXenes nanosheets in the future.
Collapse
Affiliation(s)
- Yanan Huang
- Key Laboratory of Materials PhysicsInstitute of Solid State PhysicsHFIPSChinese Academy of SciencesHefeiAnhui230031P. R. China
| | - Jibing Shen
- Key Laboratory of Materials PhysicsInstitute of Solid State PhysicsHFIPSChinese Academy of SciencesHefeiAnhui230031P. R. China
- University of Science and Technology of ChinaHefei230026P. R. China
| | - Shuai Lin
- Key Laboratory of Materials PhysicsInstitute of Solid State PhysicsHFIPSChinese Academy of SciencesHefeiAnhui230031P. R. China
| | - Wenhai Song
- Key Laboratory of Materials PhysicsInstitute of Solid State PhysicsHFIPSChinese Academy of SciencesHefeiAnhui230031P. R. China
| | - Xuebin Zhu
- Key Laboratory of Materials PhysicsInstitute of Solid State PhysicsHFIPSChinese Academy of SciencesHefeiAnhui230031P. R. China
| | - Yuping Sun
- Key Laboratory of Materials PhysicsInstitute of Solid State PhysicsHFIPSChinese Academy of SciencesHefeiAnhui230031P. R. China
- High Magnetic Field LaboratoryHFIPSChinese Academy of SciencesHefeiAnhui230031P. R. China
- Collaborative Innovation Centre of Advanced MicrostructuresNanjing UniversityNanjingJiangsu210093P. R. China
| |
Collapse
|
15
|
Guo Y, Du Z, Cao Z, Li B, Yang S. MXene Derivatives for Energy Storage and Conversions. SMALL METHODS 2023; 7:e2201559. [PMID: 36811328 DOI: 10.1002/smtd.202201559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Associated with the rapid development of 2D transition metal carbides, nitrides, and carbonitrides (MXenes), MXene derivatives have been recently exploited and exhibited unique physical/chemical properties, holding promising applications in the areas of energy storage and conversions. This review provides a comprehensive summarization of the latest research and progress on MXene derivatives, including termination-tailored MXenes, single-atom implanted MXenes, intercalated MXenes, van der Waals atomic layers, and non-van der Waals heterostructures. The intrinsic relationship between structure, properties, and corresponding applications for MXene derivatives are then emphasized. Finally, the essential challenges are addressed and perspectives for the MXene derivatives are also discussed.
Collapse
Affiliation(s)
- Yu Guo
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Zhiguo Du
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Zhenjiang Cao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Bin Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Shubin Yang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
16
|
Saraf M, Zhang T, Averianov T, Shuck CE, Lord RW, Pomerantseva E, Gogotsi Y. Vanadium and Niobium MXenes-Bilayered V 2 O 5 Asymmetric Supercapacitors. SMALL METHODS 2023; 7:e2201551. [PMID: 36802207 DOI: 10.1002/smtd.202201551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Indexed: 06/18/2023]
Abstract
MXenes offer high metallic conductivity and redox capacitance that are attractive for high-power, high-energy storage devices. However, they operate limitedly under high anodic potentials due to irreversible oxidation. Pairing them with oxides to design asymmetric supercapacitors may expand the voltage window and increase the energy storage capabilities. Hydrated lithium preintercalated bilayered V2 O5 ( δ-Lix V2 O5 ·nH2 O) is attractive for aqueous energy storage due to its high Li capacity at high potentials; however, its poor cyclability remains a challenge. To overcome its limitations and achieve a wide voltage window and excellent cyclability, it is combined with V2 C and Nb4 C3 MXenes. Asymmetric supercapacitors employing lithium intercalated V2 C (Li-V2 C) or tetramethylammonium intercalated Nb4 C3 (TMA-Nb4 C3 ) MXenes as the negative electrode, and a δ-Lix V2 O5 ·nH2 O composite with carbon nanotubes as the positive electrode in 5 m LiCl electrolyte operate over wide voltage windows of 2 and 1.6 V, respectively. The latter shows remarkably high cyclability-capacitance retention of ≈95% after 10 000 cycles. This work highlights the importance of selecting appropriate MXenes to achieve a wide voltage window and a long cycle life in combination with oxide anodes to demonstrate the potential of MXenes beyond Ti3 C2 in energy storage.
