1
|
Li J, Liu C, Han X, Tian M, Jiang B, Li W, Ou C, Dou N, Han Z, Ji T, Cao X, Zhong X, Zhang L. Supramolecular Electronics: Monolayer Assembly of Nonamphiphilic Molecules via Water Surface-Assisted Molecular Deposition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48438-48447. [PMID: 39109880 DOI: 10.1021/acsami.4c05552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Utilizing softly confined self-assembly at the water surface represents a promising approach for the fabrication of two-dimensional molecular monolayers (2D MMs), which have predominantly been concentrated on amphiphilic organic compounds before. Herein, we introduce a straightforward method termed "water surface-assisted molecular deposition (WSAMD)" to organize nonamphiphilic molecules into dense monolayers with high reproducibility. To underscore the versatility and merit of this methodology in the field of supramolecular electronics, we have successfully fabricated a range of defect-free, uniform semiconducting polymer monolayers, featuring a thickness reflective of molecular architectures. The charge carrier mobility could reach 0.05 cm2 V-1 s-1 for holes and 3.5 × 10-4 cm2 V-1 s-1 for electrons, respectively, in p-type and n-type polymeric monolayers when tested as the active layer in field-effect transistors. Furthermore, in situ polymerization reactions can be exploited to generate conductive monolayers of macromolecules such as polybenzylaniline (PBnANI) and polypyrrole (PPy), where PBnANI monolayers exhibit channel length-dependent conductivity, up to 0.37 S cm-1. The advent of the WSAMD method heralds a significant leap forward in the advancement of molecular 2D materials, catalyzing new avenues of exploration within material chemistry.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chuanhui Liu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiao Han
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Menghan Tian
- School of Physics, Beihang University, Beijing 100191, China
| | - Baichuan Jiang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wenbin Li
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Cailing Ou
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Nannan Dou
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zixiao Han
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Tingyu Ji
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaoru Cao
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaolan Zhong
- School of Physics, Beihang University, Beijing 100191, China
| | - Lei Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
2
|
Liu L, Ji W, He W, Cheng Y, Hao R, Hao P, Dong H, Ding X, Lei S, Han B, Hu W. Rational Design of Fluorinated 2D Polymer Film Based on Donor-Accepter Architecture toward Multilevel Memory Device for Neuromorphic Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405328. [PMID: 39021267 DOI: 10.1002/adma.202405328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/26/2024] [Indexed: 07/20/2024]
Abstract
Fluorine-containing 2D polymer (F-2DP) film is a desired system to regulate the charge transport in organic electronics but rather rarely reports due to the limited fluorine-containing building blocks and difficulties in synthesis. Herein, a novel polar molecule with antiparallel columnar stacking is synthesized and further embedded into an F-2DP system to control over the crystallinity of F-2DP film through self-complementary π-electronic forces. The donor-accepter-accepter'-donor' (D-A-A'-D') structure regulates the charge transportation efficiently, inducing multilevel memory behavior through stepwise charge capture and transfer processes. Thus, the device exhibits ternary memory behavior with low threshold voltage (Vth1 of 1.1 V, Vth2 of 2.0 V), clearly distinguishable resistance states (1:102:104) and ternary yield (83%). Furthermore, the stepwise formation of the charge complex endows the device with a wider range to regulate the conductive state, which allows its application in brain-inspired neuromorphic computing. Modified National Institute of Standards and Technology recognition can reach an accuracy of 86%, showing great potential in neuromorphic computing applications in the post-Moore era.
