1
|
Xie Y, Chen G, Tang Y, Wang Z, Zhou J, Bi Z, Xuan X, Zou J, Zhang A, Yang C. Unraveling the Ionic Storage Mechanism of Flexible Nitrogen-Doped MXene Films for High-Performance Aqueous Hybrid Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405817. [PMID: 39377313 DOI: 10.1002/smll.202405817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/16/2024] [Indexed: 10/09/2024]
Abstract
2D MXene nanomaterials have excellent potential for application in novel electrochemical energy storage technologies such as supercapacitors and batteries, but the existing pure MXene is difficult to meet the practical needs. Although the electrochemical properties of modified MXene have been improved, the unclear ion storage mechanism still hinders the development of MXene-based electrode materials. Herein, the study develops flexible self-supported nitrogen-doped Ti3C2 (Py-Ti3C2) films by the highly mobile, high nitrogen content, oxygen-free pyridine-assisted solvothermal method, and then deeply investigates the energy storage mechanism of hybrid supercapacitors in four aqueous electrolytes (H2SO4, Li2SO4, Na2SO4, and MgSO4). The experimental results suggest that the Py-Ti3C2 film electrode exhibits a pseudocapacitance-dominated energy storage mechanism. Particularly, the specific capacity of the Py-Ti3C2 in 1 M H2SO4 (506 F g-1 at 0.1 A g-1) is 4-5 times higher than other electrolytes (≈110 F g-1), which could be attributed to the substantially higher ionic diffusion coefficient of H+ than those of Li+, Na+, Mg2+ with small ionic size, high ionic conductivity, and fast pseudocapacitance response. Theoretical analysis further confirms that Py-Ti3C2 has strengthened conductivity and electrical double-layer capacitance performance. Meanwhile, it has lower free energy for protonation and deprotonation of functional groups, which gives excellent pseudocapacitance performance.
Collapse
Affiliation(s)
- Yangyang Xie
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, No. 1 Dongxiang Road, Chang'an District, Xi'an, Shaanxi, 710129, P. R. China
- Innovation Center NPU Chongqing, Northwestern Polytechnical University, Chongqing, 400000, P. R. China
| | - Guanglei Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, No. 1 Dongxiang Road, Chang'an District, Xi'an, Shaanxi, 710129, P. R. China
- Innovation Center NPU Chongqing, Northwestern Polytechnical University, Chongqing, 400000, P. R. China
| | - Yi Tang
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, P. R. China
| | - Zhenyu Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jianghong Zhou
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, No. 1 Dongxiang Road, Chang'an District, Xi'an, Shaanxi, 710129, P. R. China
- Innovation Center NPU Chongqing, Northwestern Polytechnical University, Chongqing, 400000, P. R. China
| | - Zhao Bi
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, No. 1 Dongxiang Road, Chang'an District, Xi'an, Shaanxi, 710129, P. R. China
- Innovation Center NPU Chongqing, Northwestern Polytechnical University, Chongqing, 400000, P. R. China
| | - Xiaodie Xuan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, No. 1 Dongxiang Road, Chang'an District, Xi'an, Shaanxi, 710129, P. R. China
- Innovation Center NPU Chongqing, Northwestern Polytechnical University, Chongqing, 400000, P. R. China
| | - Junhui Zou
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, No. 1 Dongxiang Road, Chang'an District, Xi'an, Shaanxi, 710129, P. R. China
- Innovation Center NPU Chongqing, Northwestern Polytechnical University, Chongqing, 400000, P. R. China
| | - Aibo Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, No. 1 Dongxiang Road, Chang'an District, Xi'an, Shaanxi, 710129, P. R. China
| | - Chenhui Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, No. 1 Dongxiang Road, Chang'an District, Xi'an, Shaanxi, 710129, P. R. China
- Innovation Center NPU Chongqing, Northwestern Polytechnical University, Chongqing, 400000, P. R. China
| |
Collapse
|
2
|
Amin K, Mehmood W, Zhang J, Ahmed S, Mao L, Li CF, Zhang BB, Wei Z. Optimizing the Structure and Electrochemical Properties of Benzoquinone-Embedded COF via Heat Treatment for a High-Energy Organic Cathode. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48771-48781. [PMID: 37968096 DOI: 10.1021/acsami.3c11998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
A benzoquinone-embedded aza-fused covalent organic framework (BQ COF) with the maximum loading of redox-active units per molecule was employed as a cathode for lithium-ion batteries (LIBs) to achieve high energy and power densities. The synthesis was optimized to obtain high crystallinity and improved electrochemical performance. Synthesis at moderate temperature followed by a solid-state reaction was found to be particularly useful for achieving good crystallinity and the activation of the COF. When used as a cathode for LIBs, very high discharge capacities of 513, 365, and 234 mAh g-1 were obtained at 0.1C, 1C, and 10C, respectively, showing a remarkable rate performance. More than 70% of the initial capacity was retained after 1000 cycles when the cathode was investigated for cyclic performance at 2.5C. We demonstrated that a straightforward heat treatment led to enhanced crystallinity, an optimized structure, and favorable morphology, resulting in enhanced electrode kinetics and an improved overall electrochemical behavior. A comparative study was conducted involving an aza-fused COF lacking carbonyl groups (TAB COF) and a small molecule containing phenazine and carbonyl (3BQ), providing useful insights into new material design. A full cell was assembled with graphite as the anode to assess the commercial feasibility of BQ COF, and a discharge capacity of 240 mAh g-1 was obtained at 0.5C. Furthermore, a pouch-type cell with a high discharge capacity and an excellent rate performance was assembled, demonstrating the practical applicability of our designed cathode. Considering the entire mass of the working electrode, a specific energy density of 492 Wh kg-1 and a power density of 492 W kg-1 were achieved at the high current density of 1C, which are comparable to those of commercially available cathodes. These results highlight the promise of organic electrode materials for next-generation lithium-ion batteries. Furthermore, this study provides a systematic approach for simultaneously designing organic materials with high power and energy densities.
Collapse
Affiliation(s)
- Kamran Amin
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, CAS Key Laboratory of Nanosystems and Hierarchical Fabrication, Beijing 100190, P.R. China
| | - Warisha Mehmood
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, CAS Key Laboratory of Nanosystems and Hierarchical Fabrication, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jianqi Zhang
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, CAS Key Laboratory of Nanosystems and Hierarchical Fabrication, Beijing 100190, P.R. China
| | - Sadia Ahmed
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Lijuan Mao
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, CAS Key Laboratory of Nanosystems and Hierarchical Fabrication, Beijing 100190, P.R. China
| | - Chuan-Fu Li
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, CAS Key Laboratory of Nanosystems and Hierarchical Fabrication, Beijing 100190, P.R. China
| | - Bin Bin Zhang
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, CAS Key Laboratory of Nanosystems and Hierarchical Fabrication, Beijing 100190, P.R. China
| | - Zhixiang Wei
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, CAS Key Laboratory of Nanosystems and Hierarchical Fabrication, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
3
|
Wang Y, Wang J, Peng J, Jiang Y, Zhu Y, Yang Y. Crafting Core-Shell Heterostructures with Enriched Active Centers for High-Energy-Density Symmetric Lithium-Ion Batteries. ACS NANO 2024; 18:23958-23967. [PMID: 39169879 DOI: 10.1021/acsnano.3c11780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Current research strives to create sustainable and ecofriendly organic electrode materials (OEMs) due to the rising concerns about traditional inorganic electrode materials that call for substantial resource consumption in battery manufacturing. However, OEMs often exhibit unbalanced performance, with high capacity conflicting with a long lifespan. Herein, a 2D fully conjugated covalent organic framework featuring abundant C═O and C═N groups (HTPT-COF) was strategically synthesized by coupling 2,3,7,8-tetraamino-1,4,6,9-tetraketone with hexaketocyclohexane octahydrate. It stabilizes the enriched active centers by an extended π-conjugated skeleton, thereby affording a high theoretical capacity in conjunction with potential structure stability. To further unlock the barriers of fast charge, the HTPT-COF was interwoven around highly conductive carbon nanotubes, creating a robust core-sheath heterostructure (HTPT-COF@CNT). Consequently, the crafted HTPT-COF@CNT achieves large reversible capacities of 507.7 mA h g-1, high-rate performance (247.8 mA h g-1 at 20.0 A g-1), and long-term durability (1000 cycles). Aiming to streamline the process and cut the cost of battery manufacturing, all-organic symmetric batteries were well fabricated using HTPT-COF@CNT as both cathode and anode, demonstrating high energy/power density (up to 191.7 W h kg-1 and 3800.3 W kg-1, respectively) and long-term stability over 1000 cycles. Such HTPT-COF@CNT represents a promising sustainable electrode that effectively addresses irreconcilable contradictions encountered by OEMs, boosting the development of advanced organic batteries with high capacity and cycling stability.
