1
|
Yang X, Zhong Y, Zhang L, Liu Y, Zhuo F, Wang J, Ge L, Zhang L, Zeng X, Tan W, Song G, Zhang H, Wang X. Conductive/Insulating Bioinks with Multitechnology Compatibility and Adjustable Performance. ACS Biomater Sci Eng 2024; 10:5352-5361. [PMID: 39013628 DOI: 10.1021/acsbiomaterials.4c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Conducting/insulating inks have received significant attention for the fabrication of a wide range of additive manufacturing technology. However, current inks often demonstrate poor biocompatibility and face trade-offs between conductivity and mechanical stiffness under physiological conditions. Here, conductive/insulating bioinks based on two-dimensional materials are proposed. The conductive bioink, graphene (GR)-poly(lactic-co-glycolic acid) (PLGA), is prepared by introducing conductive GR into a degradable polymer matrix, PLGA, while the insulating bioink, boron nitride (BN)-PLGA, is synthesized by adding insulating BN. By optimizing the material ratios, this work achieves precise control of the electromechanical properties of the bioinks, thereby enabling the flexible construction of conductive networks according to specific requirements. Furthermore, these bioinks are compatible with a variety of manufacturing technologies such as 3D printing, electrospinning, spin coating, and injection molding, expanding their application range in the biomedical field. Overall, the results suggest that these conducting/insulating bioinks offer improved mechanical, electronic, and biological properties for various emerging biomedical applications.
Collapse
Affiliation(s)
- Xi Yang
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, Zhejiang University, Haining 314400, China
| | - Yufan Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Liang Zhang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou 311100, China
| | - Yulu Liu
- Research Institute of Medical and Biological Engineering, Ningbo University, Ningbo 315211, China
| | - Fengling Zhuo
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, Zhejiang University, Haining 314400, China
| | - Jianmin Wang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310016, China
| | - Linyan Ge
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310016, China
| | - Liuhang Zhang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310016, China
| | - Xiangyu Zeng
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Weiqiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Guanghui Song
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310016, China
| | - Hua Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321015, China
| | - Xiaozhi Wang
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, Zhejiang University, Haining 314400, China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321015, China
| |
Collapse
|
2
|
Silva A, Fonseca D, Neto DM, Babcinschi M, Neto P. Integrated Design and Fabrication of Pneumatic Soft Robot Actuators in a Single Casting Step. CYBORG AND BIONIC SYSTEMS 2024; 5:0137. [PMID: 39022336 PMCID: PMC11254383 DOI: 10.34133/cbsystems.0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/13/2024] [Indexed: 07/20/2024] Open
Abstract
Bio-inspired soft robots have already shown the ability to handle uncertainty and adapt to unstructured environments. However, their availability is partially restricted by time-consuming, costly, and highly supervised design-fabrication processes, often based on resource-intensive iterative workflows. Here, we propose an integrated approach targeting the design and fabrication of pneumatic soft actuators in a single casting step. Molds and sacrificial water-soluble hollow cores are printed using fused filament fabrication. A heated water circuit accelerates the dissolution of the core's material and guarantees its complete removal from the actuator walls, while the actuator's mechanical operability is defined through finite element analysis. This enables the fabrication of actuators with non-uniform cross-sections under minimal supervision, thereby reducing the number of iterations necessary during the design and fabrication processes. Three actuators capable of bending and linear motion were designed, fabricated, integrated, and demonstrated as 3 different bio-inspired soft robots, an earthworm-inspired robot, a 4-legged robot, and a robotic gripper. We demonstrate the availability, versatility, and effectiveness of the proposed methods, contributing to accelerating the design and fabrication of soft robots. This study represents a step toward increasing the accessibility of soft robots to people at a lower cost.
