1
|
Wu R, Wei Y, Dai X, Yan L, Liu W, Yuan D, Zhu J, Zhu X. Thermoelectric Performance in Triplet-Ground-State Polymer Intrinsically Boosted by Enhanced Proquinoidal Characteristic. Angew Chem Int Ed Engl 2025; 64:e202413061. [PMID: 39140438 DOI: 10.1002/anie.202413061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Over the past decade, polymer thermoelectric materials featuring flexibility, lightness, and bio-friendliness have been paid increasing attention as promising candidates for waste heat recovery and energy generation. For a long time, the dominant approach to optimizing the thermoelectric performance of most organic materials is chemical doping, which, however, is not always ideal for practical applications due to its tendency to involve intricate processing procedure and trigger material and device instability. Currently, the pursuit of single-component neutral thermoelectric materials without exogenous doping presents a compelling alternative. In this work, we designed and synthesized a high-spin polymer material, PBBT-TT, by simultaneously employing thieno[3,4-b]thiophene (TbT) and benzo[1,2-c : 4,5-c']bis[1,2,5]thiadiazole (BBT) units with pronounced proquinoidal characteristics, its analogue, PBBT-T to demonstrate the effect of the TbT unit was also synthesized. The results indicate that because of the enhanced quinoidal resonance, increased spin density and strong intermolecular antiferromagnetic coupling, PBBT-TT exhibits high intrinsic electrical conductivity and Seebeck coefficient, which showcases an outstanding power factor of 26.1 μW m-1 K-2 without doping. This achievement surpasses other neutral organic conjugated polymer and radical conductors, and is even comparable to some typical early-stage doped polymers. Notably, PBBT-TT exhibits remarkable ambient stability, retaining its initial thermoelectric performance over a 120-day period. Our finding demonstrates that modulating the intermolecular spin interactions in open-shell polymers through the introduction of strong proquinoidal units is an effective strategy for the development of doping-free, intrinsically high-performance polymer thermoelectric materials.
Collapse
Affiliation(s)
- Runshi Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Wei
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100190, China
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaojuan Dai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liqin Yan
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Wuyue Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dafei Yuan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Jia Zhu
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Li L, Ding YS, Zheng Z. Lanthanide-Based Molecular Magnetic Semiconductors. Angew Chem Int Ed Engl 2024; 63:e202410019. [PMID: 39058519 DOI: 10.1002/anie.202410019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
Magnetic semiconductors, with integrated properties of ferromagnets and semiconductors, are significant for developing next-generation spintronic devices. Herein two atomically precise clusters of dysprosium(III) tellurides, formulated respectively as [Na2(15-crown-5)3(py)2][(η5-Cp*Dy)5(Te)6](py)4 (Dy5Te6, Cp*=pentamethylcyclopentadienyl; py=pyridine) and [K(2,2,2-cryptand)]2[(η5-Cp*Dy)6(Te3)(Te2)2(Te)3] (Dy6Te10), are reported. Crystallographic studies revealed the presence of multifarious tellurido ligands within the polyhedral cluster cores. Spectroscopic and magnetic studies showed that both clusters are single-molecule magnets exhibiting slow magnetic relaxation behaviors at low temperatures and semiconductors with low optical band gaps comparable to benchmark semiconductors. These clusters represent probably the first lanthanide-based molecular magnetic semiconductors.
Collapse
Affiliation(s)
- Lei Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Rare Earth Chemistry of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - You-Song Ding
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Rare Earth Chemistry of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zhiping Zheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Rare Earth Chemistry of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
3
|
He X, Zhao D, Yao Y, Zhang J, Zhou J, Li X, Hu D, Yang J, Ma Y. Magnetic Properties of Self-Assemble Naphthalene Diimide Radical Aggregates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311766. [PMID: 39109952 DOI: 10.1002/smll.202311766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/12/2024] [Indexed: 11/21/2024]
Abstract
The concept of creating room-temperature ferromagnets from organic radicals proposed nearly sixty years ago, has recently experienced a resurgence due to advances in organic radical chemistry and materials. However, the lack of definitive design paradigms for achieving stable long-range ferromagnetic coupling between organic radicals presents an uncertain future for this research. Here, an innovative strategy is presented to achieve room-temperature ferromagnets by assembling π-conjugated radicals into π-π stacking aggregates. These aggregates, with ultra-close π-π distances and optimal π-π overlap, provide a platform for strong ferromagnetic (FM) interaction. The planar aromatic naphthalene diimide (NDI) anion radicals form nanorod aggregates with a π-π distance of just 3.26 Å, shorter than typical van der Waals distances. The suppressed electron paramagnetic resonance (EPR) signal and emergent near-infrared (NIR) absorption of the aggregates confirm strong interactions between the radicals. Magnetic measurements of NDI anion radical aggregates demonstrate room-temperature ferromagnetism with a saturated magnetization of 1.1 emu g-1, the highest among pure organic ferromagnets. Theoretical calculations reveal that π-stacks of NDI anion radicals with specific interlayer translational slippage favor ferromagnetic coupling over antiferromagnetic coupling.