Collapse
Affiliation(s)
- Lei Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institution of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenyan Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Weixin He
- Joint School of the National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
| | - Yuanzhe Cheng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruisha Hao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Pengyuan Hao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institution of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuesong Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Shengbin Lei
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Baohang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
3
|
Fu GE, Yang H, Zhao W, Samorì P, Zhang T. 2D Conjugated Polymer Thin Films for Organic Electronics: Opportunities and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311541. [PMID: 38551322 DOI: 10.1002/adma.202311541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Indexed: 04/06/2024]
Abstract
2D conjugated polymers (2DCPs) possess extended in-plane π-conjugated lattice and out-of-plane π-π stacking, which results in enhanced electronic performance and potentially unique band structures. These properties, along with predesignability, well-defined channels, easy postmodification, and order structure attract extensive attention from material science to organic electronics. In this review, the recent advance in the interfacial synthesis and conductivity tuning strategies of 2DCP thin films, as well as their application in organic electronics is summarized. Furthermore, it is shown that, by combining topology structure design and targeted conductivity adjustment, researchers have fabricated 2DCP thin films with predesigned active groups, highly ordered structures, and enhanced conductivity. These films exhibit great potential for various thin-film organic electronics, such as organic transistors, memristors, electrochromism, chemiresistors, and photodetectors. Finally, the future research directions and perspectives of 2DCPs are discussed in terms of the interfacial synthetic design and structure engineering for the fabrication of fully conjugated 2DCP thin films, as well as the functional manipulation of conductivity to advance their applications in future organic electronics.
Collapse
Affiliation(s)
- Guang-En Fu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wenkai Zhao
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
4
|
Zhou PK, Li Y, Zeng T, Chee MY, Huang Y, Yu Z, Yu H, Yu H, Huang W, Chen X. One-Dimensional Covalent Organic Framework-Based Multilevel Memristors for Neuromorphic Computing. Angew Chem Int Ed Engl 2024; 63:e202402911. [PMID: 38511343 DOI: 10.1002/anie.202402911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 03/22/2024]
Abstract
Memristors are essential components of neuromorphic systems that mimic the synaptic plasticity observed in biological neurons. In this study, a novel approach employing one-dimensional covalent organic framework (1D COF) films was explored to enhance the performance of memristors. The unique structural and electronic properties of two 1D COF films (COF-4,4'-methylenedianiline (MDA) and COF-4,4'-oxydianiline (ODA)) offer advantages for multilevel resistive switching, which is a key feature in neuromorphic computing applications. By further introducing a TiO2 layer on the COF-ODA film, a built-in electric field between the COF-TiO2 interfaces could be generated, demonstrating the feasibility of utilizing COFs as a platform for constructing memristors with tunable resistive states. The 1D nanochannels of these COF structures contributed to the efficient modulation of electrical conductance, enabling precise control over synaptic weights in neuromorphic circuits. This study also investigated the potential of these COF-based memristors to achieve energy-efficient and high-density memory devices.
Collapse
Affiliation(s)
- Pan-Ke Zhou
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Yiping Li
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Tao Zeng
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Mun Yin Chee
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yuxing Huang
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Ziyue Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Hongling Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Hong Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, China
| | - Xiong Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fujian, 350108, China
| |
Collapse
|
5
|
Zhang Q, Wu D, Fu Y, Li J, Chen Y, Zhang B. Molecular-Potential and Redox Coregulated Cathodic Electrosynthesis toward Ionic Azulene-Based Thin Films for Organic Memristors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22217-22228. [PMID: 38639367 DOI: 10.1021/acsami.3c19527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Organic memristors as promising electronic units are attracting significant attention owing to their simplicity of molecular structure design. However, fabricating high-quality organic films via novel synthetic technologies and exploring unprecedented chemical structures to achieve excellent memory performance in organic memristor devices are highly challenging. In this work, we report a cathodic electropolymerization to synthesize an ionic azulene-based memristive film (PPMAz-Py+Br-) under the molecular-potential and redox coregulation. During the cathodic electropolymerization process, electropositive pyridinium salts migrate to the cathode under an electric field, undergo a reduction-coupling deprotonation reaction, and polymerize into a uniform film with a controllable thickness on the electrode surface. The prepared Al/PPMAz-Py+Br-/ITO devices not only exhibit a high ON/OFF ratio of 1.8 × 103, high stability, long memory retention, and endurance under a wide range of voltage scans, but also achieve excellent multilevel storage and history-dependent memristive performance. In addition, the devices can mimic important biosynaptic functions, such as learning/forgetting function, synaptic enhancement/inhibition, paired-pulse facilitation/depression, and spiking-rate-dependent plasticity. The tunable memristive performances are attributed to the capture of free electrons on pyridinium cations, the migration of the aluminum ions (Al3+), and the form of Al conductive filaments under voltage scans.