Collapse
Affiliation(s)
- Afonso Silva
- Department of Mechanical Engineering,
University of Coimbra, CEMMPRE, ARISE, Coimbra, Portugal
| | - Diogo Fonseca
- Department of Mechanical Engineering,
University of Coimbra, CEMMPRE, ARISE, Coimbra, Portugal
| | - Diogo M. Neto
- Department of Mechanical Engineering,
University of Coimbra, CEMMPRE, ARISE, Coimbra, Portugal
| | - Mihail Babcinschi
- Department of Mechanical Engineering,
University of Coimbra, CEMMPRE, ARISE, Coimbra, Portugal
| | - Pedro Neto
- Department of Mechanical Engineering,
University of Coimbra, CEMMPRE, ARISE, Coimbra, Portugal
| |
Collapse
|
3
|
Zhao H, Zhang L, Deng T, Li C. Microfluidic Sensing Textile for Continuous Monitoring of Sweat Glucose at Rest. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19605-19614. [PMID: 38568178 DOI: 10.1021/acsami.4c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Wearable sweat sensors have received considerable attention due to their great potential for noninvasive continuous monitoring of an individual's health status applications. However, the low secretion rate and fast evaporation of sweat pose challenges in collecting sweat from sedentary individuals for noninvasive analysis of body physiology. Here, we demonstrate wearable textiles for continuous monitoring of sweat at rest using the combination of a heating element and a microfluidic channel to increase localized skin sweat secretion rates and combat sweat evaporation, enabling accurate and stable monitoring of trace amounts of sweat. The Janus sensing yarns with a glucose sensing sensitivity of 36.57 mA cm-2 mM-1 are embroidered into the superhydrophobic heated textile to collect sweat directionally, resulting in improved sweat collection efficiency of up to 96 and 75% retention. The device also maintains a highly durable sensing performance, even in dynamic deformation, recycling, and washing. The microfluidic sensing textile can be further designed into a wireless sensing system that enables sedentary-compatible sweat analysis for the continuous, real-time monitoring of body glucose levels at rest.
Collapse
Affiliation(s)
- He Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Ling Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Tianbo Deng
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Nie Y, Zheng Z, Li C, Zhan H, Kou L, Gu Y, Lü C. Resolving the dynamic properties of entangled linear polymers in non-equilibrium coarse grain simulation with a priori scaling factors. NANOSCALE 2024. [PMID: 38494916 DOI: 10.1039/d3nr06185j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The molecular weight of polymers can influence the material properties, but the molecular weight at the experiment level sometimes can be a huge burden for property prediction with full-atomic simulations. The traditional bottom-up coarse grain (CG) simulation can reduce the computation cost. However, the dynamic properties predicted by the CG simulation can deviate from the full-atomic simulation result. Usually, in CG simulations, the diffusion is faster and the viscosity and modulus are much lower. The fast dynamics in CG are usually solved by a posteriori scaling on time, temperature, or potential modifications, which usually have poor transferability to other non-fitted physical properties because of a lack of fundamental physics. In this work, a priori scaling factors were calculated by the loss of degrees of freedom and implemented in the iterative Boltzmann inversion. According to the simulation results on 3 different CG levels at different temperatures and loading rates, such a priori scaling factors can help in reproducing some dynamic properties of polycaprolactone in CG simulation more accurately, such as heat capacity, Young's modulus, and viscosity, while maintaining the accuracy in the structural distribution prediction. The transferability of entropy-enthalpy compensation and a dissipative particle dynamics thermostat is also presented for comparison. The proposed method reveals the huge potential for developing customized CG thermostats and offers a simple way to rebuild multiphysics CG models for polymers with good transferability.
