1
|
Jin C, Wang J, Yang S, Ding Y, Chang J, Liu W, Xu Y, Shi X, Xie P, Ho JC, Wan C, Zheng Z, Sun J, Liao L, Yang J. Bidirectional Photovoltage-Driven Oxide Transistors for Neuromorphic Visual Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410398. [PMID: 39466992 DOI: 10.1002/adma.202410398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Biological vision is one of the most important parts of the human perception system. However, emulating biological visuals is challenging because it requires complementary photoexcitation and photoinhibition. Here, the study presents a bidirectional photovoltage-driven neuromorphic visual sensor (BPNVS) that is constructed by monolithically integrating two perovskite solar cells (PSCs) with dual-gate ion-gel-gated oxide transistors. PSCs act as photoreceptors, converting external visual stimuli into electrical signals, whereas oxide transistors generate neuromorphic signal outputs that can be adjusted to produce positive and negative photoresponses. This device mimics the human vision system's ability to recognize colored and color-mixed patterns. The device achieves a static color recognition accuracy of 96% by utilizing the reservoir computing system for feature extraction. The BPNVS mem-reservoir chip is also proposed for handing object movement and dynamic color recognition. This work is a significant step forward in neuromorphic sensing and complex pattern recognition.
Collapse
Affiliation(s)
- Chenxing Jin
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, 865 Changning Road, Shanghai, 200050, P. R. China
| | - Jingwen Wang
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, 865 Changning Road, Shanghai, 200050, P. R. China
| | - Shenglan Yang
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yang Ding
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Jianhui Chang
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Wanrong Liu
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, 865 Changning Road, Shanghai, 200050, P. R. China
| | - Yunchao Xu
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, 865 Changning Road, Shanghai, 200050, P. R. China
| | - Xiaofang Shi
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, 865 Changning Road, Shanghai, 200050, P. R. China
| | - Pengshan Xie
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Changjin Wan
- School of Electronic Science & Engineering, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SRA, 999077, P. R. China
| | - Jia Sun
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, 865 Changning Road, Shanghai, 200050, P. R. China
| | - Lei Liao
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, P. R. China
| | - Junliang Yang
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
2
|
Chen P, Xiao Y, Li S, Jia X, Luo D, Zhang W, Snaith HJ, Gong Q, Zhu R. The Promise and Challenges of Inverted Perovskite Solar Cells. Chem Rev 2024; 124:10623-10700. [PMID: 39207782 DOI: 10.1021/acs.chemrev.4c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Recently, there has been an extensive focus on inverted perovskite solar cells (PSCs) with a p-i-n architecture due to their attractive advantages, such as exceptional stability, high efficiency, low cost, low-temperature processing, and compatibility with tandem architectures, leading to a surge in their development. Single-junction and perovskite-silicon tandem solar cells (TSCs) with an inverted architecture have achieved certified PCEs of 26.15% and 33.9% respectively, showing great promise for commercial applications. To expedite real-world applications, it is crucial to investigate the key challenges for further performance enhancement. We first introduce representative methods, such as composition engineering, additive engineering, solvent engineering, processing engineering, innovation of charge transporting layers, and interface engineering, for fabricating high-efficiency and stable inverted PSCs. We then delve into the reasons behind the excellent stability of inverted PSCs. Subsequently, we review recent advances in TSCs with inverted PSCs, including perovskite-Si TSCs, all-perovskite TSCs, and perovskite-organic TSCs. To achieve final commercial deployment, we present efforts related to scaling up, harvesting indoor light, economic assessment, and reducing environmental impacts. Lastly, we discuss the potential and challenges of inverted PSCs in the future.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
| | - Yun Xiao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, U.K
| | - Shunde Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
| | - Xiaohan Jia
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
| | - Deying Luo
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
| | - Wei Zhang
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey GU2 7XH, U.K
- State Centre for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Henry J Snaith
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, U.K
| | - Qihuang Gong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Rui Zhu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
3
|
Lin Y, Yang W, Gu H, Du F, Liao J, Yu D, Xia J, Wang H, Yang S, Fang G, Liang C. Transparent Recombination Layers Design and Rational Characterizations for Efficient Two-Terminal Perovskite-Based Tandem Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405684. [PMID: 38769911 DOI: 10.1002/adma.202405684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/12/2024] [Indexed: 05/22/2024]
Abstract
Two-terminal (2T) perovskite-based tandem solar cells (TSCs) arouse burgeoning interest in breaking the Shockley-Queisser (S-Q) limit of single-junction solar cells by combining two subcells with different bandgaps. However, the highest certified efficiency of 2T perovskite-based TSCs (33.9%) lags behind the theoretical limit (42-43%). A vital challenge limiting the development of 2T perovskite-based TSCs is the transparent recombination layers/interconnecting layers (RLs) design between two subcells. To improve the performance of 2T perovskite-based TSCs, RLs simultaneously fulfill the optical loss, contact resistance, carrier mobility, stress management, and conformal coverage requirements. In this review, the definition, functions, and requirements of RLs in 2T perovskite-based TSCs are presented. The insightful characterization methods applicable to RLs, which are inspiring for further research on the RLs both in 2T perovskite-based two-junction and multi-junction TSCs, are also highlighted. Finally, the key factors that currently limit the performance enhancement of RLs and the future directions that should be continuously focused on are summarized.