Collapse
Affiliation(s)
- Yonglin Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Jiazhi Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Jinxiang Peng
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Yalong Jiang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Yunhai Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Yingkui Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
4
|
Luo LW, Zhang C, Ma W, Han C, Ai X, Chen Y, Xu Y, Ji X, Jiang JX. Regulating the Double-Way Traffic of Cations and Anions in Ambipolar Polymer Cathodes for High-Performing Aluminum Dual-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406106. [PMID: 39108043 DOI: 10.1002/adma.202406106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/12/2024] [Indexed: 09/28/2024]
Abstract
The strong Coulombic interactions between Al3+ and traditional inorganic crystalline cathodes present a significant obstacle in developing high-performance rechargeable aluminum batteries (RABs) that hold promise for safe and sustainable stationary energy storage. While accommodating chloroaluminate ions (AlCl4 -, AlCl2+, etc.) in redox-active organic compounds offers a promising solution for RABs, the issues of dissolution and low ionic/electronic conductivities plague the development of organic cathodes. Herein, electron donors are synthetically connected with acceptors to create crosslinked, bipolar-conjugated polymer cathodes. These cathodes exhibit overlapped redox potential ranges for both donors and acceptors in highly concentrated AlCl3-based ionic liquid electrolytes. This approach strategically enables on-site doping of the polymer backbones during redox reactions involving both donor and acceptor units, thereby enhancing the electron/ion transfer kinetics within the resultant polymer cathodes. Based on the optimal donor/acceptor combination, the bipolar polymer cathodes can deliver a high specific capacity of 205 mAh g-1 by leveraging the co-storage of AlCl4 - and AlCl2+. The electrodes exhibit excellent rate performance, a stable cycle life of 60 000 cycles, and function efficiently at high mass loadings, i.e., 100 mg cm-2, and at low temperatures, i.e., -30 °C. The findings exemplify the exploration of high-performing conjugated polymer cathodes for RABs through rational structural design.
Collapse
Affiliation(s)
- Lian-Wei Luo
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Chong Zhang
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Wenyan Ma
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Changzhi Han
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| | - Xuan Ai
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Yu Chen
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Yunhua Xu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiulei Ji
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Jia-Xing Jiang
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| |
Collapse
|
5
|
Xue Y, Xu T, Wang C, Fu L. Recent advances of two-dimensional materials-based heterostructures for rechargeable batteries. iScience 2024; 27:110392. [PMID: 39129831 PMCID: PMC11315162 DOI: 10.1016/j.isci.2024.110392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Abstract
Because of their unique layer structure, 2D materials have demonstrated to be promising electrode materials for rechargeable batteries. However, individual 2D materials cannot meet all the performance requirements of energy density, power density, and cycle life. Constructing 2D materials-based heterostructures offers an opportunity to synergistically handle the deficiencies of individual 2D materials and modulate the physical and electrochemical properties. The enlarged interlayer distance and increased binding energy with ions of heterostructures can facilitate charge transfer, boost electrochemical reactivities, resulting in an enhanced performance in rechargeable batteries. Here we summarize the latest development of heterostructures consisted of 2D materials and their applications in rechargeable batteries. Firstly, different preparation strategies and optimized structure engineering strategies of 2D materials-based heterostructures are systematically introduced. Secondly, the unique functions of 2D materials-based heterostructures in rechargeable batteries are discussed respectively. Finally, challenges and perspectives are presented to inspire the future study of 2D materials-based heterostructures.
Collapse
Affiliation(s)
- Yinghui Xue
- Henan Joint International Research Laboratory of Nanocomposite Sensing Materials, Anyang Institute of Technology, Anyang 455000, China
| | - Tianjie Xu
- Henan Joint International Research Laboratory of Nanocomposite Sensing Materials, Anyang Institute of Technology, Anyang 455000, China
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Chenyang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Li N, Zhu J, Yang C, Huang S, Jiang K, Zheng Q, Yang Y, Mao H, Han S, Zhu L, Zhuang X. Sulfur and Wavy-Stacking Boosted Superior Lithium Storage in 2D Covalent Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405974. [PMID: 39148200 DOI: 10.1002/smll.202405974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Indexed: 08/17/2024]
Abstract
2D conjugated covalent organic frameworks (c-COFs) provide an attractive foundation as organic electrodes in energy storage devices, but their storage capability is long hindered by limited ion accessibility within densely π-π stacked interlayers. Herein, two kinds of 2D c-COFs based on dioxin and dithiine linkages are reported, which exhibit distinct in-plane configurations-fully planar and undulated layers. X-ray diffraction analysis reveals wavy square-planar networks in dithiine-bridged COF (COF-S), attributed to curved C─S─C bonds in the dithiine linkage, whereas dioxin-bridged COF (COF-O) features densely packed fully planar layers. Theoretical and experimental results elucidate that the undulated stacking within COF-S possesses an expanded layer distance of 3.8 Å and facilitates effective and rapid Li+ storage, yielding a superior specific capacity of 1305 mAh g-1 at 0.5 A g-1, surpassing that of COF-O (1180 mAh g-1 at 0.5 A g-1). COF-S also demonstrates an admirable cycle life with 80.4% capacity retention after 5000 cycles. As determined, self-expanded wavy-stacking geometry, S-enriched dithiine in COF-S enhances the accessibility and redox activity of Li storage, allowing each phthalocyanine core to store 12 Li+ compared to 8 Li+ in COF-O. These findings underscore the elements and stacking modes of 2D c-COFs, enabling tunable layer distance and modulation of accessible ions.
Collapse
Affiliation(s)
- Nana Li
- The Soft2D Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Jinhui Zhu
- The Soft2D Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chongqing Yang
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Senhe Huang
- The Soft2D Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kaiyue Jiang
- The Soft2D Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Zheng
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Yilong Yang
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiyan Mao
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Sheng Han
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, China
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Lei Zhu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Zhuang
- The Soft2D Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| |
Collapse
|
7
|
Li C, Yu A, Zhao W, Long G, Zhang Q, Mei S, Yao CJ. Extending the π-Conjugation of a Donor-Acceptor Covalent Organic Framework for High-Rate and High-Capacity Lithium-Ion Batteries. Angew Chem Int Ed Engl 2024:e202409421. [PMID: 39136328 DOI: 10.1002/anie.202409421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Indexed: 11/01/2024]
Abstract
Realizing high-rate and high-capacity features of Lihium-organic batteries is essential for their practical use but remains a big challenge, which is due to the instrinsic poor conductivity, limited redox kinetics and low utility of organic electrode mateials. This work presents a well-designed donor-acceptor Covalent Organic Framework (COFs) with extended conjugation, mesoscale porosity, and dual redox-active centers to promote fast charge transfer and multi-electron processes. As anticipated, the prepared cathode with benzo [1,2-b:3,4-b':5,6-b''] trithiophene (BTT) as p-type and pyrene-4,5,9,10-tetraone (PTO) as n-type material (BTT-PTO-COF) delivers impressive specific capacity (218 mAh g-1 at 0.2 A g-1 in ether-based electrolyte and 275 mAh g-1 at 0.2 A g-1 in carbonate-based electrolyte) and outstanding rate capability (79 mAh g-1 at 50 A g-1 in ether-based electrolyte and 124 mAh g-1 at 10 A g-1 in carbonate-based electrolyte). In addition, the potential of BTT-PTO-COF electrode for prototype batteries has been demonstrated by full cells of dual-ion (FDIBs), which attain comparable electrochemical performances to the half cells. Moreover, mechanism studies combining ex situ characterization and theoratical calculations reveal the efficient dual-ion storage process and facile charge transfer of BTT-PTO-COF. This work not only expands the diversity of redox-active COFs but also provide concept of structure design for high-rate and high-capacity organic electrodes.
Collapse
Affiliation(s)
- Chengqiu Li
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ao Yu
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - WenKai Zhao
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Beijing, 100081, China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Beijing, 100081, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Shilin Mei
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chang-Jiang Yao
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
8
|
Sun H, Li J, Liang W, Gong X, Jing A, Yang W, Liu H, Ren S. Porous Organic Polymers as Active Electrode Materials for Energy Storage Applications. SMALL METHODS 2024; 8:e2301335. [PMID: 38037763 DOI: 10.1002/smtd.202301335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/05/2023] [Indexed: 12/02/2023]
Abstract
Eco-friendly and efficient energy production and storage technologies are highly demanded to address the environmental and energy crises. Porous organic polymers (POPs) are a class of lightweight porous network materials covalently linked by organic building blocks, possessing high surface areas, tunable pores, and designable components and structures. Due to their unique structural and compositional advantages, POPs have recently emerged as promising electrode materials for energy storage devices, particularly in the realm of supercapacitors and ion batteries. In this work, a comprehensive overview of recent progress and applications of POPs as electrode materials in energy storage devices, including the structural features and synthesis strategies of various POPs, as well as their applications in supercapacitors, lithium batteries, sodium batteries, and potassium batteries are provided. Finally, insights are provided into the future research directions of POPs in electrochemical energy storage technologies. It is anticipated that this work can provide readers with a comprehensive background on the design of POPs-based electrode materials and ignite more research in the development of next-generation energy storage devices.
Collapse
Affiliation(s)
- Haotian Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jingli Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wencui Liang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xue Gong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Aoming Jing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wanru Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Hongxu Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shijie Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
9
|
Yao Y, Pei M, Su C, Jin X, Qu Y, Song Z, Jiang W, Jian X, Hu F. A Small-Molecule Organic Cathode with Extended Conjugation toward Enhancing Na + Migration Kinetics for Advanced Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401481. [PMID: 38616774 DOI: 10.1002/smll.202401481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/28/2024] [Indexed: 04/16/2024]
Abstract
Organic cathode materials show excellent prospects for sodium-ion batteries (SIBs) owing to their high theoretical capacity. However, the high solubility and low electrical conductivity of organic compounds result in inferior cycle stability and rate performance. Herein, an extended conjugated organic small molecule is reported that combines electroactive quinone with piperazine by the structural designability of organic materials, 2,3,7,8-tetraamino-5,10-dihydrophenazine-1,4,6,9-tetraone (TDT). Through intermolecular condensation reaction, many redox-active groups C═O and extended conjugated structures are introduced without sacrificing the specific capacity, which ensures the high capacity of the electrode and enhances rate performance. The abundant NH2 groups can form intermolecular hydrogen bonds with the C═O groups to enhance the intermolecular interactions, resulting in lower solubility and higher stability. The TDT cathode delivers a high initial capacity of 293 mAh g-1 at 500 mA g-1 and maintains 90 mAh g-1 at an extremely high current density of 70 A g-1. The TDT || Na-intercalated hard carbon (Na-HC) full cells provide an average capacity of 210 mAh g-1 during 100 cycles at 500 mA g-1 and deliver a capacity of 120 mAh g-1 at 8 A g-1.