Collapse
Affiliation(s)
- Yihan Nie
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Zhuoqun Zheng
- School of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chengkai Li
- School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Haifei Zhan
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane QLD 4001, Australia
- Center for Materials Science, Queensland University of Technology (QUT), Brisbane QLD 4001, Australia
| | - Liangzhi Kou
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane QLD 4001, Australia
- Center for Materials Science, Queensland University of Technology (QUT), Brisbane QLD 4001, Australia
| | - Yuantong Gu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane QLD 4001, Australia
- Center for Materials Science, Queensland University of Technology (QUT), Brisbane QLD 4001, Australia
| | - Chaofeng Lü
- Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo 315211, China
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Greene AF, Abbel R, Vaidya AA, Tanjay Q, Chen Y, Risani R, Saggese T, Barbier M, Petcu M, West M, Theobald B, Gaugler E, Parker K. Environmentally Benign Fast-Degrading Conductive Composites. Biomacromolecules 2024; 25:455-465. [PMID: 38147683 DOI: 10.1021/acs.biomac.3c01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
An environmentally benign conductive composite that rapidly degrades in the presence of warm water via enzyme-mediated hydrolysis is described. This represents the first time that hydrolytic enzymes have been immobilized onto eco-friendly conductive carbon sources with the express purpose of degrading the encapsulating biodegradable plastic. Amano Lipase (AL)-functionalized carbon nanofibers (CNF) were compounded with polycaprolactone (PCL) to produce the composite film CNFAL-PCL (thickness ∼ 600 μm; CNFAL = 20.0 wt %). To serve as controls, films of the same thickness were also produced, including CNF-AL5-PCL (CNF mixed with AL and PCL; CNF = 19.2 wt % and AL = 5.00 wt %), CNF-PCL (CNF = 19.2 wt %), ALx-PCL (AL = x = 1.00 or 5.00 wt %), and PCL. The electrical performance of the CNF-containing composites was measured, and conductivities of 14.0 ± 2, 22.0 ± 5, and 31.0 ± 6 S/m were observed for CNFAL-PCL, CNF-AL5-PCL, and CNF-PCL, respectively. CNFAL-PCL and control films were degraded in phosphate buffer (2.00 mg/mL film/buffer) at 50 °C, and their average percent weight loss (Wtavg%) was recorded over time. After 3 h CNFAL-PCL degraded to a Wtavg% of 90.0% and had completely degraded after 8 h. This was considerably faster than CNF-AL5-PCL, which achieved a total Wtavg% of 34.0% after 16 days, and CNF-PCL, which was with a Wtavg% of 7.00% after 16 days. Scanning electron microscopy experiments (SEM) found that CNFAL-PCL has more open pores on its surface and that it fractures faster during degradation experiments which exposes the interior enzyme to water. An electrode made from CNFAL-PCL was fabricated and attached to an AL5-PCL support to form a fast-degrading thermal sensor. The resistance was measured over five cycles where the temperature was varied between 15.0-50.0 °C. The sensor was then degraded fully in buffer at 50 °C over a 48 h period.
Collapse
Affiliation(s)
- Angelique F Greene
- Te Papa Tipu Innovation Park, Ti̅tokorangi Drive, Rotorua, New Zealand 3010
| | - Robert Abbel
- Te Papa Tipu Innovation Park, Ti̅tokorangi Drive, Rotorua, New Zealand 3010
| | - Alankar A Vaidya
- Te Papa Tipu Innovation Park, Ti̅tokorangi Drive, Rotorua, New Zealand 3010
| | - Queenie Tanjay
- Te Papa Tipu Innovation Park, Ti̅tokorangi Drive, Rotorua, New Zealand 3010
| | - Yi Chen
- Te Papa Tipu Innovation Park, Ti̅tokorangi Drive, Rotorua, New Zealand 3010
| | - Regis Risani
- Te Papa Tipu Innovation Park, Ti̅tokorangi Drive, Rotorua, New Zealand 3010
| | - Taryn Saggese
- Te Papa Tipu Innovation Park, Ti̅tokorangi Drive, Rotorua, New Zealand 3010
| | - Maxime Barbier
- Te Papa Tipu Innovation Park, Ti̅tokorangi Drive, Rotorua, New Zealand 3010
| | - Miruna Petcu
- Te Papa Tipu Innovation Park, Ti̅tokorangi Drive, Rotorua, New Zealand 3010
| | - Mark West
- Te Papa Tipu Innovation Park, Ti̅tokorangi Drive, Rotorua, New Zealand 3010
| | - Beatrix Theobald
- Te Papa Tipu Innovation Park, Ti̅tokorangi Drive, Rotorua, New Zealand 3010
| | - Eva Gaugler
- Te Papa Tipu Innovation Park, Ti̅tokorangi Drive, Rotorua, New Zealand 3010
| | - Kate Parker