Collapse
Affiliation(s)
- Yuexin Lin
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenhan Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hao Gu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
| | - Fenqi Du
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jinfeng Liao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
| | - Dejian Yu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
| | - Junmin Xia
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Haibin Wang
- Institute of Advanced Ceramics, Henan Academy of Sciences, Zhengzhou, 450046, P. R. China
| | - Shengchun Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guojia Fang
- Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Chao Liang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
4
|
Han M, Zhou R, Chen G, Li Q, Li P, Sun C, Zhang Y, Song Y. Unveiling the Potential of Two-Terminal Perovskite/Organic Tandem Solar Cells: Mechanisms, Status, and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402143. [PMID: 38609159 DOI: 10.1002/adma.202402143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/25/2024] [Indexed: 04/14/2024]
Abstract
Perovskite/organic tandem solar cells (PO-TSCs) demonstrate exceptional suitability for emerging applications such as building-integrated photovoltaics, wearable devices, and greenhouse farming. By leveraging the distinctive attributes of perovskite and organic materials, which encompass expanded solar spectrum utilization, chemically benign solubility, and soft nature, PO-TSCs position themselves as ideal candidates for high-performance semi-transparent photovoltaics (ST-PVs). Despite these advantages, their development significantly lags behind other perovskite-based counterparts, such as perovskite/perovskite, perovskite/silicon, and perovskite/Cu(In, Ga)Se2. To address existing challenges and unlock the full potential of PO-TSCs, an exploration of the fundamental mechanisms governing tandem photovoltaic devices is embarked. Delving into critical aspects such as charge generation/separation, energy level alignment, and material choices becomes pivotal for optimizing PO-TSC performance. The investigation of monolithic two-terminal PO-TSCs offers insights into achievements and barriers, recognizing the competitive landscape with other TSC counterparts. Further scrutiny of perovskite absorbers and organic absorbers in TSCs reveals strategies aimed at enhancing stability and efficiency. The discussion extends to interconnection layers, elucidating their role in optimizing light transmission and balancing carrier recombination. In conclusion, a compelling outlook on the dynamic landscape of PO-TSCs is presented, highlighting the remarkable efficiency progression and signaling their potential to revolutionize solar energy harvesting technologies.
Collapse
Affiliation(s)
- Mengqi Han
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Ruimin Zhou
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Ge Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Qin Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Pengwei Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chenkai Sun
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yiqiang Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| |
Collapse
|
5
|
Dong Y, Yu R, Su G, Ma Z, He Z, Wang R, Zhang Y, Yang J, Gong Y, Li M, Tan Z. Interface Reactive Sputtering of Transparent Electrode for High-Performance Monolithic and Stacked Perovskite Tandem Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312704. [PMID: 38615260 DOI: 10.1002/adma.202312704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Sputtered indium tin oxide (ITO) fulfills the requirements of top transparent electrodes (TTEs) in semitransparent perovskite solar cells (PSCs) and stacked tandem solar cells (TSCs), as well as of the recombination layers in monolithic TSCs. However, the high-energy ITO particles will cause damage to the devices. Herein, the interface reactive sputtering strategy is proposed to construct cost-effective TTEs with high transmittance and excellent carrier transporting ability. Polyethylenimine (PEI) is chosen as the interface reactant that can react with sputtered ITO nanoparticles, so that, coordination compounds can be formed during the deposition process, facilitating the carrier transport at the interface of C60/PEI/ITO. Besides, the impact force of energetic ITO particles is greatly alleviated, and the intactness of the underlying C60 layer and perovskite layer is guaranteed. Thus, the prepared semitransparent subcells achieve a significantly enhanced power conversion efficiency (PCE) of 19.17%, surpassing those based on C60/ITO (11.64%). Moreover, the PEI-based devices demonstrate excellent storage stability, which maintains 98% of their original PCEs after 2000 h. On the strength of the interface reactive sputtering ITO electrode, a stacked all-perovskite TSC with a PCE of 26.89% and a monolithic perovskite-organic TSC with a PCE of 24.33% are successfully fabricated.
Collapse
Affiliation(s)
- Yiman Dong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Runnan Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Gangfeng Su
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zongwen Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhangwei He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruyue Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuling Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jing Yang
- Institute of Science and Technology, China Three Gorges Corporation, Beijing, 100038, China
| | - Yongshuai Gong
- Institute of Science and Technology, China Three Gorges Corporation, Beijing, 100038, China
| | - Minghua Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhan'ao Tan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
6
|
Marimuthu S, Prabhakaran Shyma A, Sathyanarayanan S, Gopal T, James JT, Nagalingam SP, Gunaseelan B, Babu S, Sellappan R, Grace AN. The dawn of MXene duo: revolutionizing perovskite solar cells with MXenes through computational and experimental methods. NANOSCALE 2024; 16:10108-10141. [PMID: 38722253 DOI: 10.1039/d4nr01053a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Integrating MXene into perovskite solar cells (PSCs) has heralded a new era of efficient and stable photovoltaic devices owing to their supreme electrical conductivity, excellent carrier mobility, adjustable surface functional groups, excellent transparency and superior mechanical properties. This review provides a comprehensive overview of the experimental and computational techniques employed in the synthesis, characterization, coating techniques and performance optimization of MXene additive in electrodes, hole transport layer (HTL), electron transport layer (ETL) and perovskite photoactive layer of the perovskite solar cells (PSCs). Experimentally, the synthesis of MXene involves various methods, such as selective etching of MAX phases and subsequent delamination. At the same time, characterization techniques encompass X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy, which elucidate the structural and chemical properties of MXene. Experimental strategies for fabricating PSCs involving MXene include interfacial engineering, charge transport enhancement, and stability improvement. On the computational front, density functional theory calculations, drift-diffusion modelling, and finite element analysis are utilized to understand MXene's electronic structure, its interface with perovskite, and the transport mechanisms within the devices. This review serves as a roadmap for researchers to leverage a diverse array of experimental and computational methods in harnessing the potential of MXene for advanced PSCs.