Collapse
Affiliation(s)
- Yuxin Yao
- School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Dalian University of Technology, Dalian, 116024, China
| | - Mengfai Pei
- School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Dalian University of Technology, Dalian, 116024, China
| | - Chang Su
- School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Dalian University of Technology, Dalian, 116024, China
| | - Xin Jin
- School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Dalian University of Technology, Dalian, 116024, China
| | - Yunpeng Qu
- School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Dalian University of Technology, Dalian, 116024, China
| | - Zihui Song
- School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Dalian University of Technology, Dalian, 116024, China
| | - Wanyuan Jiang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Dalian University of Technology, Dalian, 116024, China
| | - Xigao Jian
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Dalian University of Technology, Dalian, 116024, China
| | - Fangyuan Hu
- School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
10
|
Koner K, Sasmal HS, Shetty D, Banerjee R. Thickness-Driven Synthesis and Applications of Covalent Organic Framework Nanosheets. Angew Chem Int Ed Engl 2024; 63:e202406418. [PMID: 38726702 DOI: 10.1002/anie.202406418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 06/21/2024]
Abstract
Covalent organic frameworks (COFs) are two-dimensional, crystalline porous framework materials with numerous scopes for tunability, such as porosity, functionality, stability and aspect ratio (thickness to length ratio). The manipulation of π-stacking in COFs results in truly 2D materials, namely covalent organic nanosheets (CONs), adds advantages in many applications. In this Minireview, we have discussed both top-down (COFs→CONs) and bottom-up (molecules→CONs) approaches with precise information on thickness and lateral growth. We have showcased the research progress on CONs in a few selected applications, such as batteries, catalysis, sensing and biomedical applications. This Minireview specifically highlights the reports where the authors compare the performance of CONs with COFs by demonstrating the impact of the thickness and lateral growth of the nanosheets. We have also provided the possible scope of exploration of CONs research in terms of inter-dimensional conversion, such as graphene to carbon nanotube and future technologies.
Collapse
Affiliation(s)
- Kalipada Koner
- Centre for Advanced Functional Materials, Department of Chemical Science, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
| | - Himadri Sekhar Sasmal
- Centre for Advanced Functional Materials, Department of Chemical Science, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
| | - Dinesh Shetty
- Department of Chemistry & Center for Catalysis and Separations (CeCaS), Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Rahul Banerjee
- Centre for Advanced Functional Materials, Department of Chemical Science, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro Seongbuk-gu, Seoul, Korea
| |
Collapse
|
11
|
Yu M, Wang B, Ma H, Kamchompoo S, Zhao B, Jungsuttiwong S, Maitarad P, Yuan S, Shi L, Fang Y, Zhao D, Lv Y. Ionic Pumping Effect at the Tailored Mesoporous Carbon Interface for an Extra-Stable Lithium Ion Battery at Low Temperatures. NANO LETTERS 2024; 24:8902-8910. [PMID: 39008627 DOI: 10.1021/acs.nanolett.4c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Ion transportation at the interface significantly influences the electrochemical performance of the lithium ion battery, especially at high rates and low temperatures. Here, we develop a controlled self-assembly strategy for constructing a mesoporous carbon nanolayer with a uniform pore size and varied thicknesses on the two-dimensional monolayer MXene substrate. On the basis of the excellent electron conductivity of MXene, the mesoporous carbon layer is found with a voltage-driven ion accumulation effect, acting as an "ionic pump". The thicker mesoporous layer (∼2.28 nm) has the ability to accommodate a substantial quantity of ions, demonstrating enhanced ionic conductivity, remarkable cycling stability (192.8 mAh/g after 9400 cycles at 5.0 A/g), and outstanding rate capability at ambient and sub-zero temperatures (∼601 mAh/g at 0 °C and 0.05 A/g). This work provides valuable insights and guidance for the further development of high-performance electrode materials at high rates or low temperatures.
Collapse
Affiliation(s)
- Mengjia Yu
- Research Centre of Nanoscience and Nanotechnology, Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Bingfang Wang
- Research Center for Translational Medicine, Shanghai East Hospital Affiliated to Tongji University, Shanghai 200120, China
| | - Haoyu Ma
- Research Centre of Nanoscience and Nanotechnology, Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Suparada Kamchompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Baogang Zhao
- Research Centre of Nanoscience and Nanotechnology, Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Siriporn Jungsuttiwong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Phornphimon Maitarad
- Research Centre of Nanoscience and Nanotechnology, Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Shuai Yuan
- Research Centre of Nanoscience and Nanotechnology, Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Liyi Shi
- Research Centre of Nanoscience and Nanotechnology, Department of Chemistry, Shanghai University, Shanghai 200444, China
- Emerging Industries Institute, Shanghai University, Jiaxing, Zhejiang 314006, China
| | - Yin Fang
- Research Center for Translational Medicine, Shanghai East Hospital Affiliated to Tongji University, Shanghai 200120, China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yingying Lv
- Research Centre of Nanoscience and Nanotechnology, Department of Chemistry, Shanghai University, Shanghai 200444, China
| |
Collapse
|
12
|
Fu N, Liu Y, Kang K, Tang X, Zhang S, Yang Z, Wang Y, Jin P, Niu Y, Yang B. Fully sp 2 Carbon-Conjugated Covalent Organic Frameworks with Multiple Active Sites for Advanced Lithium-Ion Battery Cathodes. Angew Chem Int Ed Engl 2024:e202412334. [PMID: 39046189 DOI: 10.1002/anie.202412334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
Covalent organic frameworks (COFs) hold great promise for rechargeable batteries. However, the synthesis of COFs with abundant active sites, excellent stability, and increased conductivity remains a challenge. Here, chemically stable fully sp2 carbon-conjugated COFs (sp2c-COFs) with multiple active sites are designed by the polymerization of benzo[1,2-b:3,4-b':5,6-b'']trithiophene-2,5,8-tricarbaldehyde) (BTT) and s-indacene-1,3,5,7(2H,6H)-tetrone (ICTO) (denoted as BTT-ICTO). The morphology and structure of the COF are precisely regulated from "butterfly-shaped" to "cable-like" through an in situ controllable growth strategy, significantly promoting the exposure and utilization of active sites. When the unique "cable-like" BTT-ICTO@CNT is employed as lithium-ion batteries (LIBs) cathode, it exhibits exceptional capacity (396 mAh g-1 at 0.1 A g-1 with 97.9 % active sites utilization rate), superb rate capacity (227 mAh g-1 at 5.0 A g-1), and excellent cycling performance (184 mAh g-1 over 8000 cycles at 2.0 A g-1 with 0.00365 % decay rate per cycle). The lithium storage mechanism of BTT-ICTO is exhaustively revealed by in situ Fourier transform infrared, in situ Raman, and density functional theory calculations. This work provides in-depth insights into fully sp2c-COFs with multiple active sites for high-performance LIBs.
Collapse
Affiliation(s)
- Ning Fu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China
| | - Ying Liu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China
| | - Kun Kang
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R China
| | - Xue Tang
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R China
| | - Shiqi Zhang
- College of Mechanical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Zhenglong Yang
- School of Materials Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Yan Wang
- School of Materials Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Pujun Jin
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R China
| | - Yongsheng Niu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China
| | - Ben Yang
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R China
| |
Collapse
|
13
|
Karak S, Singh H, Biswas A, Paul S, Manna S, Nishiyama Y, Pathak B, Banerjee A, Banerjee R. Lithiophilic Dibenzamide Linkages to Impart Lithium Storage Capacity in Porous Polybenzamides. J Am Chem Soc 2024; 146:20183-20192. [PMID: 39002137 DOI: 10.1021/jacs.4c05192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Polymer-based organic cathode materials have shown immense promise for lithium storage, owing to their structural diversity and functional group tunability. However, designing appropriate high-performance cathode materials with a high-rate capability and long cycle life remains a significant challenge. It is quintessential to design polymer-based electrodes with lithiophilic linkages. Herein, we design a bifurcated dibenzamide (DBA) linkage having lithiophilic functionalities. 1H NMR has been used as an experimental tool to understand the lithiophilic nature of the DBAs. Considering the strong Li+ affinity of DBAs, a series of polybenzamides have been designed as lithium storage systems. The design of porous polybenzamides consists of amides as only redox-active functionalities, and the rest are inactive phenyl units. Porous polybenzamides, when tested as cathodes against a Li-metal anode, displayed high capacity and rate performance, demonstrating their redox activity. The most efficient polybenzamide (TAm-TA) delivered a specific capacity of 248 mA h g-1 at 1C. TAm-TA retained 63% of its specific capacity at a very high rate of 10C (157 mA h g-1). Notably, polybenzamides displayed a capacity enhancement during long cycling, tending to achieve their theoretical capacity. Long cycling stability tests over 3000 cycles at a rate of 1.3C and over 6000 cycles at elevated rates (5C to 40C) demonstrate the electrochemical robustness of dibenzamide linkages. Finally, two full-cell experiments using TAm-TA as both cathode and anode were conducted, which delivered high capacity, demonstrating that TAm-TA is a promising candidate for Li+-ion batteries (LIBs). Furthermore, the ex situ Fourier transform infrared (FT-IR), X-ray photoemission spectroscopy (XPS), and density functional theory (DFT) studies revealed the stepwise lithiation/delithiation mechanism for polybenzamides.