- Te Papa Tipu Innovation Park, Ti̅tokorangi Drive, Rotorua, New Zealand 3010
| |
Collapse
|
6
|
Zhu Y, Wang Z, Chen Z, Xin X, Gan W, Lai H, Lin C. Highly Stretchable, Biodegradable, and Recyclable Green Electronic Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305181. [PMID: 37699749 DOI: 10.1002/smll.202305181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Indexed: 09/14/2023]
Abstract
As a steady stream of electronic devices being discarded, a vast amount of electronic substrate waste of petroleum-based nondegradable polymers is generated, raising endless concerns about resource depletion and environmental pollution. With coupled reagent (CR)-grafted artificial marble waste (AMW@CR) as functional fillers, polylactic acid (PLA)-based highly stretchable biodegradable green composite (AMW@CR-SBGC) is prepared, with elongation at break up to more than 250%. The degradation mechanism of AMW@CR-SBGC is deeply revealed. AMW@CR not only contributed to the photodegradation of AMW@CR-SBGC but also significantly promoted the water degradation of AMW@CR-SBGC. More importantly, AMW@CR-SBGC showed great potential as sustainable green electronic substrates and AMW@CR-SBGC-based electronic skin can simulate the perception of human skin to strain signals. The outstanding programmable degradability, recyclability, and reusability of AMW@CR-SBGC enabled its application in transient electronics. As the first demonstration of artificial marble waste in electronic substrates, AMW@CR-SBGC killed three birds with one stone in terms of waste resourcing, e-waste reduction, and saving nonrenewable petroleum resources, opening up vast new opportunities for green electronics applications in areas such as health monitoring, artificial intelligence, and security.
Collapse
Affiliation(s)
- Yan Zhu
- School of Astronautics, Harbin Institute of Technology, Harbin, 150001, P. R. China
- Advanced Materials Industry Institute, Guangxi Academy of Sciences, 530007, Nanning, P. R. China
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Zhongmin Wang
- Advanced Materials Industry Institute, Guangxi Academy of Sciences, 530007, Nanning, P. R. China
| | - Zhenming Chen
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou, 542899, P. R. China
| | - Xiaozhou Xin
- School of Astronautics, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Weijiang Gan
- Advanced Materials Industry Institute, Guangxi Academy of Sciences, 530007, Nanning, P. R. China
| | - Huajun Lai
- Advanced Materials Industry Institute, Guangxi Academy of Sciences, 530007, Nanning, P. R. China
| | - Cheng Lin
- School of Astronautics, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
7
|
Bi S, Zhang Z, Yang Z, Shen Z, Cai J, Hu J, Jin H, Qiu T, Yu P, Tan B. Protein modified cellulose nanocrystals on reinforcement and self-driven biodegradation of aliphatic polyester. Carbohydr Polym 2023; 322:121312. [PMID: 37839828 DOI: 10.1016/j.carbpol.2023.121312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 10/17/2023]
Abstract
Due to the highly environment-dependent biodegradation and uncontrolled degradation period, the long-run feasibility and effectiveness of biodegradable polymers are extensively questioned to solve plastics waste accumulation and pollution problems. This work physically incorporated lipase PS from Burkholderia cepacian on cellulose nanocrystals (CNC) and embedded it in polycaprolactone (PCL) to construct stable and controllable interfacial microenvironment between CNC and PCL for the reinforcement and controllable self-driven biodegradation. The physical adsorption of lipase PS on CNC was studied by monitoring the surface charge and particle size. FT-IR spectra confirmed the successful incorporation of lipase PS and CNC. Compared with CNC, protein-modified CNC had a higher maximum thermal decomposition temperature of 345 °C and lower interfacial tension of 11 mN/m with PCL which provided PCL composites with higher nucleation efficiency and tensile elongation of 1086 % at break. In addition, only 0.67 % embedded lipase PS completely hydrolyzed PCL membranes in <140 h. The post-compression molding at 80-100 °C had negligible influence on the lipase activity, which indicated that CNC could protect the lipase from inactivation in polymer extrusion and compression. This work also highlighted protein-modified CNC as a new technology for polymer reinforcement.