Collapse
Affiliation(s)
- Sathish Marimuthu
- Centre for Nanotechnology Research (CNR), Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Arunkumar Prabhakaran Shyma
- Centre for Nanotechnology Research (CNR), Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Shriswaroop Sathyanarayanan
- Centre for Nanotechnology Research (CNR), Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Tamilselvi Gopal
- Centre for Nanotechnology Research (CNR), Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Jaimson T James
- Centre for Nanotechnology Research (CNR), Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Suruthi Priya Nagalingam
- Centre for Nanotechnology Research (CNR), Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Bharath Gunaseelan
- Centre for Nanotechnology Research (CNR), Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Sivasri Babu
- Centre for Nanotechnology Research (CNR), Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Raja Sellappan
- Centre for Nanotechnology Research (CNR), Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Andrews Nirmala Grace
- Centre for Nanotechnology Research (CNR), Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| |
Collapse
|
7
|
Meng X, Jia Z, Niu X, He C, Hou Y. Opportunities and challenges in perovskite-organic thin-film tandem solar cells. NANOSCALE 2024; 16:8307-8316. [PMID: 38568749 DOI: 10.1039/d3nr06602a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Efficiency is paramount in enhancing the performance and cost-effectiveness of solar cells. Recent advancements in single-junction perovskite solar cells (PSCs) have yielded an impressive efficiency of 26.1%, nearing their theoretical limit. Meanwhile, multi-junction tandem solar cells exhibit a remarkable efficiency potential exceeding 42%, surpassing the 33% limit of single-junction cells, thereby opening avenues for ultra-high-efficiency solar cells. Tandem solar cells (TSCs) represent a groundbreaking photovoltaic technology, offering high efficiency, low cost, and a simple fabrication process. Among various TSCs, perovskite-organic TSCs (PO TSCs) are particularly promising due to their ability to leverage the complementary strengths of PSCs and organic solar cells (OSCs). PO TSCs are poised to outperform existing TSCs in terms of device performance, manufacturing cost, and diverse applications. The introduction of Y6-series non-fullerene acceptors (NFAs) over the past three years has significantly advanced the development of OSCs, leading to remarkable progress in PO TSCs. This paper commences by elucidating the advantages and potential of OSCs as bottom sub-cells in PO TSCs, followed by an in-depth review of mainstream interconnection layer (ICL) design. It then addresses key challenges in wide bandgap PSCs, including phase segregation, photovoltage loss, energy loss, and long-term stability. The paper concludes by examining critical factors influencing the future development of PO TSCs.
Collapse
Affiliation(s)
- Xin Meng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
- Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, 117574, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China
| | - Zhengrong Jia
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
- Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, 117574, Singapore
| | - Xiuxiu Niu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
- Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, 117574, Singapore
| | - Chunnian He
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Yi Hou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
- Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, 117574, Singapore
| |
Collapse
|
8
|
Hu X, Shen N, Zhang D, Wu Y, Shang R, Wang L, Qin C. Multi-Functional Spirobifluorene Phosphonate Based Exciplex Interface Enables V oc Reaching 95% of Theoretical Limit for Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313099. [PMID: 38299926 DOI: 10.1002/adma.202313099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Metal halide perovskite solar cells (PSCs) show significant advancements in power conversion efficiency (PCE). However, the open-circuit voltage (VOC) of PSCs is limited by interfacial factors such as defect-induced recombination, energy band mismatch, and non-intimate interface contact. Here, an exciplex interface is first developed based on the strategically designed and synthesized two spirobifluorene phosphonate molecules to mitigate VOC loss in PSCs. The exciplex interface constructed by the intimate contact between the multi-functional molecules and hole transport layer takes the roles to promote the hole extraction by donor-acceptor interaction, passivate coordination-unsaturated Pb2+ defects by equipped phosphonate groups, and optimize the energy level alignment. As a result, a record VOC of 1.26 V with a perovskite bandgap of 1.61 eV is achieved, representing over 95% of theoretical limit. This advancement leads to an increase in PCE from 21.29% to 24.12% and improved stability. The exciplex interface paves the way for addressing the long-standing challenge of VOC loss and promotes the wider application of PSCs.
Collapse
Affiliation(s)
- Xinyu Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ni Shen
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Dezhong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
| | - Yanjie Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
| | - Rui Shang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chuanjiang Qin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
9
|
Li F, Wu D, Shang L, Xia R, Zhang H, Huang Z, Gong J, Mao L, Zhang H, Sun Y, Yang T, Sun X, Feng Z, Liu M. Highly Efficient Monolithic Perovskite/Perovskite/Silicon Triple-Junction Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311595. [PMID: 38190828 DOI: 10.1002/adma.202311595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Indexed: 01/10/2024]
Abstract
Wide-bandgap metal halide perovskites have demonstrated promise in multijunction photovoltaic (PV) cells. However, photoinduced phase segregation and the resultant low open-circuit voltage (Voc) have greatly limited the PV performance of perovskite-based multijunction devices. Here, a alloying strategy is reported to achieve uniform distribution of triple cations and halides in wide-bandgap perovskites by doping Rb+ and Cl- with small ionic radii, which effectively suppresses halide phase segregation while promoting the homogenization of surface potential. Based on this strategy, a Voc of 1.33 V is obtained from single-junction perovskite solar cells, and a VOC approaching 3.0 V and a power conversion efficiency of 25.0% (obtained from reverse scan direction, certified efficiency: 24.19%) on an 1.04 cm2 photoactive area can be achieved in a perovskite/perovskite/c-Si triple-junction tandem cell, where the certification efficiency is by far the greatest performance of perovskite-based triple-junction tandem solar cells. This work overcomes the performance deadlock of perovskite-based triple-junction tandem cells by setting a materials-by-design paradigm.