Collapse
Affiliation(s)
- Mohit Saraf
- A.J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Teng Zhang
- A.J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Timofey Averianov
- A.J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Christopher E Shuck
- A.J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Robert W Lord
- A.J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Ekaterina Pomerantseva
- A.J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Yury Gogotsi
- A.J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Xiao Y, Ye G, Xie M, Zhang Y, Chen J, Du C, Wan L. Mushroom-like cobalt nickle metaphosphate@nickel diselenide core-shell nanorods for asymmetric supercapacitors. J Colloid Interface Sci 2023; 638:300-312. [PMID: 36739748 DOI: 10.1016/j.jcis.2023.01.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/08/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Although transition metal metaphosphates (TMPOs) display special physical/chemical features and high theoretical capacities, their applications for supercapacitors (SCs) are still restricted by their low energy densities and inferior cycling stability. Herein, a novel strategy has been proposed to address these issues through in situ construction of cobalt nickle metaphosphate (Co0.2Ni0.8(PO3)2)@nickel diselenide (NiSe2) core-shell heterostructure on carbon paper (CP) as a self-supporting flexible electrode for SCs. Particularly, this unique mushroom-like porous nanoarchitecture assembled by one-dimensional (1D) Co0.2Ni0.8(PO3)2 nanorods and zero-dimensional (0D) NiSe2 nanospheres can expose abundant active sites and afford multi-dimensional channels, which favors rapid electron ions/electron transfer, accelerates the reaction kinetics, and alleviates volume changes during charging/discharging processes. Profiting from its well-aligned 1D/0D nanostructure and strong synergistic effect between Co0.2Ni0.8(PO3)2 and NiSe2, the Co0.2Ni0.8(PO3)2@NiSe2/CP electrode delivers a specific capacity of 219.4 mAh/g/0.414 mAh cm-2 at 1 A/g and good cycling stability with capacity retention of 90.7% after 5000 cycles, outperforming many previously reported TMPO-based electrodes in literature. Impressively, an asymmetric supercapacitor (ASC) device assembled with Co0.2Ni0.8(PO3)2@NiSe2 as cathode and porous carbon as anode achieves an energy density of 69.2 Wh kg-1 at 736.0 W kg-1 and maintains a capacity retention of 97.6% after 20,000 charge-discharge cycles. This work provides an efficient approach to design multi-dimensional hybrid nanomaterials for high-performance SCs.
Collapse
Affiliation(s)
- Ying Xiao
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Ge Ye
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Mingjiang Xie
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Yan Zhang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Jian Chen
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Cheng Du
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China.
| | - Liu Wan
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China.
| |
Collapse
|
18
|
Yang G, Wang X, Li Y, Zhang Z, Huang J, Zheng F, Pan Q, Wang H, Li Q, Cai Y. Self-supporting network-structured MoS 2/heteroatom-doped graphene as superior anode materials for sodium storage. RSC Adv 2023; 13:12344-12354. [PMID: 37091616 PMCID: PMC10116859 DOI: 10.1039/d2ra08207a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
Layered graphene and molybdenum disulfide have outstanding sodium ion storage properties that make them suitable for sodium-ion batteries (SIBs). However, the easy and large-scale preparation of graphene and molybdenum disulfide composites with structural stability and excellent performance face enormous challenges. In this study, a self-supporting network-structured MoS2/heteroatom-doped graphene (MoS2/NSGs-G) composite is prepared by a simple and exercisable electrochemical exfoliation followed by a hydrothermal route. In the composite, layered MoS2 nanosheets and heteroatom-doped graphene nanosheets are intertwined with each other into self-supporting network architecture, which could hold back the aggregation of MoS2 and graphene effectively. Moreover, the composite possesses enlarged interlayer spacing of graphene and MoS2, which could contribute to an increase in the reaction sites and ion transport of the composite. Owing to these advantageous structural characteristics and the heteroatomic co-doping of nitrogen and sulfur, MoS2/NSGs-G demonstrates greatly reversible sodium storage capacity. The measurements revealed that the reversible cycle capacity was 443.9 mA h g-1 after 250 cycles at 0.5 A g-1, and the rate capacity was 491.5, 490.5, 453.9, 418.1, 383.8, 333.1, and 294.4 mA h g-1 at 0.1, 0.2, 0.5, 1, 2, 5 and 10 A g-1, respectively. Furthermore, the MoS2/NSGs-G sample displayed lower resistance, dominant pseudocapacitive contribution, and faster sodium ion interface kinetics characteristic. Therefore, this study provides an operable strategy to obtain high-performance anode materials, and MoS2/NSGs-G with favorable structure and excellent cycle stability has great application potential for SIBs.