Collapse
Affiliation(s)
- Siwen Bi
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, Hubei 430068, China; New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, Hubei 430068, China; Hubei Longzhong Laboratory, Xiangyang, Hubei 441000, China.
| | - Zhuang Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Zhenzhen Yang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, Hubei 430068, China; New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Zitong Shen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jiahui Cai
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jintao Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Haoxiang Jin
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Tianhao Qiu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Peng Yu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, Hubei 430068, China; New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, Hubei 430068, China; Hubei Longzhong Laboratory, Xiangyang, Hubei 441000, China
| | - Bin Tan
- Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350011, China
| |
Collapse
|
8
|
Lv J, Thangavel G, Xin Y, Gao D, Poh WC, Chen S, Lee PS. Printed sustainable elastomeric conductor for soft electronics. Nat Commun 2023; 14:7132. [PMID: 37932285 PMCID: PMC10628110 DOI: 10.1038/s41467-023-42838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
The widespread adoption of renewable and sustainable elastomers in stretchable electronics has been impeded by challenges in their fabrication and lacklustre performance. Here, we realize a printed sustainable stretchable conductor with superior electrical performance by synthesizing sustainable and recyclable vegetable oil polyurethane (VegPU) elastomeric binder and developing a solution sintering method for their composites with Ag flakes. The binder impedes the propagation of cracks through its porous network, while the solution sintering reaction reduces the resistance increment upon stretching, resulting in high stretchability (350%), superior conductivity (12833 S cm-1), and low hysteresis (0.333) after 100% cyclic stretching. The sustainable conductor was used to print durable and stretchable impedance sensors for non-obstructive detection of fruit maturity in food sensing technology. The combination of sustainable materials and strategies for realizing high-performance stretchable conductors provides a roadmap for the development of sustainable stretchable electronics.
Collapse
Affiliation(s)
- Jian Lv
- School of Materials Science and Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore
- Frontier Institute of Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Gurunathan Thangavel
- School of Materials Science and Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore, 639798, Singapore
- Advanced Materials Research Center, Technology Innovation Institute (TII), Masdar City, Abu Dhabi, P.O. Box 9639, United Arab Emirates
| | - Yangyang Xin
- School of Materials Science and Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore
| | - Dace Gao
- School of Materials Science and Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore, 639798, Singapore
| | - Wei Church Poh
- School of Materials Science and Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore, 639798, Singapore
| | - Shaohua Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore, 639798, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore, 639798, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore.
| |
Collapse
|
9
|
Zhang J, Zeng F, Liu B, Wang Z, Lin X, Zhao H, Wang Y. A biomimetic closed-loop recyclable, long-term durable, extreme-condition resistant, flame-retardant nanocoating synthesized by reversible flocculation assembly. MATERIALS HORIZONS 2023; 10:4551-4561. [PMID: 37564015 DOI: 10.1039/d3mh00720k] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Flame-retardant coatings have attracted increasing attention in mitigating the fire threat of flammable polymer materials. Their durable application inevitably provides high resistance to various complex environments, however, discarded stable materials will turn into another man-made waste disaster. The paradigm shift toward a sustainable future is to combine durability and recyclability of coatings. Herein, we demonstrate a biomimetic coating that reversibly captures active flame-retardant nanomaterials by flocculation assembly using anionic polyacrylamide covering the polyurethane foam surface. Strong hydrogen bonding and microstructural interlocking provide the coating with high durability under complex harsh conditions (underwater, chemical exposure, hydrothermal aging, long-term external extrusion, etc.). Meanwhile, the disassembly/reorganization of the coating can be easily repeated in response to pH stimulation with a recycling rate of 97%. The experiments and theoretical calculations reveal the mechanism of the reversible flocculation assembly. This biomimetic strategy of responsive flocculation assembly opens the way for functional coatings with integrated durability and recyclability.