Collapse
Affiliation(s)
- Shayan Karak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Himanshi Singh
- Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology, Sector V, Salt Lake, Kolkata 700091, India
| | - Arup Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Satyadip Paul
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Souvik Manna
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | | | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Abhik Banerjee
- Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology, Sector V, Salt Lake, Kolkata 700091, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- College of Science, Korea University, 145 Anam-ro Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
14
|
Xue J, Sun Z, Sun B, Zhao C, Yang Y, Huo F, Cabot A, Liu HK, Dou S. Covalent Organic Framework-Based Materials for Advanced Lithium Metal Batteries. ACS NANO 2024; 18:17439-17468. [PMID: 38934250 DOI: 10.1021/acsnano.4c05040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Lithium metal batteries (LMBs), with high energy densities, are strong contenders for the next generation of energy storage systems. Nevertheless, the unregulated growth of lithium dendrites and the unstable solid electrolyte interphase (SEI) significantly hamper their cycling efficiency and raise serious safety concerns, rendering LMBs unfeasible for real-world implementation. Covalent organic frameworks (COFs) and their derivatives have emerged as multifunctional materials with significant potential for addressing the inherent problems of the anode electrode of the lithium metal. This potential stems from their abundant metal-affine functional groups, internal channels, and widely tunable architecture. The original COFs, their derivatives, and COF-based composites can effectively guide the uniform deposition of lithium ions by enhancing conductivity, transport efficiency, and mechanical strength, thereby mitigating the issue of lithium dendrite growth. This review provides a comprehensive analysis of COF-based and derived materials employed for mitigating the challenges posed by lithium dendrites in LMB. Additionally, we present prospects and recommendations for the design and engineering of materials and architectures that can render LMBs feasible for practical applications.
Collapse
Affiliation(s)
- Jiaojiao Xue
- Key Lab for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| | - Zixu Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| | - Bowen Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| | - Chongchong Zhao
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, China
| | - Yi Yang
- Key Lab for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, China
| | - Feng Huo
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Longzihu New Energy Laboratory, Henan University, Zhengzhou 450046, China
| | - Andreu Cabot
- Catalonia Institute for Energy Research - IRECSant Adrià de Besòs, Barcelona 08930, Spain
- Catalan Institution for Research and Advanced Studies - ICREAPg, Lluís Companys 23, Barcelona 08010, Spain
| | - Hua Kun Liu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - ShiXue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
15
|
Li M, Han B, Li S, Zhang Q, Zhang E, Gong L, Qi D, Wang K, Jiang J. Constructing 2D Phthalocyanine Covalent Organic Framework with Enhanced Stability and Conductivity via Interlayer Hydrogen Bonding as Electrocatalyst for CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310147. [PMID: 38377273 DOI: 10.1002/smll.202310147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Fabricating COFs-based electrocatalysts with high stability and conductivity still remains a great challenge. Herein, 2D polyimide-linked phthalocyanine COF (denoted as NiPc-OH-COF) is constructed via solvothermal reaction between tetraanhydrides of 2,3,9,10,16,17,23,24-octacarboxyphthalocyaninato nickel(II) and 2,5-diamino-1,4-benzenediol (DB) with other two analogous 2D COFs (denoted as NiPc-OMe-COF and NiPc-H-COF) synthesized for reference. In comparison with NiPc-OMe-COF and NiPc-H-COF, NiPc-OH-COF exhibits enhanced stability, particularly in strong NaOH solvent and high conductivity of 1.5 × 10-3 S m-1 due to the incorporation of additional strong interlayer hydrogen bonding interaction between the O-H of DB and the hydroxy "O" atom of DB in adjacent layers. This in turn endows the NiPc-OH-COF electrode with ultrahigh CO2-to-CO faradaic efficiency (almost 100%) in a wide potential range from -0.7 to -1.1 V versus reversible hydrogen electrode (RHE), a large partial CO current density of -39.2 mA cm-2 at -1.1 V versus RHE, and high turnover number as well as turnover frequency, amounting to 45 000 and 0.76 S-1 at -0.80 V versus RHE during 12 h lasting measurement.
Collapse
Affiliation(s)
- Mingrun Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Bin Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Senzhi Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qi Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Enhui Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lei Gong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
16
|
Xu Y, Gong J, Li Q, Guo X, Wan X, Xu L, Pang H. Covalent organic frameworks and their composites for rechargeable batteries. NANOSCALE 2024; 16:11429-11456. [PMID: 38855977 DOI: 10.1039/d4nr01092b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Covalent organic frameworks (COFs), characterized by well-ordered pores, large specific surface area, good stability, high precision, and flexible design, are a promising material for batteries and have received extensive attention from researchers in recent years. Compared with inorganic materials, COFs can construct elastic frameworks with better structural stability, and their chemical compositions and structures can be precisely adjusted and functionalized at the molecular level, providing an open pathway for the convenient transfer of ions. In this review, the energy storage mechanism and unique superiority of COFs and COF composites as electrodes, separators and electrolytes for rechargeable batteries are discussed in detail. Special emphasis is placed on the relationship between the establishment of COF structures and their electrochemical performance in different batteries. Finally, this review summarizes the challenges and prospects of COFs and COF composites in battery equipment.
Collapse
Affiliation(s)
- Yuxia Xu
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Jiayue Gong
- School of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Qing Li
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Xiaotian Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| | - Xin Wan
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Lin Xu
- School of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
17
|
Xu L, Liu Y, Xuan X, Xu X, Li Y, Lu T, Pan L. Heterointerface regulation of covalent organic framework-anchored graphene via a solvent-free strategy for high-performance supercapacitor and hybrid capacitive deionization electrodes. MATERIALS HORIZONS 2024; 11:2974-2985. [PMID: 38592376 DOI: 10.1039/d4mh00161c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Covalent organic frameworks (COFs) with customizable geometry and redox centers are an ideal candidate for supercapacitors and hybrid capacitive deionization (HCDI). However, their poor intrinsic conductivity and micropore-dominated pore structures severely impair their electrochemical performance, and the synthesis process using organic solvents brings serious environmental and cost issues. Herein, a 2D redox-active pyrazine-based COF (BAHC-COF) was anchored on the surface of graphene in a solvent-free strategy for heterointerface regulation. The as-prepared BAHC-COF/graphene (BAHCGO) nanohybrid materials possess high-speed charge transport offered by the graphene carrier and accelerated electrolyte ion migration within the BAHC-COF, allowing ions to effectively occupy ion storage sites inside BAHC. As a result, the BAHCGO//activated carbon asymmetric supercapacitor achieves a high energy output of 61.2 W h kg-1 and a satisfactory long-term cycling life. More importantly, BAHCGO-based HCDI possesses a high salt adsorption capacity (SAC) of 67.5 mg g-1 and excellent long-term desalination/regeneration stability. This work accelerates the application of COF-based materials in the fields of energy storage and water treatment.
Collapse
Affiliation(s)
- Liming Xu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Yong Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Xiaoyang Xuan
- College of Chemistry and Chemical Engineering, Taishan University, Taian, Shandong 271000, China.
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Yuquan Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Ting Lu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
18
|
Wang B, Shen L, He Y, Chen C, Yang Z, Fei L, Xu J, Li B, Lin H. Covalent Organic Framework/Graphene Hybrids: Synthesis, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310174. [PMID: 38126899 DOI: 10.1002/smll.202310174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/12/2023] [Indexed: 12/23/2023]
Abstract
To address current energy crises and environmental concerns, it is imperative to develop and design versatile porous materials ideal for water purification and energy storage. The advent of covalent organic frameworks (COFs), a revolutionary terrain of porous materials, is underscored by their superlative features such as divinable structure, adjustable aperture, and high specific surface area. However, issues like inferior electric conductivity, inaccessible active sites impede mass transfer and poor processability of bulky COFs restrict their wider application. As a herculean stride forward, COF/graphene hybrids amalgamate the strengths of their constituent components and have in consequence, enticed significant scientific intrigue. Herein, the current progress on the structure and properties of graphene-based materials and COFs are systematically outlined. Then, synthetic strategies for preparing COF/graphene hybrids, including one-pot synthesis, ex situ synthesis, and in situ growth, are comprehensively reviewed. Afterward, the pivotal attributes of COF/graphene hybrids are dissected in conjunction with their multifaceted applications spanning adsorption, separation, catalysis, sensing, and energy storage. Finally, this review is concluded by elucidating prevailing challenges and gesturing toward prospective strides within the realm of COF/graphene hybrids research.
Collapse
Affiliation(s)
- Boya Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Yabing He
- College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Zhi Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lingya Fei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiujing Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
19
|
Zhang Q, Zhi P, Zhang J, Duan S, Yao X, Liu S, Sun Z, Jun SC, Zhao N, Dai L, Wang L, Wu X, He Z, Zhang Q. Engineering Covalent Organic Frameworks Toward Advanced Zinc-Based Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313152. [PMID: 38491731 DOI: 10.1002/adma.202313152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/25/2024] [Indexed: 03/18/2024]
Abstract
Zinc-based batteries (ZBBs) have demonstrated considerable potential among secondary batteries, attributing to their advantages including good safety, environmental friendliness, and high energy density. However, ZBBs still suffer from issues such as the formation of zinc dendrites, occurrence of side reactions, retardation of reaction kinetics, and shuttle effects, posing a great challenge for practical applications. As promising porous materials, covalent organic frameworks (COFs) and their derivatives have rigid skeletons, ordered structures, and permanent porosity, which endow them with great potential for application in ZBBs. This review, therefore, provides a systematic overview detailing on COFs structure pertaining to electrochemical performance of ZBBs, following an in depth discussion of the challenges faced by ZBBs, which includes dendrites and side reactions at the anode, as well as dissolution, structural change, slow kinetics, and shuttle effect at the cathode. Then, the structural advantages of COF-correlated materials and their roles in various ZBBs are highlighted. Finally, the challenges of COF-correlated materials in ZBBs are outlined and an outlook on the future development of COF-correlated materials for ZBBs is provided. The review would serve as a valuable reference for further research into the utilization of COF-correlated materials in ZBBs.