Collapse
Affiliation(s)
- Qiongshan Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dongchuang Wu
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
| | - Jinyong Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bin Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Zeng G, Dong Y, Luo J, Zhou Y, Li C, Li K, Li X, Li J. Desirable Strong and Tough Adhesive Inspired by Dragonfly Wings and Plant Cell Walls. ACS NANO 2024; 18:9451-9469. [PMID: 38452378 DOI: 10.1021/acsnano.3c11160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The production of wood-based panels has a significant demand for mechanically strong and flexible biomass adhesives, serving as alternatives to nonrenewable and toxic formaldehyde-based adhesives. Nonetheless, plywood usually exhibits brittle fracture due to the inherent trade-off between rigidity and toughness, and it is susceptible to damage and deformation defects in production applications. Herein, inspired by the microstructure of dragonfly wings and the cross-linking structure of plant cell walls, a soybean meal (SM) adhesive with great strength and toughness was developed. The strategy was combined with a multiple assembly system based on the tannic acid (TA) stripping/modification of molybdenum disulfide (MoS2@TA) hybrids, phenylboronic acid/quaternary ammonium doubly functionalized chitosan (QCP), and SM. Motivated by the microstructure of dragonfly wings, MoS2@TA was tightly bonded with the SM framework through Schiff base and strong hydrogen bonding to dissipate stress energy through crack deflection, bridging, and immobilization. QCP imitated borate chemistry in plant cell walls to optimize interfacial interactions within the adhesive by borate ester bonds, boron-nitrogen coordination bonds, and electrostatic interactions and dissipate energy through sacrificial bonding. The shear strength and fracture toughness of the SM/QCP/MoS2@TA adhesive were 1.58 MPa and 0.87 J, respectively, which were 409.7% and 866.7% higher than those of the pure SM adhesive. In addition, MoS2@TA and QCP gave the adhesive good mildew resistance, durability, weatherability, and fire resistance. This bioinspired design strategy offers a viable and sustainable approach for creating multifunctional strong and tough biobased materials.
Collapse
Affiliation(s)
- Guodong Zeng
- College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, People's Republic of China
| | - Youming Dong
- College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, People's Republic of China
| | - Jing Luo
- College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, People's Republic of China
| | - Ying Zhou
- College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, People's Republic of China
| | - Cheng Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Kuang Li
- College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, People's Republic of China
| | - Xiaona Li
- College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, People's Republic of China
| | - Jianzhang Li
- College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, People's Republic of China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, People's Republic of China
| |
Collapse
|
7
|
Yang S, Yuan J, Wang Z, Wu X, Shen X, Zhang Y, Ma C, Wang J, Lei S, Li R, Hu W. Overcoming the Unfavorable Effects of "Boltzmann Tyranny:" Ultra-Low Subthreshold Swing in Organic Phototransistors via One-Transistor-One-Memristor Architecture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2309337. [PMID: 38416878 DOI: 10.1002/adma.202309337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/11/2024] [Indexed: 03/01/2024]
Abstract
Organic phototransistors (OPTs), as photosensitive organic field-effect transistors (OFETs), have gained significant attention due to their pivotal roles in imaging, optical communication, and night vision. However, their performance is fundamentally limited by the Boltzmann distribution of charge carriers, which constrains the average subthreshold swing (SSave ) to a minimum of 60 mV/decade at room temperature. In this study, an innovative one-transistor-one-memristor (1T1R) architecture is proposed to overcome the Boltzmann limit in conventional OFETs. By replacing the source electrode in an OFET with a memristor, the 1T1R device exploits the memristor's sharp resistance state transitions to achieve an ultra-low SSave of 18 mV/decade. Consequently, the 1T1R devices demonstrate remarkable sensitivity to photo illumination, with a high specific detectivity of 3.9 × 109 cm W-1 Hz1/2 , outperforming conventional OPTs (4.9 × 104 cm W-1 Hz1/2 ) by more than four orders of magnitude. The 1T1R architecture presents a potentially universal solution for overcoming the detrimental effects of "Boltzmann tyranny," setting the stage for the development of ultra-low SSave devices in various optoelectronic applications.