Collapse
Affiliation(s)
- Jiayan Zhang
- The Collaborative Innovation Center for Eco-Friendly and Fire-safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Sichuan 610064, China.
| | - Furong Zeng
- The Collaborative Innovation Center for Eco-Friendly and Fire-safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Sichuan 610064, China.
| | - Bowen Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Sichuan 610064, China.
| | - Zihao Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Sichuan 610064, China.
| | - Xincen Lin
- The Collaborative Innovation Center for Eco-Friendly and Fire-safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Sichuan 610064, China.
| | - Haibo Zhao
- The Collaborative Innovation Center for Eco-Friendly and Fire-safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Sichuan 610064, China.
| | - Yuzhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Sichuan 610064, China.
| |
Collapse
|
10
|
Arnold D, Takatori SC. Bio-enabled Engineering of Multifunctional "Living" Surfaces. ACS NANO 2023; 17:11077-11086. [PMID: 37294942 PMCID: PMC10311588 DOI: 10.1021/acsnano.3c03138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 06/11/2023]
Abstract
Through the magic of "active matter"─matter that converts chemical energy into mechanical work to drive emergent properties─biology solves a myriad of seemingly enormous physical challenges. Using active matter surfaces, for example, our lungs clear an astronomically large number of particulate contaminants that accompany each of the 10,000 L of air we respire per day, thus ensuring that the lungs' gas exchange surfaces remain functional. In this Perspective, we describe our efforts to engineer artificial active surfaces that mimic active matter surfaces in biology. Specifically, we seek to assemble the basic active matter components─mechanical motor, driven constituent, and energy source─to design surfaces that support the continuous operation of molecular sensing, recognition, and exchange. The successful realization of this technology would generate multifunctional, "living" surfaces that combine the dynamic programmability of active matter and the molecular specificity of biological surfaces and apply them to applications in biosensors, chemical diagnostics, and other surface transport and catalytic processes. We describe our recent efforts in bio-enabled engineering of living surfaces through the design of molecular probes to understand and integrate native biological membranes into synthetic materials.
Collapse
Affiliation(s)
- Daniel
P. Arnold
- Department of Chemical Engineering, University of California, Santa
Barbara, California 93106, United States
| | - Sho C. Takatori
- Department of Chemical Engineering, University of California, Santa
Barbara, California 93106, United States
| |
Collapse
|
11
|
Liang Y, Song Q, Chen Y, Hu C, Zhang S. Stretch-Induced Robust Intrinsic Antibacterial Thermoplastic Gelatin Organohydrogel for a Thermoenhanced Supercapacitor and Mono-gauge-factor Sensor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20278-20293. [PMID: 37043180 DOI: 10.1021/acsami.3c02255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sustainable organohydrogel electronics have shown promise in resolving the electronic waste (e-waste) evoked by traditional chemical cross-linking hydrogels. Herein, thermoplastic-recycled gelatin/oxidized starch (OST)/glycerol/ZnCl2 organohydrogels (GOGZs) were fabricated by introducing the anionic polyelectrolyte OST and solvent exchange strategy to construct noncovalently cross-linking networks. Benefiting from the electrostatic interaction and hydrogen and coordination bonds, GOGZ possessed triple-supramolecular interactions and a continuous ion transport pathway, which resulted in excellent thermoplasticity and high ionic conductivities and mechanical and antibacterial properties. Because of the thermally induced phase transition of gelatin, GOGZ exhibited isotropic-ionic conductivity with a positive temperature coefficient and realized intrinsic affinity with the activated carbon electrode for fabricating a double-layer structure supercapacitor. These novel features significantly decreased the impedance (3.71 Ω) and facilitated the flexible supercapacitors to achieve thermoenhanced performance with 4.89 Wh kg-1 energy density and 49.2 F g-1 specific mass capacitance at 65 °C. Fantastically, the GOGZ-based stress sensor exhibited a monolinear gauge factor (R2 = 0.999) at