Collapse
Affiliation(s)
- Faming Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Dan Wu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Le Shang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Rui Xia
- State Key Laboratory of PV Science and Technology, Trina Solar, ChangZhou, 213031, P. R. China
| | - Hengrui Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Zhengxin Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jue Gong
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Lin Mao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Hao Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yinqing Sun
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Tian Yang
- Sichuan Research Center of New Materials, National Energy Novel Materials Center, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu, 610200, P. R. China
| | - Xianggang Sun
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Zhiqiang Feng
- State Key Laboratory of PV Science and Technology, Trina Solar, ChangZhou, 213031, P. R. China
| | - Mingzhen Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| |
Collapse
|
10
|
Tang H, Bai Y, Zhao H, Qin X, Hu Z, Zhou C, Huang F, Cao Y. Interface Engineering for Highly Efficient Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2212236. [PMID: 36867581 DOI: 10.1002/adma.202212236] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/07/2023] [Indexed: 07/28/2023]
Abstract
Organic solar cells (OSCs) have made dramatic advancements during the past decades owing to the innovative material design and device structure optimization, with power conversion efficiencies surpassing 19% and 20% for single-junction and tandem devices, respectively. Interface engineering, by modifying interface properties between different layers for OSCs, has become a vital part to promote the device efficiency. It is essential to elucidate the intrinsic working mechanism of interface layers, as well as the related physical and chemical processes that manipulate device performance and long-term stability. In this article, the advances in interface engineering aimed to pursue high-performance OSCs are reviewed. The specific functions and corresponding design principles of interface layers are summarized first. Then, the anode interface layer, cathode interface layer in single-junction OSCs, and interconnecting layer of tandem devices are discussed in separate categories, and the interface engineering-related improvements on device efficiency and stability are analyzed. Finally, the challenges and prospects associated with application of interface engineering are discussed with the emphasis on large-area, high-performance, and low-cost device manufacturing.
Collapse
Affiliation(s)
- Haoran Tang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Yuanqing Bai
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Haiyang Zhao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Xudong Qin
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Zhicheng Hu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Cheng Zhou
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| |
Collapse
|
11
|
Guan H, Zhou S, Fu S, Pu D, Chen X, Ge Y, Wang S, Wang C, Cui H, Liang J, Hu X, Meng W, Fang G, Ke W. Regulating Crystal Orientation via Ligand Anchoring Enables Efficient Wide-Bandgap Perovskite Solar Cells and Tandems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307987. [PMID: 37956304 DOI: 10.1002/adma.202307987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Indexed: 11/15/2023]
Abstract
Wide-bandgap (WBG) perovskite solar cells have attracted considerable interest for their potential applications in tandem solar cells. However, the predominant obstacles impeding their widespread adoption are substantial open-circuit voltage (VOC ) deficit and severe photo-induced halide segregation. To tackle these challenges, a crystal orientation regulation strategy by introducing dodecyl-benzene-sulfonic-acid as an additive in perovskite precursors is proposed. This method significantly promotes the desired crystal orientation, passivates defects, and mitigates photo-induced halide phase segregation in perovskite films, leading to substantially reduced nonradiative recombination, minimized VOC deficits, and enhanced operational stability of the devices. The resulting 1.66 eV bandgap methylamine-free perovskite solar cells achieve a remarkable power conversion efficiency (PCE) of 22.40% (certified at 21.97%), with the smallest VOC deficit recorded at 0.39 V. Furthermore, the fabricated semitransparent WBG devices exhibit a competitive PCE of 20.13%. Consequently, four-terminal tandem cells comprising WBG perovskite top cells and 1.25 eV bandgap perovskite bottom cells showcase an impressive PCE of 28.06% (stabilized 27.92%), demonstrating great potential for efficient multijunction tandem solar cell applications.
Collapse
Affiliation(s)
- Hongling Guan
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
- Shenzhen Institute, Wuhan University, Shenzhen, 518055, P. R. China
| | - Shun Zhou
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Shiqiang Fu
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Dexin Pu
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Xuepeng Chen
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Yansong Ge
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Shuxin Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Chen Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Hongsen Cui
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Jiwei Liang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Xuzhi Hu
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Weiwei Meng
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Guojia Fang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Weijun Ke
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
- Shenzhen Institute, Wuhan University, Shenzhen, 518055, P. R. China
| |
Collapse
|
12
|
Chen J, Lou YH, Wang ZK. Characterizing Spatial and Energetic Distributions of Trap States Toward Highly Efficient Perovskite Photovoltaics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305064. [PMID: 37635401 DOI: 10.1002/smll.202305064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/15/2023] [Indexed: 08/29/2023]
Abstract
Due to their greater opt electric performance, perovskite photovoltaics (PVs) present huge potential to be commercialized. Perovskite PV's high theoretical efficiency expands the available development area. The passivation of defects in perovskite films is crucial for approaching the theoretical limit. In addition to creating efficient passivation techniques, it is essential to direct the passivation approach by getting precise and real-time information on the trap states through measurements. Therefore, it is necessary to establish quantitative characterization methods for the trap states in energy and 3D spaces. The authors cover the characterization of the spatial and energy distributions of trap states in this article with an eye toward high-efficiency perovskite photovoltaics. After going over the strategies that have been created for characterizing and evaluating trap states, the authors will concentrate on how to direct the creative development of characterization techniques for trap states assessment and highlight the opportunities and challenges of future development. The 3D space and energy distribution mappings of trap states are anticipated to be realized. The review will give key guiding importance for further approaching the theoretical efficiency of perovskite photovoltaics, offering some future research direction and technological assistance for the development of appropriate targeted passivation technologies.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yan-Hui Lou