Collapse
Affiliation(s)
- Qingqing Zhang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Peng Zhi
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Jing Zhang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Siying Duan
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Xinyue Yao
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Zhefei Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| | - Ningning Zhao
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Lei Dai
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Ling Wang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Zhangxing He
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Qiaobao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
20
|
Peng Q, Sun Y, Wang L, Dong H, Wang H, Xiao Y, Chou S, Xu Y, Wang Y, Chen S. Constructing Carbon Nanotube-Enhanced Ultra-Thin Organic Compounds with Multi-Redox Sites for "All-Temperature" Potassium-Ion Battery Anode and its Step-Wise K-Storage Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308953. [PMID: 38072790 DOI: 10.1002/smll.202308953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/24/2023] [Indexed: 05/18/2024]
Abstract
Organic compounds are regarded as important candidates for potassium-ion batteries (KIBs) due to their light elements, controllable polymerization, and tunable functional groups. However, intrinsic drawbacks largely restrict their application, including possible solubility in electrolytes, poor conductivity, and low diffusion coefficients. To address these issues, an ultrathin layered pyrazine/carbonyl-rich material (CT) is synthesized via an acid-catalyzed solvothermal reaction and homogeneously grown on carbon nanotubes (CNTs), marked as CT@CNT. Such materials have shown good features of exposing functional groups to guest ions and good electron transport paths, exhibiting high reversible capacity and remarkable rate capability over a wide temperature range. Two typical electrolytes are compared, demonstrating that the electrolyte of LX-146 is more suitable to maximize the electrochemical performances of electrodes at different temperatures. A stepwise reaction mechanism of K-chelating with C═O and C═N functional groups is proposed, verified by in/ex situ spectroscopic techniques and theoretical calculations, illustrating that pyrazines and carbonyls play the main roles in reacting with K+ cations, and CNTs promote conductivity and restrain electrode dissolution. This study provides new insights to understand the K-storage behaviors of organic compounds and their "all-temperature" application.
Collapse
Affiliation(s)
- Qianqian Peng
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, P. R. China
| | - Yi Sun
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, P. R. China
| | - Lei Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, P. R. China
| | - Hanghang Dong
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, P. R. China
| | - Haichao Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, P. R. China
| | - Yao Xiao
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Yi Xu
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, P. R. China
| | - Yong Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, P. R. China
| | - Shuangqiang Chen
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, P. R. China
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
21
|
Sun X, Yi X, Fan L, Lu B. Insoluble low-impedance organic battery cathode enabled by graphite grafting towards potassium storage. RSC Adv 2024; 14:12658-12664. [PMID: 38645517 PMCID: PMC11027037 DOI: 10.1039/d4ra01420k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024] Open
Abstract
Organic electrode materials are extensively applied for potassium storage as their sustainability and low cost. However, the organic electrodes' (i) solubility (such as naphthalene-1,4,5,8-tetracarboxylic dianhydride, NTCDA; 2,6-diaminoanthanthraquinone, DAQ, which are easily soluble in organic solvents) and (ii) intrinsic poor conductivity often result in high impedance and inferior electrochemical performance. Herein, the monomers of NTCDA and DAQ were polymerized (PND) to obtain an insoluble organic cathode, and a 5 wt% graphite (G) was also used to graft the PND sheet and increase its conductivity. Consequently, the as-prepared organic cathode (PND-G) achieved a long-life cycling performance of over 1500 cycles at 100 mA g-1. This work may provide guidelines for designing and developing insoluble and high conductive organic electrode materials.
Collapse
Affiliation(s)
- Xiaolei Sun
- School of Physics and Electronics, Hunan University Changsha 410082 China
| | - Xianhui Yi
- School of Physics and Electronics, Hunan University Changsha 410082 China
| | - Ling Fan
- School of Physics and Electronics, Hunan University Changsha 410082 China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University Changsha 410082 China
| |
Collapse
|
22
|
Li H, Cao M, Fu Z, Ma Q, Zhang L, Wang R, Liang F, Zhou T, Zhang C. A covalent organic framework as a dual-active-center cathode for a high-performance aqueous zinc-ion battery. Chem Sci 2024; 15:4341-4348. [PMID: 38516068 PMCID: PMC10952062 DOI: 10.1039/d3sc07013a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/26/2024] [Indexed: 03/23/2024] Open
Abstract
Organic electrode materials have shown significant potential for aqueous Zn ion batteries (AZIBs) due to their flexible structure designability and cost advantage. However, sluggish ionic diffusion, high solubility, and low capacities limit their practical application. Here, we designed a covalent organic framework (TA-PTO-COF) generated by covalently bonding tris(4-formylbiphenyl)amine (TA) and 2,7-diaminopyrene-4,5,9,10-tetraone (PTO-NH2). The highly conjugated skeleton inside enhances its electron delocalization and intermolecular interaction, leading to high electronic conductivity and limited solubility. The open channel within the TA-PTO-COF provides ionic diffusion pathways for fast reaction kinetics. In addition, the abundant active sites (C[double bond, length as m-dash]N and C[double bond, length as m-dash]O) endow the TA-PTO-COF with a large reversible capacity. As a result, the well-designed TA-PTO-COF cathode delivers exceptional capacity (255 mA h g-1 at 0.1 A g-1), excellent cycling stability, and a superior rate capacity of 186 mA h g-1 at 10 A g-1. Additionally, the co-insertion mechanism of Zn2+/H+ within the TA-PTO-COF cathode is revealed in depth by ex situ spectroscopy. This study presents an effective strategy for developing high-performance organic cathodes for advanced AZIBs.
Collapse
Affiliation(s)
- Hongbao Li
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Mengge Cao
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Zhenli Fu
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Quanwei Ma
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Longhai Zhang
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Rui Wang
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Fei Liang
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Tengfei Zhou
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Chaofeng Zhang
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| |
Collapse
|
23
|
Wang C, Tian Y, Chen W, Lin X, Zou J, Fu D, Yu X, Qiu R, Qiu J, Zeng S. Recent Progress in Covalent Organic Frameworks for Cathode Materials. Polymers (Basel) 2024; 16:687. [PMID: 38475370 DOI: 10.3390/polym16050687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Covalent organic frameworks (COFs) are constructed from small organic molecules through reversible covalent bonds, and are therefore considered a special type of polymer. Small organic molecules are divided into nodes and connectors based on their roles in the COF's structure. The connector generally forms reversible covalent bonds with the node through two reactive end groups. The adjustment of the length of the connector facilitates the adjustment of pore size. Due to the diversity of organic small molecules and reversible covalent bonds, COFs have formed a large family since their synthesis in 2005. Among them, a type of COF containing redox active groups such as -C=O-, -C=N-, and -N=N- has received widespread attention in the field of energy storage. The ordered crystal structure of COFs ensures the ordered arrangement and consistent size of pores, which is conducive to the formation of unobstructed ion channels, giving these COFs a high-rate performance and a long cycle life. The voltage and specific capacity jointly determine the energy density of cathode materials. For the COFs' cathode materials, the voltage plateau of their active sites' VS metallic lithium is mostly between 2 and 3 V, which has great room for improvement. However, there is currently no feasible strategy for this. Therefore, previous studies mainly improved the theoretical specific capacity of the COFs' cathode materials by increasing the number of active sites. We have summarized the progress in the research on these types of COFs in recent years and found that the redox active functional groups of these COFs can be divided into six subcategories. According to the different active functional groups, these COFs are also divided into six subcategories. Here, we summarize the structure, synthesis unit, specific surface area, specific capacity, and voltage range of these cathode COFs.
Collapse
Affiliation(s)
- Chi Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Yuchao Tian
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Wuhong Chen
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Xiaochun Lin
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Jizhao Zou
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dongju Fu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Xiao Yu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Ruling Qiu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Junwei Qiu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Shaozhong Zeng
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| |
Collapse
|
24
|
Xu L, Liu Y, Ding Z, Xu X, Liu X, Gong Z, Li J, Lu T, Pan L. Solvent-Free Synthesis of Covalent Organic Framework/Graphene Nanohybrids: High-Performance Faradaic Cathodes for Supercapacitors and Hybrid Capacitive Deionization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307843. [PMID: 37948442 DOI: 10.1002/smll.202307843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Covalent organic frameworks (COFs) with flexible periodic skeletons and ordered nanoporous structures have attracted much attention as potential candidate electrode materials for green energy storage and efficient seawater desalination. Further improving the intrinsic electronic conductivity and releasing porosity of COF-based materials is a necessary strategy to improve their electrochemical performance. Herein, the employed graphene as the conductive substrate to in situ grow 2D redox-active COF (TFPDQ-COF) with redox activity under solvent-free conditions to prepare TFPDQ-COF/graphene (TFPDQGO) nanohybrids and explores their application in both supercapacitor and hybrid capacitive deionization (HCDI). By optimizing the hybridization ratio, TFPDQGO exhibits a large specific capacitance of 429.0 F g-1 due to the synergistic effect of the charge transport highway provided by the graphene layers and the abundant redox-active centers contained in the COF skeleton, and the assembled TFPDQGO//activated carbon (AC) asymmetric supercapacitor possesses a high energy output of 59.4 Wh kg-1 at a power density of 950 W kg-1 and good cycling life. Furthermore, the maximum salt adsorption capacity (SAC) of 58.4 mg g-1 and stable regeneration performance is attained for TFPDQGO-based HCDI. This study highlights the new opportunities of COF-based hybrid materials acting as high-performance supercapacitor and HCDI electrode materials.