Collapse
Affiliation(s)
- Guanhua Yang
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology Liuzhou 545006 China
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| | - Xu Wang
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology Liuzhou 545006 China
| | - Yihong Li
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology Liuzhou 545006 China
| | - Zhiguo Zhang
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology Liuzhou 545006 China
| | - Jiayu Huang
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology Liuzhou 545006 China
| | - Fenghua Zheng
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| | - Qichang Pan
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| | - Hongqiang Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| | - Qingyu Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| | - Yezheng Cai
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| |
Collapse
|
19
|
Tripodal Pd metallenes mediated by Nb 2C MXenes for boosting alkynes semihydrogenation. Nat Commun 2023; 14:661. [PMID: 36750563 PMCID: PMC9905561 DOI: 10.1038/s41467-023-36378-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
2D metallene nanomaterials have spurred considerable attention in heterogeneous catalysis by virtue of sufficient unsaturated metal atoms, high specific surface area and surface strain. Nevertheless, the strong metallic bonding in nanoparticles aggravates the difficulty in the controllable regulation of the geometry of metallenes. Here we propose an efficient galvanic replacement strategy to construct Pd metallenes loaded on Nb2C MXenes at room temperature, which is triggered by strong metal-support interaction based on MD simulations. The Pd metallenes feature a chair structure of six-membered ring with the coordination number of Pd as low as 3. Coverage-dependent kinetic analysis based on first-principles calculations reveals that the tripodal Pd metallenes promote the diffusion of alkene and inhibit its overhydrogenation. As a consequence, Pd/Nb2C delivers an outstanding turnover frequency of 10372 h-1 and a high selectivity of 96% at 25 oC in the semihydrogenation of alkynes without compromising the stability. This strategy is general and scalable considering the plentiful members of the MXene family, which can set a foundation for the design of novel supported-metallene catalysts for demanding transformations.
Collapse
|
20
|
Fang Y, Lv X, Lv Z, Wang Y, Zheng G, Huang F. Electron-Extraction Engineering Induced 1T''-1T' Phase Transition of Re 0.75 V 0.25 Se 2 for Ultrafast Sodium Ion Storage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2205680. [PMID: 36372525 PMCID: PMC9798975 DOI: 10.1002/advs.202205680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/13/2022] [Indexed: 06/01/2023]
Abstract
Inducing new phases of transition metal dichalcogenides by controlling the d-electron-count has attracted much interest due to their novel structures and physicochemical properties. 1T'' ReSe2 is a promising candidate for sodium storage, but the low electronic conductivity and limited active sites hinder its electrochemical capacity. Herein, new-phase 1T' Re0.75 V0.25 Se2 crystals (P2/m) with zig-zag chains are successfully synthesized. The 1T''-1T' phase transition results from the electronic reorganization of 5d orbitals via electron extraction after V-atom doping. The electrical conductivity of 1T' Re0.75 V0.25 Se2 is 2.7 × 105 times higher than that of 1T'' ReSe2 . Moreover, density functional theory (DFT) calculations reveal that 1T' Re0.75 V0.25 Se2 has a larger interlayer spacing, lower bonding energy, and migration energy barrier for Na+ ions than 1T'' ReSe2 . As a result, 1T' Re0.75 V0.25 Se2 electrode shows an excellent rate capability of 203 mAh g-1 at 50 C with no capacity fading over 5000 cycles for sodium storage, which is superior to most reported sodium-ion anode materials. This 1T' Re0.75 V0.25 Se2 provides a new platform for various applications such as electronics, catalysis, and energy storage.