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou, 215006, China
| | - Zhao-Kui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
13
|
Zhang CR, Yu HY, Zhang ML, Liu XM, Chen YH, Liu ZJ, Wu YZ, Chen HS. Modulating the organic photovoltaic properties of non-fullerene acceptors by molecular modification based on Y6: a theoretical study. Phys Chem Chem Phys 2023; 25:25465-25479. [PMID: 37712300 DOI: 10.1039/d3cp02520a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Developing non-fullerene acceptors (NFAs) by modifying the backbone, side chains and end groups is the most important strategy to improve the power conversion efficiency of organic solar cells (OSCs). Among numerous developed NFAs, Y6 and its derivatives are famous NFAs in the OSC field due to their good performance. Herein, in order to understand the mechanism of tuning the photovoltaic performance by modifying the Y6's center backbone, π-spacer and side-chains, we selected the PM6:Y6 OSC as a reference and systematically studied PM6:AQx-2, PM6:Y6-T, PM6:Y6-2T, PM6:Y6-O, PM6:Y6-1O and PM6:Y6-2O OSC systems based on extensive quantum chemistry calculations. The results indicate that introducing quinoxaline to substitute thiadiazole in the backbone induces a blue-shift of absorption spectra, reduces the charge transfer (CT) distance (Δd) and average electrostatic potential (ESP), and increases the singlet-triplet energy gap (ΔEST), CT excitation energy and the number of CT states in low-lying excitations. Inserting thienyl and dithiophenyl as π spacers generates a red-shift of absorption spectra, enlarges Δd and average ESP, and reduces ΔEST and the number of CT states. Introducing furo[3,2-b]furan for substituting one thieno[3,2-b]thiophene unit in the Y6's backbone causes a red-shift of absorption spectra and increases ΔEST, Δd and average ESP as well as CT excitation energy. Introducing alkoxyl as a side chain results in a blue-shift of absorption spectra, and increases ΔEST, Δd, average ESP, CT excitation energy and the number of CT states. The rate constants calculated using Marcus theory suggest that all the molecular modifications of Y6 reduce the exciton dissociation and charge recombination rates at the heterojunction interface, while introducing furo[3,2-b]furan and alkoxyl enlarges CT rates.
Collapse
Affiliation(s)
- Cai-Rong Zhang
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China.
| | - Hai-Yuan Yu
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China.
| | - Mei-Ling Zhang
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China.
| | - Xiao-Meng Liu
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China.
| | - Yu-Hong Chen
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China.
| | - Zi-Jiang Liu
- School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - You-Zhi Wu
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Hong-Shan Chen
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
14
|
Wang R, Li M, Ma Z, He Z, Dong Y, Zhang Y, Xu Z, Su G, Tan Z. Hexachlorotriphosphazene-assisted buried interface passivation for stable and efficient wide-bandgap perovskite solar cells. Chem Commun (Camb) 2023; 59:6255-6258. [PMID: 37139609 DOI: 10.1039/d3cc01100c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Large open-circuit voltage (Voc) loss is the main issue limiting the efficiency improvement in wide bandgap perovskite solar cells (PerSCs). Herein, a facile buried interface treatment by hexachlorotriphosphazene is developed to suppress the Voc loss. The PerSCs include a [Cs0.22FA0.78Pb(I0.85Br0.15)3]0.97(MAPbCl3)0.03 (1.67 eV) absorber and deliver an efficiency of 21.47% and a Voc of 1.21 V (Voc loss of 0.46 V). More importantly, the unencapsulated PerSCs maintain 90% of the initial efficiency after aging 500 h in N2.
Collapse
Affiliation(s)
- Ruyue Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Minghua Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zongwen Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhangwei He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yiman Dong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yuling Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhiyang Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Gangfeng Su
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhan'ao Tan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
15
|
Xie YM, Yao Q, Yip HL, Cao Y. Influence of Component Properties on the Photovoltaic Performance of Monolithic Perovskite/Organic Tandem Solar Cells: Sub-Cell, Interconnecting Layer, and Photovoltaic Parameters. SMALL METHODS 2023; 7:e2201255. [PMID: 36782077 DOI: 10.1002/smtd.202201255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Wide-bandgap perovskite sub-cells (WPSCs)-based tandem solar cells attract considerable interest because of their capability to surpass the Shockley-Queisser limit. Monolithic perovskite/organic tandem solar cells (POTSCs) integrating WPSCs and small-bandgap organic sub-cells (SOSCs) are famous compositions owing to their simple fabrication method and compatibility with flexible devices. Most studies on POTSCs focus on enhancing device efficiency by modifying one or two of the device components (WPSCs, SOSCs, and interconnecting layers). The characteristics of POTSCs are not extensively investigated so far, especially in terms of the influence of the device structure and component properties on the tandem device photovoltaic performance. In this study, the existing p-i-n type WPSC-based p-i-n POTSCs and n-i-p type WPSC-based n-i-p POTSCs are reviewed and their advantages and limitations are highlighted. Furthermore, the influence of the tandem device component properties (optical, electrical, and photovoltaic properties) on the photovoltaic parameters (open-circuit voltage, short-circuit current density, fill factor, and power conversion efficiency) and the existing device modification methods are discussed to provide comprehensive guidance for the development of POTSCs.
Collapse
Affiliation(s)
- Yue-Min Xie
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Qin Yao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Hin-Lap Yip
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- School of Energy and Environmental Science, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
16
|
Park JH, Hwang SK, Ji SG, Kim JY. Characterization of various tandem solar cells: Protocols, issues, and precautions. EXPLORATION (BEIJING, CHINA) 2023; 3:20220029. [PMID: 37324037 PMCID: PMC10190969 DOI: 10.1002/exp.20220029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/24/2023] [Indexed: 06/17/2023]
Abstract
In the search for a more efficient solar cell, various types of tandem solar cells (TSCs) have been actively developed worldwide as the performances of the single junction solar cells approach their theoretical limits. Meanwhile, various materials and structures are adopted in TSCs, which makes their characterizations and comparison difficult. Along with the classical monolithic TSC, which exhibits two electrical contacts, devices with three or four electrical contacts have been widely studied as a more performing alternative of commercialized solar cells. For a fair and accurate evaluation of the device performance of TSCs, understanding the effectiveness and limitations of the characterization of the different types of TSCs is crucial. In this paper, we summarize various types of TSCs and discuss their characterization methods.