Collapse
Affiliation(s)
- Liming Xu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Yong Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| | - Zibiao Ding
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Xinjuan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhiwei Gong
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Jiabao Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Ting Lu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
25
|
Li N, Pan C, Lu G, Pan H, Han Y, Wang K, Jin P, Liu Q, Jiang J. Hydrophobic Trinuclear Copper Cluster-Containing Organic Framework for Synergetic Electrocatalytic Synthesis of Amino Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311023. [PMID: 38050947 DOI: 10.1002/adma.202311023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Electrocatalytic synthesis of amino acids provides a promising green and efficient pathway to manufacture the basic substances of life. Herein, reaction of 2,5-perfluroalkyl-terepthalohydrazide and tris(4-µ2 -O-carboxaldehyde-pyrazolato-N, N')-tricopper affords a crystalline trinuclear copper cluster-containing organic framework, named F-Cu3 -OF. Incorporation of abundant hydrophobic perfluroalkyl groups inside the channels of F-Cu3 -OF is revealed to successfully suppress the hydrogen evolution reaction via preventing H+ cation with large polarity from the framework of F-Cu3 -OF and in turn increasing the adsorption of other substrates with relatively small polarity like NO3 - and keto acids on the active sites. The copper atoms with short distance in the trinuclear copper clusters of F-Cu3 -OF enable simultaneous activization of NO3 - and keto acids, facilitating the following synergistic and efficient C─N coupling on the basis of in situ spectroscopic investigations together with theoretical calculation. Combination of these effects leads to efficient electroproduction of various amino acids including glycine, alanine, leucine, valine, and phenylalanine from NO3 - and keto acids with a Faraday efficiency of 42%-71% and a yield of 187-957 µmol cm-2 h-1 , representing the thus far best performance. This work shall be helpful for developing economical, eco-friendly, and high-efficiency strategy for the production of amino acids and other life substances.
Collapse
Affiliation(s)
- Ning Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chenliang Pan
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Guang Lu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Houhe Pan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuesheng Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Peng Jin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
26
|
Liu X, Ding X, Zheng T, Jin Y, Wang H, Yang X, Yu B, Jiang J. Single Cobalt Ion-Immobilized Covalent Organic Framework for Lithium-Sulfur Batteries with Enhanced Rate Capabilities. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4741-4750. [PMID: 38239127 DOI: 10.1021/acsami.3c16319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Covalent organic frameworks (COFs) are notable for their remarkable structure, function designability, and tailorability, as well as stability, and the introduction of "open metal sites" ensures the efficient binding of small molecules and activation of substrates for heterogeneous catalysis and energy storage. Herein, we use the postsynthetic metal sites to catalyze polysulfide conversion and to boost the binding affinity to active matter for lithium-sulfur batteries (LSBs). A dual-pore COF, USTB-27, with hxl topology has been successfully assembled from the imine chemical reaction between 2,3,8,9,14,15-hexa(4-formylphenyl)diquinoxalino [2,3-a:2',3'-c]phenazine and [2,2'-bipyridine]-5,5'-diamine. The chelating nitrogen sites of both modules are able to postsynthetically functionalize with single cobalt sites to generate USTB-27-Co. The discharge capacity of the sulfur-loaded S@USTB-27-Co composite in a LSB is 1063, 945, 836, 765, 696, and 644 mA h g-1 at current densities of 0.1, 0.2, 0.5, 1.0, 2.0, and 5.0 C, respectively, much superior to that of non-cobalt-functionalized species S@USTB-27. Following the increased current densities, the rate performance of S@USTB-27-Co is much better than that of S@USTB-27. In particular, the capacity retention at 5.0 C has a magnificent increase from 19% for the latter species to 61% for the former one. Moreover, S@USTB-27-Co exhibits a higher specific capacity of 543 mA h g-1 than that of S@USTB-27 (402 mA h g-1) at a current density of 1.0 C after electrochemical cycling for 500 runs. This work illustrates the "open metal sites" strategy to engineer the active chemical component conversion in COF channels as well as their binding strength for specific applications.
Collapse
Affiliation(s)
- Xiaolin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianyu Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
27
|
Sun B, Sun Z, Yang Y, Huang XL, Jun SC, Zhao C, Xue J, Liu S, Liu HK, Dou SX. Covalent Organic Frameworks: Their Composites and Derivatives for Rechargeable Metal-Ion Batteries. ACS NANO 2024; 18:28-66. [PMID: 38117556 DOI: 10.1021/acsnano.3c08240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Covalent organic frameworks (COFs) have attracted considerable interest in the field of rechargeable batteries owing to their three-dimensional (3D) varied pore sizes, inerratic porous structures, abundant redox-active sites, and customizable structure-adjustable frameworks. In the context of metal-ion batteries, these materials play a vital role in electrode materials, effectively addressing critical issues such as low ionic conductivity, limited specific capacity, and unstable structural integrity. However, the electrochemical characteristics of the developed COFs still fall short of practical battery requirements due to inherent issues such as low electronic conductivity, the tradeoff between capacity and redox potential, and unfavorable micromorphology. This review provides a comprehensive overview of the recent advancements in the application of COFs, COF-based composites, and their derivatives in rechargeable metal-ion batteries, including lithium-ion, lithium-sulfur, sodium-ion, sodium-sulfur, potassium-ion, zinc-ion, and other multivalent metal-ion batteries. The operational mechanisms of COFs, COF-based composites, and their derivatives in rechargeable batteries are elucidated, along with the strategies implemented to enhance the electrochemical properties and broaden the range of their applications.
Collapse
Affiliation(s)
- Bowen Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Zixu Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Yi Yang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Xiang Long Huang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Chongchong Zhao
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, People's Republic of China
| | - Jiaojiao Xue
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Hua Kun Liu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Institute for Superconducting and Electronic Materials, University of Wollongong,Wollongong, New South Wales 2522, Australia
| | - Shi Xue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Institute for Superconducting and Electronic Materials, University of Wollongong,Wollongong, New South Wales 2522, Australia
| |
Collapse
|
28
|
Zhu Y, Bai Q, Ouyang S, Jin Y, Zhang W. Covalent Organic Framework-based Solid-State Electrolytes, Electrode Materials, and Separators for Lithium-ion Batteries. CHEMSUSCHEM 2024; 17:e202301118. [PMID: 37706226 DOI: 10.1002/cssc.202301118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
The increasing global energy consumption has led to the rapid development of renewable energy storage technologies. Lithium-ion batteries (LIBs) have been extensively studied and utilized for reliable, efficient, and sustainable energy storage. Nevertheless, designing new materials for LIB applications with high capacity and long-term stability is highly desired but remains a challenging task. Recently, covalent organic frameworks (COFs) have emerged as superior candidates for LIB applications due to their high porosity, well-defined pores, highly customizable structure, and tunable functionalities. These merits enable the preparation of tailored COFs with predesigned redox-active moieties and suitable porous channels that can improve the lithium-ion storage and transportation. This review summarizes the recent progress in the development of COFs and their composites for a variety of LIB applications, including (quasi) solid-state electrolytes, electrode materials, and separators. Finally, the challenges and potential future directions of employing COFs for LIBs are also briefly discussed, further promoting the foundation of this class of exciting materials for future advances in energy-related applications.
Collapse
Affiliation(s)
- Youlong Zhu
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, IGCME, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qiaoshuang Bai
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, IGCME, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shan Ouyang
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, IGCME, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder, Boulder CO, 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder CO, 80309, United States
| |
Collapse
|
29
|
Li B, Ruan P, Xu X, He Z, Zhu X, Pan L, Peng Z, Liu Y, Zhou P, Lu B, Dai L, Zhou J. Covalent Organic Framework with 3D Ordered Channel and Multi-Functional Groups Endows Zn Anode with Superior Stability. NANO-MICRO LETTERS 2024; 16:76. [PMID: 38175455 PMCID: PMC10767043 DOI: 10.1007/s40820-023-01278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024]
Abstract
Achieving a highly robust zinc (Zn) metal anode is extremely important for improving the performance of aqueous Zn-ion batteries (AZIBs) for advancing "carbon neutrality" society, which is hampered by the uncontrollable growth of Zn dendrite and severe side reactions including hydrogen evolution reaction, corrosion, and passivation, etc. Herein, an interlayer containing fluorinated zincophilic covalent organic framework with sulfonic acid groups (COF-S-F) is developed on Zn metal (Zn@COF-S-F) as the artificial solid electrolyte interface (SEI). Sulfonic acid group (- SO3H) in COF-S-F can effectively ameliorate the desolvation process of hydrated Zn ions, and the three-dimensional channel with fluoride group (-F) can provide interconnected channels for the favorable transport of Zn ions with ion-confinement effects, endowing Zn@COF-S-F with dendrite-free morphology and suppressed side reactions. Consequently, Zn@COF-S-F symmetric cell can stably cycle for 1,000 h with low average hysteresis voltage (50.5 mV) at the current density of 1.5 mA cm-2. Zn@COF-S-F|MnO2 cell delivers the discharge specific capacity of 206.8 mAh g-1 at the current density of 1.2 A g-1 after 800 cycles with high-capacity retention (87.9%). Enlightening, building artificial SEI on metallic Zn surface with targeted design has been proved as the effective strategy to foster the practical application of high-performance AZIBs.