its full-range strain (0 to 350%), and its sensitivity increased with the thermoplastic-recycled times. Consequently, this sustainable and temperature-sensitive sensor (-40 to 60 °C) could serve as health monitoring wearable devices with excellent reliability (R2 = 0.999) at tiny strain. Moreover, GOGZ could achieve efficient self-enhancement by stretch-induced alignment. The sustained weighted load, tensile strength, and elongation at break of the stretch-induced GOGZ were 6 kg/g, 2.37 MPa, and 300%, respectively. This self-enhanced feature indicated that GOGZ can be utilized as an artificial muscle. Eventually, GOGZ obtained high intrinsic antibiosis (Dinhibition circle > 25 mm) by a binding species (-COO-NH3+-) from COOH in OST and NH2 in gelatin, freezing resistance, and water retention. In summary, this study provided an effective strategy to fabricate thermoplastic-recycled organohydrogels for multifunctional sustainable electronics with novel performance.
Collapse
Affiliation(s)
- Yingpei Liang
- College of Mechanical and Automotive, South China University of Technology, Guangzhou 510640, China
- Guangdong Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, China
| | - Qiaowei Song
- Packaging Engineering Institute, Jinan University, Zhuhai, Guangdong 519070, China
| | - Yukun Chen
- College of Mechanical and Automotive, South China University of Technology, Guangzhou 510640, China
| | - Changying Hu
- Packaging Engineering Institute, Jinan University, Zhuhai, Guangdong 519070, China
| | - Shuidong Zhang
- College of Mechanical and Automotive, South China University of Technology, Guangzhou 510640, China
- Guangdong Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Pulp and Paper Engineering,South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
12
|
Dutta SD, Ganguly K, Randhawa A, Patil TV, Patel DK, Lim KT. Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization. Biomaterials 2023; 294:121999. [PMID: 36669301 DOI: 10.1016/j.biomaterials.2023.121999] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
In recent years, three-dimensional (3D) bioprinting of conductive hydrogels has made significant progress in the fabrication of high-resolution biomimetic structures with gradual complexity. However, the lack of an effective cross-linking strategy, ideal shear-thinning, appropriate yield strength, and higher print fidelity with excellent biofunctionality remains a challenge for developing cell-laden constructs, hindering the progress of extrusion-based 3D printing of conductive polymers. In this study, a highly stable and conductive bioink was developed based on polypyrrole-grafted gelatin methacryloyl (GelMA-PPy) with a triple cross-linking (thermo-photo-ionically) strategy for direct ink writing-based 3D printing applications. The triple-cross-linked hydrogel with dynamic semi-inner penetrating polymer network (semi-IPN) displayed excellent shear-thinning properties, with improved shape fidelity and structural stability during 3D printing. The as-fabricated hydrogel ink also exhibited "plug-like non-Newtonian" flow behavior with minimal disturbance. The bioprinted GelMA-PPy-Fe hydrogel showed higher cytocompatibility (93%) of human bone mesenchymal stem cells (hBMSCs) under microcurrent stimulation (250 mV/20 min/day). Moreover, the self-supporting and tunable mechanical properties of the GelMA-PPy bioink allowed 3D printing of high-resolution biological architectures. As a proof of concept, we printed a full-thickness rat bone model to demonstrate the structural stability. Transcriptomic analysis revealed that the 3D bioprinted hBMSCs highly expressed gene hallmarks for NOTCH/mitogen-activated protein kinase (MAPK)/SMAD signaling while down-regulating the Wnt/β-Catenin and epigenetic signaling pathways during osteogenic differentiation for up to 7 days. These results suggest that the developed GelMA-PPy bioink is highly stable and non-toxic to hBMSCs and can serve as a promising platform for bone tissue engineering applications.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Dinesh K Patel
- Institute of Forest Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Forest Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea; Biomechagen Co., Ltd., Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
13
|