Collapse
Affiliation(s)
- Jae Hyun Park
- Department of Materials Science and EngineeringSeoul National UniversitySeoulRepublic of Korea
- Research Institute of Advanced MaterialsSeoul National UniversitySeoulRepublic of Korea
| | - Sun Kyung Hwang
- Department of Materials Science and EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Su Geun Ji
- Department of Materials Science and EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Jin Young Kim
- Department of Materials Science and EngineeringSeoul National UniversitySeoulRepublic of Korea
- Research Institute of Advanced MaterialsSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
17
|
Nie T, Fang Z, Ren X, Duan Y, Liu SF. Recent Advances in Wide-Bandgap Organic-Inorganic Halide Perovskite Solar Cells and Tandem Application. NANO-MICRO LETTERS 2023; 15:70. [PMID: 36943501 PMCID: PMC10030759 DOI: 10.1007/s40820-023-01040-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Perovskite-based tandem solar cells have attracted increasing interest because of its great potential to surpass the Shockley-Queisser limit set for single-junction solar cells. In the tandem architectures, the wide-bandgap (WBG) perovskites act as the front absorber to offer higher open-circuit voltage (VOC) for reduced thermalization losses. Taking advantage of tunable bandgap of the perovskite materials, the WBG perovskites can be easily obtained by substituting halide iodine with bromine, and substituting organic ions FA and MA with Cs. To date, the most concerned issues for the WBG perovskite solar cells (PSCs) are huge VOC deficit and severe photo-induced phase separation. Reducing VOC loss and improving photostability of the WBG PSCs are crucial for further efficiency breakthrough. Recently, scientists have made great efforts to overcome these key issues with tremendous progresses. In this review, we first summarize the recent progress of WBG perovskites from the aspects of compositions, additives, charge transport layers, interfaces and preparation methods. The key factors affecting efficiency and stability are then carefully discussed, which would provide decent guidance to develop highly efficient and stable WBG PSCs for tandem application.
Collapse
Affiliation(s)
- Ting Nie
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhimin Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xiaodong Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuwei Duan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China.
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
18
|
Yang H, Chen W, Yu Y, Shen Y, Yang H, Li X, Zhang B, Chen H, Cheng Q, Zhang Z, Qin W, Chen JD, Tang JX, Li Y, Li Y. Regulating Charge Carrier Recombination in the Interconnecting Layer to Boost the Efficiency and Stability of Monolithic Perovskite/Organic Tandem Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208604. [PMID: 36440601 DOI: 10.1002/adma.202208604] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The charge carriers of single-junction solar cells can be fluently extracted and then collected by electrodes, leading to weak charge carrier accumulation and low energy loss (Eloss ). However, in tandem solar cells (TSCs), it is a considerable challenge to obtain a balance between the densities of the holes and electrons extracted from the two respective subcells to facilitate an efficient recombination in the interconnecting layer (ICL). Herein, a charge-carrier-dynamic management strategy for inorganic perovskite/organic TSCs is proposed, centered on the simultaneous regulation of the defect states of CsPbI1.9 Br1.1 perovskite in the front subcell and hole transport ability from the perovskite to ICL. The target hole density on the perovskite surface and the hole loss before reaching the ICL are significantly improved. As a result, the hole/electron density offset in the ICL can be effectively narrowed, leading to a balanced charge carrier recombination, which reduces the Eloss in TSCs. The resulting inorganic perovskite/organic 0.062-cm2 TSC exhibits a remarkable power conversion efficiency (PCE) of 23.17% with an ultrahigh open-circuit voltage (Voc ) of 2.15 V, and the PCE of the 1.004-cm2 device (21.69%) exhibited a weak size-dependence. This charge-carrier-dynamic management strategy can also effectively enhance the operational and ultraviolet-light stabilities of the TSCs.
Collapse
Affiliation(s)
- Haidi Yang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Weijie Chen
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yuan Yu
- School of Microelectronics, Shandong University, Jinan, 250100, P. R. China
| | - Yunxiu Shen
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Heyi Yang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Xinqi Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Ben Zhang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Haiyang Chen
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Qinrong Cheng
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Zhichao Zhang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Wei Qin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jing-De Chen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jian-Xin Tang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yaowen Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
19
|
Wu H, Cheng Y, Ma J, Zhang J, Zhang Y, Song Y, Peng S. Pivotal Routes for Maximizing Semitransparent Perovskite Solar Cell Performance: Photon Propagation Management and Carrier Kinetics Regulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206574. [PMID: 36056776 DOI: 10.1002/adma.202206574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Semitransparent perovskite solar cells (ST-PSCs) are ideal candidates for building-integrated photovoltaics (BIPV) and tandem solar cells (TSCs) owing to their tunable bandgap and high visible transparency. The best power conversion efficiency (PCE) of ST-PSCs is close to 15% with an average visible transmittance of over 20%, which still lags far behind the PCE of normal opaque PSCs. This can be attributed to the poor light utilization efficiency (LUE) of ST-PSCs. Herein, the pivotal routes for maximizing LUE of ST-PSCs in terms of photon propagation management and carrier kinetics regulation are systematically rationalized. First, the fundamental theoretical analyses on optical processes and electronic properties are provided. Then, insights on photon propagation management measures and carrier kinetics regulation strategies are provided. Furthermore, a summary of the promising commercial application of ST-PSCs in BIPV and TSCs is provided. Finally, the main progress of ST-PSCs is briefly summarized, and the directions for the commercialization of ST-PSCs are proposed.