Collapse
Affiliation(s)
- Xiandong He
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Duokai Zhao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yao Yao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
- Department of Physics, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jiang Zhang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
- Department of Physics, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jiadong Zhou
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xingxing Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dehua Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yuguang Ma
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
4
|
Nguyen KA, Pachter R, Loftus LM, Hong G, Day PN, Azoulay JD, Grusenmeyer TA. Electronic Structures and Spectra of Donor-Acceptor Conjugated Oligomers. J Phys Chem A 2024; 128:9146-9158. [PMID: 39392140 DOI: 10.1021/acs.jpca.4c04458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Narrow band gap donor-acceptor conjugated polymers present excellent paradigms in photonics and optoelectronics due to their chemical tunability, correlated electronic structures, and tunable open-shell electronic configurations. However, rational design for enhancing the properties of these molecular systems remains challenging. In this study, we employed density functional theory (DFT) calculations to investigate prototypical narrow band gap donor-acceptor conjugated oligomers, consisting of alternating cyclopentadithiophene (CPDT) donors paired with benzothiadiazole (BT), benzoselenadiazole (BSe), benzobisthiadiazole (BBT), and thiadiazoloquinoxaline (TQ) acceptors. Analyses of structures, singlet-triplet gaps, and absorption spectra of oligomers with up to ten repeat units have shown that when incorporating the BT, BSe, and TQ acceptors, the backbone curvature resulted in spiral structures that were energetically favored over their linear counterparts, causing differences in the calculated circular dichroism spectra. Oligomers with BBT-based acceptors preferred, however, a linear geometry, consistent with an open-shell electronic structure. Calculated singlet-triplet splittings demonstrated the importance of long chains and specific structures for consistency with the experiment, while effects of the solvent were also quantified. Based on the predicted low-energy conformations, one-photon absorption spectra for the considered oligomers have shown that using the Tamm-Dancoff approximation within time-dependent DFT for the large systems offers good agreement with the first absorption maxima in measured experimental spectra, thus validating the method for large donor-acceptor oligomers. Natural transition orbital analyses provided insights into the excited-state characteristics. Two-photon absorption maxima were accurately predicted, but the cross-sections were overestimated or underestimated, as dependent on the level of theory employed, to be addressed in future work.
Collapse
Affiliation(s)
- Kiet A Nguyen
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES, Inc., Dayton, Ohio 45432, United States
| | - Ruth Pachter
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Lauren M Loftus
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
- Azimuth Corporation, Dayton, Ohio 45432, United States
| | - Gongyi Hong
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES, Inc., Dayton, Ohio 45432, United States
| | - Paul N Day
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES, Inc., Dayton, Ohio 45432, United States
| | - Jason D Azoulay
- School of Chemistry and Biochemistry and School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tod A Grusenmeyer
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| |
Collapse
|
5
|
Saha C, Huda MM, Sabuj MA, Rai N. Elucidating the structure of donor-acceptor conjugated polymer aggregates in liquid solution. SOFT MATTER 2024; 20:1824-1833. [PMID: 38305724 DOI: 10.1039/d3sm01458d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
High-spin donor-acceptor conjugated polymers are extensively studied for their potential applications in magnetic and spintronic devices. Inter-chain charge transfer among these high-spin polymers mainly depends on the nature of the local structure of the thin film and π-stacking between the polymer chains. However, the microscopic structural details of high-spin polymeric materials are rarely studied with an atomistic force field, and the molecular-level local structure in the liquid phase remains ambiguous. Here, we have examined the effects of oligomer chain length, side chain, and processing temperature on the organization of the high-spin cyclopentadithiophene-benzobisthiadiazole donor-acceptor conjugated polymer in chloroform solvent. We find that the oligomers display ordered aggregates whose structure depends on their chain length, with an average π-stacking distance of 3.38 ± 0.03 Å (at T = 298 K) in good agreement with the experiment. Also, the oligomers with longer alkyl side chains show better solvation and a shorter π-stacking distance. Furthermore, the clusters grow faster at higher temperature with more ordered aggregation between the oligomer chains.