Jayapurna I, Ruan Z, Eres M, Jalagam P, Jenkins S, Xu T. Sequence Design of Random Heteropolymers as Protein Mimics. Biomacromolecules 2023; 24:652-660. [PMID: 36638823 PMCID: PMC9930114 DOI: 10.1021/acs.biomac.2c01036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Random heteropolymers (RHPs) have been computationally designed and experimentally shown to recapitulate protein-like phase behavior and function. However, unlike proteins, RHP sequences are only statistically defined and cannot be sequenced. Recent developments in reversible-deactivation radical polymerization allowed simulated polymer sequences based on the well-established Mayo-Lewis equation to more accurately reflect ground-truth sequences that are experimentally synthesized. This led to opportunities to perform bioinformatics-inspired analysis on simulated sequences to guide the design, synthesis, and interpretation of RHPs. We compared batches on the order of 10000 simulated RHP sequences that vary by synthetically controllable and measurable RHP characteristics such as chemical heterogeneity and average degree of polymerization. Our analysis spans across 3 levels: segments along a single chain, sequences within a batch, and batch-averaged statistics. We discuss simulator fidelity and highlight the importance of robust segment definition. Examples are presented that demonstrate the use of simulated sequence analysis for in-silico iterative design to mimic protein hydrophobic/hydrophilic segment distributions in RHPs and compare RHP and protein sequence segments to explain experimental results of RHPs that mimic protein function. To facilitate the community use of this workflow, the simulator and analysis modules have been made available through an open source toolkit, the RHPapp.
Collapse
Affiliation(s)
- Ivan Jayapurna
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Zhiyuan Ruan
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Marco Eres
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Prajna Jalagam
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Spencer Jenkins
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Ting Xu
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Shen J, Zhang S, Fang X, Salmon S. Advances in 3D Gel Printing for Enzyme Immobilization. Gels 2022; 8:460. [PMID: 35892719 PMCID: PMC9331464 DOI: 10.3390/gels8080460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Incorporating enzymes with three-dimensional (3D) printing is an exciting new field of convergence research that holds infinite potential for creating highly customizable components with diverse and efficient biocatalytic properties. Enzymes, nature's nanoscale protein-based catalysts, perform crucial functions in biological systems and play increasingly important roles in modern chemical processing methods, cascade reactions, and sensor technologies. Immobilizing enzymes on solid carriers facilitates their recovery and reuse, improves stability and longevity, broadens applicability, and reduces overall processing and chemical conversion costs. Three-dimensional printing offers extraordinary flexibility for creating high-resolution complex structures that enable completely new reactor designs with versatile sub-micron functional features in macroscale objects. Immobilizing enzymes on or in 3D printed structures makes it possible to precisely control their spatial location for the optimal catalytic reaction. Combining the rapid advances in these two technologies is leading to completely new levels of control and precision in fabricating immobilized enzyme catalysts. The goal of this review is to promote further research by providing a critical discussion of 3D printed enzyme immobilization methods encompassing both post-printing immobilization and immobilization by physical entrapment during 3D printing. Especially, 3D printed gel matrix techniques offer mild single-step entrapment mechanisms that produce ideal environments for enzymes with high retention of catalytic function and unparalleled fabrication control. Examples from the literature, comparisons of the benefits and challenges of different combinations of the two technologies, novel approaches employed to enhance printed hydrogel physical properties, and an outlook on future directions are included to provide inspiration and insights for pursuing work in this promising field.
Collapse
Affiliation(s)
| | | | - Xiaomeng Fang
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695-8301, USA; (J.S.); (S.Z.)
| | - Sonja Salmon
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695-8301, USA; (J.S.); (S.Z.)
| |
Collapse
|