Collapse
Affiliation(s)
- Bin Li
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, People's Republic of China
| | - Pengchao Ruan
- School of Materials Science and Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Xieyu Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Zhangxing He
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, People's Republic of China.
| | - Xinyan Zhu
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, People's Republic of China
| | - Liang Pan
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, People's Republic of China
| | - Ziyu Peng
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, People's Republic of China
| | - Yangyang Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Peng Zhou
- Hunan Provincial Key Defense Laboratory of High Temperature Wear-Resisting Materials and Preparation Technology, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha, 410082, People's Republic of China
| | - Lei Dai
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, People's Republic of China
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University, Changsha, 410083, People's Republic of China.
| |
Collapse
|
30
|
Dantas R, Ribeiro C, Souto M. Organic electrodes based on redox-active covalent organic frameworks for lithium batteries. Chem Commun (Camb) 2023; 60:138-149. [PMID: 38051115 DOI: 10.1039/d3cc04322c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Electroactive organic materials have received much attention as alternative electrodes for metal-ion batteries due to their high theoretical capacity, resource availability, and environmental friendliness. In particular, redox-active covalent organic frameworks (COFs) have recently emerged as promising electrodes due to their tunable electrochemical properties, insolubility in electrolytes, and structural versatility. In this Highlight, we review some recent strategies to improve the energy density and power density of COF electrodes for lithium batteries from the perspective of molecular design and electrode optimisation. Some other aspects such as stability and scalability are also discussed. Finally, the main challenges to improve their performance and future prospects for COF-based organic batteries are highlighted.
Collapse
Affiliation(s)
- Raquel Dantas
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-393, Portugal.
| | - Catarina Ribeiro
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-393, Portugal.
| | - Manuel Souto
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-393, Portugal.
- CIQUS, Centro Singular de Investigación en Química Bioloxica e Materiais Moleculares, Departamento de Química-Física, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
31
|
Yu B, Li W, Wang X, Li JH, Lin RB, Wang H, Ding X, Jin Y, Yang X, Wu H, Zhou W, Zhang J, Jiang J. Observation of Interpenetrated Topology Isomerism for Covalent Organic Frameworks with Atom-Resolution Single Crystal Structures. J Am Chem Soc 2023; 145:25332-25340. [PMID: 37944150 DOI: 10.1021/jacs.3c09001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Rational control and understanding of isomerism are of significance but still remain a great challenge in reticular frameworks, in particular, for covalent organic frameworks (COFs) due to the complicated synthesis and energy factors. Herein, reaction of 3,3',5,5'-tetra(4-formylphenyl)-2,2',6,6'-tetramethoxy-1,1'-biphenyl (TFTB) with 3,3',5,5'-tetrakis(4-aminophenyl)bimesityl (TAPB) under different reaction conditions affords single crystals of two 3D COF isomers, namely, USTB-20-dia and USTB-20-qtz. Their structures with resolutions up to 0.9-1.1 Å have been directly solved by three-dimensional electron diffraction (3D ED) and synchrotron single crystal X-ray diffraction, respectively. USTB-20-dia and USTB-20-qtz show rare 2 × 2-fold interpenetrated dia-b nets and 3-fold interpenetrated qtz-b frameworks. Comparative studies of the crystal structures of these COFs and theoretical simulation results indicate the crucial role of the flexible molecular configurations of building blocks in the present interpenetrated topology isomerism. This work not only presents the rare COF isomers but also gains an understanding of the formation of framework isomerism from both single crystal structures and theoretical simulation perspectives.
Collapse
Affiliation(s)
- Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Wenliang Li
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Xiao Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Jing-Hong Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Rui-Biao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Hui Wu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Wei Zhou
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Jingping Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| |
Collapse
|
32
|
Zhao J, Zhou M, Chen J, Wang L, Zhang Q, Zhong S, Xie H, Li Y. Two Birds One Stone: Graphene Assisted Reaction Kinetics and Ionic Conductivity in Phthalocyanine-Based Covalent Organic Framework Anodes for Lithium-ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303353. [PMID: 37391276 DOI: 10.1002/smll.202303353] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/17/2023] [Indexed: 07/02/2023]
Abstract
This work reports a covalent organic framework composite structure (PMDA-NiPc-G), incorporating multiple-active carbonyls and graphene on the basis of the combination of phthalocyanine (NiPc(NH2 )4 ) containing a large π-conjugated system and pyromellitic dianhydride (PMDA) as the anode of lithium-ion batteries. Meanwhile, graphene is used as a dispersion medium to reduce the accumulation of bulk covalent organic frameworks (COFs) to obtain COFs with small-volume and few-layers, shortening the ion migration path and improving the diffusion rate of lithium ions in the two dimensional (2D) grid layered structure. PMDA-NiPc-G showed a lithium-ion diffusion coefficient (DLi + ) of 3.04 × 10-10 cm2 s-1 which is 3.6 times to that of its bulk form (0.84 × 10-10 cm2 s-1 ). Remarkably, this enables a large reversible capacity of 1290 mAh g-1 can be achieved after 300 cycles and almost no capacity fading in the next 300 cycles at 100 mA g-1 . At a high areal capacity loading of ≈3 mAh cm-2 , full batteries assembled with LiNi0.8 Co0.1 Mn0.1 O2 (NCM-811) and LiFePO4 (LFP) cathodes showed 60.2% and 74.7% capacity retention at 1 C for 200 cycles. Astonishingly, the PMDA-NiPc-G/NCM-811 full battery exhibits ≈100% capacity retention after cycling at 0.2 C. Aided by the analysis of kinetic behavior of lithium storage and theoretical calculations, the capacity-enhancing mechanism and lithium storage mechanism of covalent organic frameworks are revealed. This work may lead to more research on designable, multifunctional COFs for electrochemical energy storage.
Collapse
Affiliation(s)
- Jianjun Zhao
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou, 341000, China
- State Key Laboratory of Chemical Resources Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Miaomiao Zhou
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou, 341000, China
- School of Chemical&Environmental Engineering, China University of Mining and Technology(Beijing), Beijing, 100083, China
| | - Jun Chen
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou, 341000, China
| | - Luyi Wang
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou, 341000, China
| | - Qian Zhang
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou, 341000, China
| | - Shengwen Zhong
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou, 341000, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd. Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province, 310003, P.R. China
| | - Yutao Li
- Institute of Physics (IOP), Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
33
|
Ding G, Zhao J, Zhou K, Zheng Q, Han ST, Peng X, Zhou Y. Porous crystalline materials for memories and neuromorphic computing systems. Chem Soc Rev 2023; 52:7071-7136. [PMID: 37755573 DOI: 10.1039/d3cs00259d] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Porous crystalline materials usually include metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs) and zeolites, which exhibit exceptional porosity and structural/composition designability, promoting the increasing attention in memory and neuromorphic computing systems in the last decade. From both the perspective of materials and devices, it is crucial to provide a comprehensive and timely summary of the applications of porous crystalline materials in memory and neuromorphic computing systems to guide future research endeavors. Moreover, the utilization of porous crystalline materials in electronics necessitates a shift from powder synthesis to high-quality film preparation to ensure high device performance. This review highlights the strategies for preparing porous crystalline materials films and discusses their advancements in memory and neuromorphic electronics. It also provides a detailed comparative analysis and presents the existing challenges and future research directions, which can attract the experts from various fields (e.g., materials scientists, chemists, and engineers) with the aim of promoting the applications of porous crystalline materials in memory and neuromorphic computing systems.
Collapse
Affiliation(s)
- Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Qi Zheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
34
|
Sun Z, Yao H, Li J, Liu B, Lin Z, Shu M, Liu H, Zhu S, Guan S. Stable Hexaazatrinaphthalene-Based Planar Polymer Cathode Material for Organic Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42603-42610. [PMID: 37639524 DOI: 10.1021/acsami.3c08481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Organic materials have garnered intensive focus as a new group of electrodes for lithium-ion batteries (LIBs). However, many reported organic electrodes so far still exhibit unsatisfying cycling stability because of the dissolution in the electrolytes. Herein, a novel azo-linked hexaazatrianphthalene (HATN)-based polymer (AZO-HATN-AQ) is designed and fabricated by the polymerization of trinitrodiquinoxalino[2,3-a:2',3'-c]phenazine (HATNTN) and 2,6-diaminoanthraquinone (DAAQ). The abundant redox-active sites, extended π-conjugated planar conformation, and low energy gap endow the AZO-HATN-AQ electrode with high theoretical capacity, excellent solubility resistance, and fast Li-ion transport. In particular, the fully lithiated AZO-HATN-AQ still keeps the planar structure, contributing to the excellent cycling stability. As a result, AZO-HATN-AQ cathodes show high specific capacity (240 mAh g-1 at 0.05 A g-1), prominent rate capability (98 mAh g-1 at 8 A g-1), and outstanding cycling stability (120 mAh g-1 after 2000 cycles at 4 A g-1 with 85.7% capacity retention) simultaneously. This study demonstrates that rational structure design of the polymer electrodes is an effective approach to achieving excellent comprehensive electrochemical performance.
Collapse
Affiliation(s)
- Zhonghui Sun
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | | | - Jiabin Li
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Bing Liu
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Ziyu Lin
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Meng Shu
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Huiling Liu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Shiyang Zhu
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Shaowei Guan
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| |
Collapse
|
35
|
Zhang S, Zhu YL, Ren S, Li C, Chen XB, Li Z, Han Y, Shi Z, Feng S. Covalent Organic Framework with Multiple Redox Active Sites for High-Performance Aqueous Calcium Ion Batteries. J Am Chem Soc 2023; 145:17309-17320. [PMID: 37525440 DOI: 10.1021/jacs.3c04657] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Organic materials are promising for cation storage in calcium ion batteries (CIBs). However, the high solubility of organic materials in an electrolyte and low electronic conductivity remain the key challenges for high-performance CIBs. Herein, a nitrogen-rich covalent organic framework with multiple carbonyls (TB-COF) is designed as an aqueous anode to address those obstacles. TB-COF demonstrates a high reversible capacity of 253 mAh g-1 at 1.0 A g-1 and long cycle life (0.01% capacity decay per cycle at 5 A g-1 after 3000 cycles). The redox mechanism of Ca2+/H+ co-intercalated in COF and chelating with C═O and C═N active sites is validated. In addition, a novel C═C active site was identified for Ca2+ ion storage. Both computational and empirical results reveal that per TB-COF repetitive unit, up to nine Ca2+ ions are stored after three staggered intercalation steps, involving three distinct Ca2+ ion storage sites. Finally, the evolution process of radical intermediates further elucidates the C═C reaction mechanism.