Collapse
Affiliation(s)
- Yuqiang Fang
- State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of SciencesShanghai200050P. R. China
| | - Ximeng Lv
- Laboratory of Advanced MaterialsDepartment of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsFudan UniversityShanghai200438P. R. China
| | - Zhuoran Lv
- State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of SciencesShanghai200050P. R. China
| | - Yang Wang
- State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of SciencesShanghai200050P. R. China
| | - Gengfeng Zheng
- Laboratory of Advanced MaterialsDepartment of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsFudan UniversityShanghai200438P. R. China
| | - Fuqiang Huang
- State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of SciencesShanghai200050P. R. China
- State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| |
Collapse
|
21
|
Wu M, Zheng W, Hu X, Zhan F, He Q, Wang H, Zhang Q, Chen L. Exploring 2D Energy Storage Materials: Advances in Structure, Synthesis, Optimization Strategies, and Applications for Monovalent and Multivalent Metal-Ion Hybrid Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205101. [PMID: 36285775 DOI: 10.1002/smll.202205101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The design and development of advanced energy storage devices with good energy/power densities and remarkable cycle life has long been a research hotspot. Metal-ion hybrid capacitors (MHCs) are considered as emerging and highly prospective candidates deriving from the integrated merits of metal-ion batteries with high energy density and supercapacitors with excellent power output and cycling stability. The realization of high-performance MHCs needs to conquer the inevitable imbalance in reaction kinetics between anode and cathode with different energy storage mechanisms. Featured by large specific surface area, short ion diffusion distance, ameliorated in-plane charge transport kinetics, and tunable surface and/or interlayer structures, 2D nanomaterials provide a promising platform for manufacturing battery-type electrodes with improved rate capability and capacitor-type electrodes with high capacity. In this article, the fundamental science of 2D nanomaterials and MHCs is first presented in detail, and then the performance optimization strategies from electrodes and electrolytes of MHCs are summarized. Next, the most recent progress in the application of 2D nanomaterials in monovalent and multivalent MHCs is dealt with. Furthermore, the energy storage mechanism of 2D electrode materials is deeply explored by advanced characterization techniques. Finally, the opportunities and challenges of 2D nanomaterials-based MHCs are prospected.
Collapse
Affiliation(s)
- Mengcheng Wu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Wanying Zheng
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Xi Hu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Feiyang Zhan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R., 999077, P. R. China
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
22
|
Qie H, Liu M, Fu X, Tan X, Zhang Y, Ren M, Zhang Y, Pei Y, Lin A, Xi B, Cui J. Interfacial Charge-Modulated Multifunctional MoS 2/Ti 3C 2T x Penetrating Electrode for High-Efficiency Freshwater Production. ACS NANO 2022; 16:18898-18909. [PMID: 36278901 DOI: 10.1021/acsnano.2c07810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Freshwater production is critical in terms of solving the global water shortage. Aiming at improving freshwater production capability and ensuring its quality, an interfacial charge-modulated MoS2/Ti3C2Tx-modified carbon fiber (CF/MoS2/Ti3C2Tx) penetrating electrode is designed. To maximize the desalination and degradation efficiencies of CF/MoS2/Ti3C2Tx, a photocatalytic component is introduced into the membrane capacitive deionization (PMCDI) device. High desalination capability is derived from the lamellar architecture structure of MoS2/Ti3C2Tx. Meanwhile, excellent degradation performance is due to the formation of two photoelctrocatalytic activity centers, directionally generating singlet oxygen (1O2) and hydroxyl radical (•OH). The intercalated Cl- (desalination) as the electron transfer bridge optimizes the charge distribution of MoS2/Ti3C2Tx, reinforcing the photoelectrocatalytic activity (degradation). The formation of the electron-deficient (desalination) and electron-rich (regeneration) regions at the terminated O atom of Ti3C2Tx accelerate the generations of •OH and 1O2, respectively. In perspective, a mutual promotion process of desalination and degradation is achieved for high-efficiency production of high-quality freshwater.