Collapse
Affiliation(s)
- Chinmoy Saha
- Dave C. Swalm School of Chemical Engineering, and Center for Advanced Vehicular System, Mississippi State University, Mississippi State, MS-39762, USA.
| | - Md Masrul Huda
- Dave C. Swalm School of Chemical Engineering, and Center for Advanced Vehicular System, Mississippi State University, Mississippi State, MS-39762, USA.
| | - Md Abdus Sabuj
- Dave C. Swalm School of Chemical Engineering, and Center for Advanced Vehicular System, Mississippi State University, Mississippi State, MS-39762, USA.
| | - Neeraj Rai
- Dave C. Swalm School of Chemical Engineering, and Center for Advanced Vehicular System, Mississippi State University, Mississippi State, MS-39762, USA.
| |
Collapse
|
6
|
Tahir H, Eedugurala N, Hsu SN, Mahalingavelar P, Savoie BM, Boudouris BW, Azoulay JD. Large Room-Temperature Magnetoresistance in a High-Spin Donor-Acceptor Conjugated Polymer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306389. [PMID: 37909315 DOI: 10.1002/adma.202306389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/24/2023] [Indexed: 11/03/2023]
Abstract
Open-shell conjugated polymers (CPs) offer new opportunities for the development of emerging technologies that utilize the spin degree of freedom. Their light-element composition, weak spin-orbit coupling, synthetic modularity, high chemical stability, and solution-processability offer attributes that are unavailable from other semiconducting materials. However, developing an understanding of how electronic structure correlates with emerging transport phenomena remains central to their application. Here, the first connections between molecular, electronic, and solid-state transport in a high-spin donor-acceptor CP, poly(4-(4-(3,5-didodecylbenzylidene)-4H-cyclopenta[2,1-b:3,4-b']dithiophen-2-yl)-6,7-dimethyl-[1,2,5]-thiadiazolo[3,4-g]quinoxaline), are provided. At low temperatures (T < 180 K), a giant negative magnetoresistance (MR) is achieved in a thin-film device with a value of -98% at 10 K, which surpasses the performance of all other organic materials. The thermal depopulation of the high-spin manifold and negative MR decrease as temperature increases and at T > 180 K, the MR becomes positive with a relatively large MR of 13.5% at room temperature. Variable temperature electron paramagnetic resonance spectroscopy and magnetic susceptibility measurements demonstrate that modulation of both the sign and magnitude of the MR correlates with the electronic and spin structure of the CP. These results indicate that donor-acceptor CPs with open-shell and high-spin ground states offer new opportunities for emerging spin-based applications.
Collapse
Affiliation(s)
- Hamas Tahir
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 W. Stadium Ave, West Lafayette, IN, 47907, USA
| | - Naresh Eedugurala
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Sheng-Ning Hsu
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 W. Stadium Ave, West Lafayette, IN, 47907, USA
| | - Paramasivam Mahalingavelar
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Brett M Savoie
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 W. Stadium Ave, West Lafayette, IN, 47907, USA
| | - Bryan W Boudouris
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 W. Stadium Ave, West Lafayette, IN, 47907, USA
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Jason D Azoulay
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
7
|
Zhu Z, Zhang D, Xiao T, Fang YH, Xiao X, Wang XG, Jiang SD, Zhao D. Rational Design of an Air-Stable, High-Spin Diradical with Diazapyrene. Angew Chem Int Ed Engl 2023; 62:e202314900. [PMID: 37851470 DOI: 10.1002/anie.202314900] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/19/2023]
Abstract
Stable carbon-based polyradicals exhibiting strong spin-spin coupling and slow depolarization processes are particularly attractive functional materials. A new molecular motif synthesized by a convenient method that allows the integration of stable, high-spin radicals to (hetero)aromatic polycycles has been developed, as illustrated by a non-Kekulé diradical showing a triplet ground state with long persistency (τ1/2 ≈31 h) in air. Compared to the widely used 1,3-phenylene, the newly designed (diaza)pyrene-4,10-diyl moiety is for the first time demonstrated to confer ferromagnetic (FM) spin coupling, allowing delocalized non-disjoint SOMOs. With the X-ray crystallography unambiguously proving the diradical structure, the triplet ground state was thoroughly characterized. A large ΔES-T of 1.1 kcal/mol, proving the strong FM coupling effect, was revealed consistently by superconducting quantum interference device (SQUID) measurements and variable-temperature electron paramagnetic resonance (EPR) spectroscopy, while the zero-field splitting and triplet nutation characters were examined by continuous-wave and pulsed EPR spectroscopy. A millisecond spin-lattice relaxation time was also detected. The current study not only offers a new molecular motif enabling FM coupling between carbon-based spins, but more importantly presents a general method for installing stable polyradicals into functional π-systems.