Collapse
Affiliation(s)
- Hangjuan Wu
- School of Materials Science and Engineering, College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yajie Cheng
- School of Materials Science and Engineering, College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Junjie Ma
- School of Materials Science and Engineering, College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jiahao Zhang
- School of Materials Science and Engineering, College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yiqiang Zhang
- School of Materials Science and Engineering, College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| | - Shou Peng
- China National Building Material Group Co., Ltd., Beijing, 100036, P. R. China
- State Key Laboratory of Advanced Technology for Float Glass, Bengbu, 233000, P. R. China
| |
Collapse
|
20
|
Recent progress in perovskite solar cells: from device to commercialization. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1426-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Yao Y, Cheng C, Zhang C, Hu H, Wang K, De Wolf S. Organic Hole-Transport Layers for Efficient, Stable, and Scalable Inverted Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203794. [PMID: 35771986 DOI: 10.1002/adma.202203794] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Hole-transporting layers (HTLs) are an essential component in inverted, p-i-n perovskite solar cells (PSCs) where they play a decisive role in extraction and transport of holes, surface passivation, perovskite crystallization, device stability, and cost. Currently, the exploration of efficient, stable, highly transparent and low-cost HTLs is of vital importance for propelling p-i-n PSCs toward commercialization. Compared to their inorganic counterparts, organic HTLs offer multiple advantages such as a tunable bandgap and energy level, easy synthesis and purification, solution processability, and overall low cost. Here, recent progress of organic HTLs, including conductive polymers, small molecules, and self-assembled monolayers, as utilized in inverted PSCs is systematically reviewed and summarized. Their molecular structure, hole-transport properties, energy levels, and relevant device properties and resulting performances are presented and analyzed. A summary of design principles and a future outlook toward highly efficient organic HTLs in inverted PSCs is proposed. This review aims to inspire further innovative development of novel organic HTLs for more efficient, stable, and scalable inverted PSCs.
Collapse
Affiliation(s)
- Yiguo Yao
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Caidong Cheng
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Chenyang Zhang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Hanlin Hu
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, 518055, China
| | - Kai Wang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Stefaan De Wolf
- Division of Physical Science and Engineering, and KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
22
|
Qamar S, Fatima K, Ullah N, Akhter Z, Waseem A, Sultan M. Recent progress in use of MXene in perovskite solar cells: for interfacial modification, work-function tuning and additive engineering. NANOSCALE 2022; 14:13018-13039. [PMID: 36065967 DOI: 10.1039/d2nr02799b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The use of perovskites in photovoltaic and related industries has achieved tremendous success over the last decade. However, there are still obstacles to overcome in terms of boosting their performance and resolving stability issues for future commercialization. The introduction of a new 2D material of halide perovskites is now the key advancement in boosting the solar energy conversion efficiency. The implication of a new 2D material (MXene) in perovskite solar cells has been initiated since its first report in 2018, showing excellent transparency, electrical conductivity, carrier mobility, superior mechanical strength, and tunable work function. Based on distinctive features at the hetero-interface, halide perovskite and MXene heterostructures (HPs/Mx) have recently exhibited exceptional improvements in both the performance and stability of perovskite solar cells. Furthermore, the wide families of HPs and MXene materials allow playing with the composition and functionalities of HP/Mx interfaces by applying rational designing and alterations. In this review a comprehensive study of implementing MXenes in perovskite solar cells is presented. First, the implementation of MXenes in perovskites as an additive, and then in charge extraction layers (HTL/ETL), is described in detail. It is worth noting that still only Ti3C2Tx, Nb2CTx,V2CTx MXene is being incorporated into perovskite photovoltaics. Finally, the present obstacles in the use of MXenes in PSCS are discussed, along with the future research potential. This review is expected to provide a complete and in-depth description of the current state of research and to open up new opportunities for the study of other MXenes in PSCs.
Collapse
Affiliation(s)
- Samina Qamar
- Department of Chemistry, Quaid-I-Azam University Islamabad, 45320, Pakistan.
| | - Kalsoom Fatima
- Department of Chemistry, Quaid-I-Azam University Islamabad, 45320, Pakistan.
| | - Naimat Ullah
- Department of Chemistry, Quaid-I-Azam University Islamabad, 45320, Pakistan.
| | - Zareen Akhter
- Department of Chemistry, Quaid-I-Azam University Islamabad, 45320, Pakistan.
| | - Amir Waseem
- Department of Chemistry, Quaid-I-Azam University Islamabad, 45320, Pakistan.
| | - Muhammad Sultan
- National Center for physics Islamabad, 45320, Pakistan
- Department of Physics, Kohsar University Murree, 47150, Pakistan
| |
Collapse
|
23
|
Guo Q, Ding Y, Dai Z, Chen Z, Du M, Wang Z, Gao L, Duan C, Guo Q, Zhou E. Multiple-cation wide-bandgap perovskite solar cells grown using cesium formate as the Cs precursor with high efficiency under sunlight and indoor illumination. Phys Chem Chem Phys 2022; 24:17526-17534. [PMID: 35851910 DOI: 10.1039/d2cp02358j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Owing to the advantages of adjustable bandgap, low-cost fabrication and superior photovoltaic performance, wide-bandgap (WBG) perovskite solar cells (PSCs) are considered as the promising top-cell for multi-junction solar cells. At the same time, WBG PSCs have also shown great potential for indoor photovoltaic applications. To further improve the performance of WBG PSCs, in this work, we fabricated efficient WBG PSCs via introducing cesium formate (CsFa) as the Cs precursor. Due to the HCOO·Pb+ and HCOOH·Cs+ complex formation and HCOOH volatilization accompanying the crystallization process, the crystallization of the perovskite using the CsFa precursor (CsFa-perovskite) is promoted. Compared to the perovskite prepared using the CsBr precursor (CsBr-perovskite), the WBG CsFa-perovskite shows better perovskite crystallization, reduced trap-state density, and better phase stability under light illumination. Finally, the 1.63 eV WBG PSCs based on the CsFa-perovskite achieve a significant PCE of 20.01% under one sun illumination (AM 1.5G, 100 mW cm-2), which is higher than that of PSCs based on the CsBr-perovskite (18.27%). Moreover, the PCE of CsFa-perovskite PSCs also under indoor warm-white 2700 K LED light illumination (1000 lux) is as high as 38.52%. Our results demonstrate that CsFa as the Cs precursor is a promising candidate to promote the device performance of WBG PSCs.