Collapse
Affiliation(s)
- Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Xinping Fu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Xiao Tan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Yu Zhang
- School of Environment, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing Normal University, Beijing100875, People's Republic of China
| | - Meng Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Yinjie Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Yuansheng Pei
- School of Environment, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing Normal University, Beijing100875, People's Republic of China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Beidou Xi
- Chinese Research Academy of Environmental Sciences, Beijing100012, People's Republic of China
| | - Jun Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| |
Collapse
|
23
|
Bao C, Wang J, Wang B, Sun J, He L, Pan Z, Jiang Y, Wang D, Liu X, Dou SX, Wang J. 3D Sodiophilic Ti 3C 2 MXene@g-C 3N 4 Hetero-Interphase Raises the Stability of Sodium Metal Anodes. ACS NANO 2022; 16:17197-17209. [PMID: 36222585 DOI: 10.1021/acsnano.2c07771] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Owing to several advantages of metallic sodium (Na), such as a relatively high theoretical capacity, low redox potential, wide availability, and low cost, Na metal batteries are being extensively studied, which are expected to play a major role in the fields of electric vehicles and grid-scale energy storage. Although considerable efforts have been devoted to utilizing MXene-based materials for suppressing Na dendrites, achieving a stable cycling of Na metal anodes remains extremely challenging due to, for example, the low Coulombic efficiency (CE) caused by the severe side reactions. Herein, a g-C3N4 layer was attached in situ on the Ti3C2 MXene surface, inducing a surface state reconstruction and thus forming a stable hetero-interphase with excellent sodiophilicity between the MXene and g-C3N4 to inhibit side reactions and guide uniform Na ion flux. The 3D construction can not only lower the local current density to facilitate uniform Na plating/stripping but also mitigate volume change to stabilize the electrolyte/electrode interphase. Thus, the 3D Ti3C2 MXene@g-C3N4 nanocomposite enables much enhanced average CEs (99.9% at 1 mA h cm-2, 0.5 mA cm-2) in asymmetric half cells, long-term stability (up to 700 h) for symmetric cells, and stable cycling (up to 800 cycles at 2 C), together with outstanding rate capability (up to 20 C), of full cells. The present study demonstrates an approach in developing practically high performance for Na metal anodes.
Collapse
Affiliation(s)
- Changyuan Bao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150001, China
- Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore
| | - Junhui Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore
| | - Bo Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150001, China
| | - Jianguo Sun
- Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore
| | - Linchun He
- Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore
| | - Zhenghui Pan
- School of Materials Science and Engineering, Tongji University, Shanghai201804, China
| | - Yunpeng Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150001, China
| | - Dianlong Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150001, China
| | - Ximeng Liu
- Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore
| | - Shi Xue Dou
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW2500, Australia
- Institute of Energy Material Science, University of Shanghai for Science and Technology, Shanghai200093, China
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore138634, Singapore
| |
Collapse
|
24
|
Xi W, Jin J, Zhang Y, Wang R, Gong Y, He B, Wang H. Hierarchical MXene/transition metal oxide heterostructures for rechargeable batteries, capacitors, and capacitive deionization. NANOSCALE 2022; 14:11923-11944. [PMID: 35920652 DOI: 10.1039/d2nr02802f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
2D MXenes have attracted considerable attention due to their high electronic conductivity, tunable metal compositions, functional termination groups, low ion diffusion barriers, and abundant active sites. However, MXenes suffer from sheet stacking and partial surface oxidation, limiting their energy storage and water treatment development. To solve these problems and enhance the performance of MXenes in practical applications, various hierarchical MXene/transition metal oxide (MXene/TMO) heterostructures are rationally designed and constructed. The hierarchical MXene/TMO heterostructures can not only prevent the stacking of MXene sheets and improve the electronic conductivity and buffer the volume change of TMOs during the electrochemical reaction process. The synergistic effect of conductive MXenes and active TMOs also makes MXene/TMO heterostructures promising electrode materials for energy storage and seawater desalination. This review mainly introduces and discusses the recent research progress in MXene/TMO heterostructures, focusing on their synthetic strategies, heterointerface engineering, and applications in rechargeable batteries, capacitors, and capacitive deionization (CDI). Finally, the key challenges and prospects for the future development of the MXene/TMO heterostructures in rechargeable batteries, capacitors, and CDI are proposed.
Collapse
Affiliation(s)
- Wen Xi
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Jun Jin
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Youfang Zhang
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Rui Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Yansheng Gong
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Beibei He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Huanwen Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
25
|
Xu K, Guo W, Zhang H, Zhou H, Zhu Z, Zhou Y, Liang W, Yu T, Zhao H, He M, Yang T. An efficient vanadium/cobalt metaphosphate electrocatalyst for hydrogen and oxygen evolution in alkaline water splitting. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01238c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen, which meets the goal of carbon neutrality, is expected to replace conventional fossil fuels in the near future. Electrochemical water splitting is a clean hydrogen production technology, but its...
Collapse
|