Collapse
Affiliation(s)
- Ziqi Zhu
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing, China
| | - Di Zhang
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing, China
| | - Tongtong Xiao
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing, China
| | - Yu-Hui Fang
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing, China
| | - Xiao Xiao
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing, China
| | - Xiao-Ge Wang
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing, China
| | - Shang-Da Jiang
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing, China
| |
Collapse
|
8
|
Liu C, Vella J, Eedugurala N, Mahalingavelar P, Bills T, Salcido‐Santacruz B, Sfeir MY, Azoulay JD. Ultrasensitive Room Temperature Infrared Photodetection Using a Narrow Bandgap Conjugated Polymer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304077. [PMID: 37888896 PMCID: PMC10754133 DOI: 10.1002/advs.202304077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/04/2023] [Indexed: 10/28/2023]
Abstract
Photodetectors operating across the short-, mid-, and long-wave infrared (SWIR-LWIR, λ = 1-14 µm) underpin modern science, technology, and society in profound ways. Narrow bandgap semiconductors that form the basis for these devices require complex manufacturing, high costs, cooling, and lack compatibility with silicon electronics, attributes that remain prohibitive for their widespread usage and the development of emerging technologies. Here, a photoconductive detector, fabricated using a solution-processed narrow bandgap conjugated polymer is demonstrated that enables charge carrier generation in the infrared and ultrasensitive SWIR-LWIR photodetection at room temperature. Devices demonstrate an ultralow electronic noise that enables outstanding performance from a simple, monolithic device enabling a high detectivity (D*, the figure of merit for detector sensitivity) >2.44 × 109 Jones (cm Hz1/2 W-1 ) using the ultralow flux of a blackbody that mirrors the background emission of objects. These attributes, ease of fabrication, low dark current characteristics, and highly sensitive operation overcome major limitations inherent within modern narrow-bandgap semiconductors, demonstrate practical utility, and suggest that uncooled detectivities superior to many inorganic devices can be achieved at high operating temperatures.
Collapse
Affiliation(s)
- Chih‐Ting Liu
- School of Chemistry and Biochemistry and School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Jarrett Vella
- Sensor DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | - Naresh Eedugurala
- School of Chemistry and Biochemistry and School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Paramasivam Mahalingavelar
- School of Chemistry and Biochemistry and School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Tyler Bills
- School of Chemistry and Biochemistry and School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Bernardo Salcido‐Santacruz
- Photonics InitiativeAdvanced Science Research CenterCity University of New YorkNew YorkNY10031USA
- Department of ChemistryThe Graduate CenterCity University of New YorkNew YorkNY10016USA
| | - Matthew Y. Sfeir
- Photonics InitiativeAdvanced Science Research CenterCity University of New YorkNew YorkNY10031USA
- Department of ChemistryThe Graduate CenterCity University of New YorkNew YorkNY10016USA
- Department of PhysicsThe Graduate CenterCity University of New YorkNew YorkNY10016USA
| | - Jason D. Azoulay
- School of Chemistry and Biochemistry and School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| |
Collapse
|
9
|
Zhu Y, Jiang Q, Zhang J, Ma Y. Recent Progress of Organic Semiconductor Materials in Spintronics. Chem Asian J 2023; 18:e202201125. [PMID: 36510771 DOI: 10.1002/asia.202201125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Spintronics, a new discipline focusing on the spin-dependent transport process of electrons, has been developing rapidly. Spin valves are the most significant carriers of spintronics utilizing the spin freedom of electrons. It is expected to pierce "Moore's Law" and become the core component in processors of the next generation. Organic semiconductors advance in their adjustable band gap, weak spin-orbit coupling and hyperfine interaction, excellent film-forming property, having enormous promise for spin valves. Here, the principle of spin valves is introduced, and the history and progress in organic spin injection and transport materials are summarized. Then we analyze the influence of spinterface on device performance and introduce reliable methods of constructing organic spin valves. Finally, the challenges for spin valves are discussed, and the future is proposed. We aim to draw the attention of researchers to organic spin valves and promote further research in spintronics through this paper.
Collapse
Affiliation(s)
- Yanuo Zhu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong, 510640, P. R. China
| | - Qinglin Jiang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong, 510640, P. R. China
| | - Jiang Zhang
- Department of Physics, South China University of Technology 381 Wushan Road, Guangzhou, Guangdong, 510640, P. R. China
| | - Yuguang Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong, 510640, P. R. China
| |
Collapse
|