Collapse
Affiliation(s)
- Qiang Guo
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Yuanjia Ding
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Zheng Dai
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Zongwei Chen
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Mengzhen Du
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Zongtao Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Lei Gao
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Chen Duan
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Qing Guo
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| |
Collapse
|
24
|
Hassan AU, Sumrra SH. Exploration of Pull-Push Effect for Novel Photovoltaic Dyes with A-π-D Design: A DFT/TD-DFT Investigation. J Fluoresc 2022; 32:1999-2014. [PMID: 35802211 DOI: 10.1007/s10895-022-03003-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022]
Abstract
The π-rich versus π-poor units in 4,6-di(thiophen-2-yl)pyrimidine (DTB) alternating the π-backbone of solar cells dyes have been extended with a push-pull technique to lower their HOMO-LUMO energy gap and to increase Intramolecular Charge Transfer (ICT). Density functional theory was used to optimize the ground state molecular geometries of newly designed dyes (DTB1-DTB6). Time Dependent DFT (TD-DFT) was used to simulate the Uv-vis spectral values at the maximum absorbance values ranging between 481-535 nm. These values were red shifted from DTB value of experimental (333 nm) and theoretical (346 nm). however, their computed absorbance and fluorescence spectra revealed a bathochromic shift of them upon an increasing the solvent polarity. Different DFT functionals such as (B3LYP, CAM-B3LYP, B97XD, and APFD) were employed to choose their proper use Uv-visible analysis to reveal an unexpected coherence at the B3LYP level with experimental values. As a result, the B3LYP with most diffused basis sets of 6-31G + (d,p) were used for further calculations. The parameters of Global Chemical reactivities revealed that all the dyes had a softer nature with their softness value range of 0.27-0.41. their Ionization Potentials (IP) ranged between 6.21-8.10 eV to comply that the new dyes had good electron donating potentials. With a good electron injection potential of -1.47-1.74 eV, aluminum can be the best electrode, while Au is excellent towards a hole injection operation which had the potential range of 1.79-3.68 eV. For Natural Bond Orbital (NBO) assessment, (N14)LP → (F16-F28)π* with stabilization energy of 42.55 kcal/mol was noted for DTB4. Their Second order hyperpolarizability [Formula: see text] values as their Nonlinear Optical (NLO) response ranged between 59.16-232.11 debye-angstrom-1 which were almost 6 times higher than the reference DTB (8.47D). The NLO attributes has also shown that a dyes with its small bandgap was related with higher hyperpolarizability values. Because of the decreased reorganization frequencies, newly discovered derivatives with electron transfer qualities might be comparable to or equivalent to those of commonly used electron transmission materials.
Collapse
Affiliation(s)
- Abrar U Hassan
- Department of Chemistry, University of Gujrat, PK, 54400, Gujrat, Pakistan.
| | - Sajjad H Sumrra
- Department of Chemistry, University of Gujrat, PK, 54400, Gujrat, Pakistan
| |
Collapse
|
25
|
Zhang P, Li M, Chen WC. A Perspective on Perovskite Solar Cells: Emergence, Progress, and Commercialization. Front Chem 2022; 10:802890. [PMID: 35480386 PMCID: PMC9035841 DOI: 10.3389/fchem.2022.802890] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/17/2022] [Indexed: 01/11/2023] Open
Abstract
With rapid progress in light-to-electric conversion efficiencies, perovskite solar cells (PSCs) have exhibited great potential as next-generation low-cost, efficient photovoltaic technology. In this perspective, we briefly review the development of PSCs from discovery to laboratory research to commercializing progress. The past several decades have witnessed great achievement in device efficiency and stability due to tremendous research efforts on compositional, process, and interfacial engineering. Regarding commercial applications, we expound the merits and disadvantages of PSCs compared to the existing silicon photovoltaic technologies. Although PSCs promise solution processability and low manufacturing cost, their limited stability and element toxicity should to be addressed on the path to commercialization. Finally, we provide future perspectives on commercialization of PSCs in the photovoltaic marketplace. It is suggested that PSCs will be more promising in low-cost modules and tandem configurations.
Collapse
Affiliation(s)
- Pengyu Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
- Beijing JAYU New Energy Technology Development Co., Ltd., JAYU Group, Beijing, China
| | - Menglin Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Wen-Cheng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
26
|
Yu HY, Zhang CR, Zhang ML, Liu XM, Gong JJ, Liu ZJ, Wu YZ, Chen HS. Molecular tuning of non-fullerene electron acceptors in organic photovoltaics: a theoretical study. NEW J CHEM 2022. [DOI: 10.1039/d2nj03608h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
On the basis of the famous A–D–A-type non-fullerene acceptor IT-4F, this work investigates the effects of introducing methyl groups and substituting dicyano with O on optoelectronic properties and photovoltaic performances.
Collapse
Affiliation(s)
- Hai-Yuan Yu
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Cai-Rong Zhang
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Mei-Ling Zhang
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Xiao-Meng Liu
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Ji-Jun Gong
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Zi-Jiang Liu
- School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - You-Zhi Wu
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Hong-Shan Chen
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| |
Collapse
|