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Siyuan Ren
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Chunguang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xiao-Bo Chen
- School of Engineering, RMIT University, Carlton VIC 3053, Australia
| | - Zhenjiang Li
- College of Materials Science and Engineering, Qingdao University, Qingdao 266042, People's Republic of China
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
36
|
Haldar S, Schneemann A, Kaskel S. Covalent Organic Frameworks as Model Materials for Fundamental and Mechanistic Understanding of Organic Battery Design Principles. J Am Chem Soc 2023. [PMID: 37307595 DOI: 10.1021/jacs.3c01131] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Redox-active covalent organic frameworks (COFs) have recently emerged as advanced electrodes in polymer batteries. COFs provide ideal molecular precision for understanding redox mechanisms and increasing the theoretical charge-storage capacities. Furthermore, the functional groups on the pore surface of COFs provide highly ordered and easily accessible interaction sites, which can be modeled to establish a synergy between ex situ/in situ mechanism studies and computational methods, permitting the creation of predesigned structure-property relationships. This perspective integrates and categorizes the redox functionalities of COFs, providing a deeper understanding of the mechanistic investigation of guest ion interactions in batteries. Additionally, it highlights the tunable electronic and structural properties that influence the activation of redox reactions in this promising organic electrode material.
Collapse
Affiliation(s)
- Sattwick Haldar
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Andreas Schneemann
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
- Fraunhofer Institute for Material and Beam Technology (IWS), Dresden 01277, Germany
| |
Collapse
|
37
|
Luo D, Zhang J, Zhao H, Xu H, Dong X, Wu L, Ding B, Dou H, Zhang X. Rational design of covalent organic frameworks with high capacity and stability as a lithium-ion battery cathode. Chem Commun (Camb) 2023. [PMID: 37191238 DOI: 10.1039/d3cc00700f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A two-dimensional covalent organic framework (NTCDI-COF) with rich redox active sites, high stability and crystallinity was designed and prepared. As a cathode material for lithium-ion batteries (LIBs), NTCDI-COF exhibits excellent electrochemical performance with an outstanding discharge capacity of 210 mA h g-1 at 0.1 A g-1 and high capacity retention of 125 mA h g-1 after 1500 cycles at 2 A g-1. A two-step Li+ insertion/extraction mechanism is proposed based on the ex situ characterization and density functional theory calculation. The constructed NTCDI-COF//graphite full cells can realize a good electrochemical performance.
Collapse
Affiliation(s)
- Derong Luo
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Jing Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Huizi Zhao
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Hai Xu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Xiaoyu Dong
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Langyuan Wu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Bing Ding
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Hui Dou
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| |
Collapse
|
38
|
Zhao Y, Xu N, Ni M, Wang Z, Zhu J, Liu J, Zhao R, Zhang H, Ma Y, Li C, Chen Y. An In Situ Fabricated Graphene/Bipolar Polymer Hybrid Material Delivers Ultralong Cycle Life over 15 000 Cycles as a High-Performance Electrode Material. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211152. [PMID: 36779439 DOI: 10.1002/adma.202211152] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Organic electrode materials are promising for the future energy storage systems owing to their tunable structures, abundant resources, and environmental friendliness. Many advanced lithium-ion batteries with organic electrodes have been developed and show excellent performance. However, developing organic materials with overall superior performance still faces great challenges, such as low capacity, poor stability, inferior conductivity, and low utilization of active sites. To address these issues, a bipolar polymer (Fc-DAB) is designed and further polymerized in situ with three-dimensional graphene (3DG), offering a hybrid material (Fc-DAB@3DG) with a variety of merits. Fc-DAB possesses stable polymer backbone and multiple redox-active sites that can improve stability and capacity simultaneously. The embedded highly conductive 3DG network endows Fc-DAB@3DG with stable conductive framework, large surface area, and porous morphology all together, so the fast diffusion of ions/electrons can be achieved, leading to high utilization of active sites and enhanced electrochemical performance. As a result, Fc-DAB@3DG cathode delivers capacity of ≈260 mA h g-1 at 25 mA g-1 , ultra-long cycle life over 15 000 cycles at 2000 mA g-1 with retention of 99.999% per cycle, and remarkable rate performance. The quasi-solid Li-metal battery and full cell fabricated using this material also exhibit superior electrochemical performance.
Collapse
Affiliation(s)
- Yang Zhao
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Nuo Xu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Minghan Ni
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Ziyuan Wang
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jie Zhu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jie Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Ruiqi Zhao
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Hongtao Zhang
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Yanfeng Ma
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Chenxi Li
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Yongsheng Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
39
|
Wang Y, Song J, Wong WY. Constructing 2D Sandwich-like MOF/MXene Heterostructures for Durable and Fast Aqueous Zinc-Ion Batteries. Angew Chem Int Ed Engl 2023; 62:e202218343. [PMID: 36562768 DOI: 10.1002/anie.202218343] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/24/2022]
Abstract
Two-dimensional metal-organic frameworks (2D MOFs) can be used as the cathodes for high-performance zinc-ion battery due to their large one-dimensional channels. However, the conventionally poor electrical conductivity and low structural stability hinder their advances. Herein, we report an alternately stacked MOF/MX heterostructure, exhibiting the 2D sandwich-like structure with abundant active sites, improved electrical conductivity and exceptional structural stability. Ex situ characterizations and theoretical calculations reveal a reversible intercalation mechanism of zinc ions and high electrical conductivity in the 2D heterostructure. Electrochemical tests confirm excellent Zn2+ migration kinetics and ideal pseudocapacitive behaviors. As a consequence, Cu-HHTP/MX shows a superior rate performance (260.1 mAh g-1 at 0.1 A g-1 and 173.1 mAh g-1 at 4 A g-1 ) and long-term cycling stability of 92.5 % capacity retention over 1000 cycles at 4 A g-1 .
Collapse
Affiliation(s)
- Yalei Wang
- College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, P. R. China.,Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University (PolyU) Hung Hom, Hong Kong, P. R. China.,PolyU Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Jun Song
- College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University (PolyU) Hung Hom, Hong Kong, P. R. China.,PolyU Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
40
|
Missale E, Frasconi M, Pantano MF. Ultrathin organic membranes: Can they sustain the quest for mechanically robust device applications? iScience 2023; 26:105924. [PMID: 36866039 PMCID: PMC9971879 DOI: 10.1016/j.isci.2023.105924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ultrathin polymeric films have recently attracted tremendous interest as functional components of coatings, separation membranes, and sensors, with applications spanning from environment-related processes to soft robotics and wearable devices. In order to support the development of robust devices with advanced performances, it is necessary to achieve a deep comprehension of the mechanical properties of ultrathin polymeric films, which can be significantly affected by confinement effects at the nanoscale. In this review paper, we collect the most recent advances in the development of ultrathin organic membranes with emphasis on the relationship between their structure and mechanical properties. We provide the reader with a critical overview of the main approaches for the preparation of ultrathin polymeric films, the methodologies for the investigation of their mechanical properties, and models to understand the primary effects that impact their mechanical response, followed by a discussion on the current trends for designing mechanically robust organic membranes.
Collapse
Affiliation(s)
- Elena Missale
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy
| | - Marco Frasconi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- Corresponding author
| | - Maria F. Pantano
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy
- Corresponding author
| |
Collapse
|
41
|
Zou J, Ben T. Recent Advances in Porous Polymers for Solid-State Rechargeable Lithium Batteries. Polymers (Basel) 2022; 14:polym14224804. [PMID: 36432931 PMCID: PMC9696777 DOI: 10.3390/polym14224804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
The application of rechargeable lithium batteries involves all aspects of our daily life, such as new energy vehicles, computers, watches and other electronic mobile devices, so it is becoming more and more important in contemporary society. However, commercial liquid rechargeable lithium batteries have safety hazards such as leakage or explosion, all-solid-state lithium rechargeable lithium batteries will become the best alternatives. But the biggest challenge we face at present is the large solid-solid interface contact resistance between the solid electrolyte and the electrode as well as the low ionic conductivity of the solid electrolyte. Due to the large relative molecular mass, polymers usually exhibit solid or gel state with good mechanical strength. The intermolecules are connected by covalent bonds, so that the chemical and physical stability, corrosion resistance, high temperature resistance and fire resistance are good. Many researchers have found that polymers play an important role in improving the performance of all-solid-state lithium rechargeable batteries. This review mainly describes the application of polymers in the fields of electrodes, electrolytes, electrolyte-electrode contact interfaces, and electrode binders in all-solid-state lithium rechargeable batteries, and how to improve battery performance. This review mainly introduces the recent applications of polymers in solid-state lithium battery electrodes, electrolytes, electrode binders, etc., and describes the performance of emerging porous polymer materials and materials based on traditional polymers in solid-state lithium batteries. The comparative analysis shows the application advantages and disadvantages of the emerging porous polymer materials in this field which provides valuable reference information for further development.
Collapse
Affiliation(s)
- Junyan Zou
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Teng Ben
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
- Correspondence: ; Tel.: +86-0579-8228-6651
| |
Collapse
|