Collapse
Affiliation(s)
- Shuyuan Yang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jiangyan Yuan
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Zhaofeng Wang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Xianshuo Wu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Xianfeng Shen
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yu Zhang
- Ji Hua Laboratory Foshan, Guangdong, 528200, China
| | - Chunli Ma
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jiamin Wang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Shengbin Lei
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Rongjin Li
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
8
|
Ren Y, Xu Y. Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications. Chem Soc Rev 2024; 53:1823-1869. [PMID: 38192222 DOI: 10.1039/d3cs00782k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Two-dimensional polymers (2DPs) are a class of 2D crystalline polymer materials with definite structures, which have outstanding physical-chemical and electronic properties. They cleverly link organic building units through strong covalent bonds and can construct functional 2DPs through reasonable design and selection of different monomer units to meet various application requirements. As promising energy materials, 2DPs have developed rapidly in recent years. This review first introduces the basic overview of 2DPs, such as their historical development, inherent 2D characteristics and diversified topological advantages, followed by the summary of the typical 2DP synthesis methods recently (including "top-down" and "bottom-up" methods). The latest research progress in assembly and processing of 2DPs and the energy-related applications in energy storage and conversion are also discussed. Finally, we summarize and prospect the current research status, existing challenges, and future research directions of 2DPs.
Collapse
Affiliation(s)
- Yumei Ren
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
9
|
Li HX, Li QX, Li FZ, Liu JP, Gong GD, Zhang YQ, Leng YB, Sun T, Zhou Y, Han ST. Ni Single-Atoms Based Memristors with Ultrafast Speed and Ultralong Data Retention. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308153. [PMID: 37939686 DOI: 10.1002/adma.202308153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Indexed: 11/10/2023]
Abstract
Memristor with low-power, high density, and scalability fulfills the requirements of the applications of the new computing system beyond Moore's law. However, there are still nonideal device characteristics observed in the memristor to be solved. The important observation is that retention and speed are correlated parameters of memristor with trade off against each other. The delicately modulating distribution and trapping level of defects in electron migration-based memristor is expected to provide a compromise method to address the contradictory issue of improving both switching speed and retention capability. Here, high-performance memristor based on the structure of ITO/Ni single-atoms (NiSAs/N-C)/Polyvinyl pyrrolidone (PVP)/Au is reported. By utilizing well-distributed trapping sites , small tunneling barriers/distance and high charging energy, the memristor with an ultrafast switching speed of 100 ns, ultralong retention capability of 106 s, a low set voltage (Vset ) of ≈0.7 V, a substantial ON/OFF ration of 103 , and low spatial variation in cycle-to-cycle (500 cycles) and device-to-device characteristics (128 devices) is demonstrated. On the premise of preserving the strengths of a fast switching speed, this memristor exhibits ultralong retention capability comparable to the commercialized flash memory. Finally, a memristor ratioed logic-based combinational memristor array to realize the one-bit full adder is further implemented.
Collapse
Affiliation(s)
- Hua-Xin Li
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Qing-Xiu Li
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Fu-Zhi Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jia-Peng Liu
- School of Advanced Energy, Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Guo-Dong Gong
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yu-Qi Zhang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yan-Bing Leng
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tao Sun
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
10
|
Feng J, Qiu Y, Gao H, Wu Y. Crystal Self-Assembly under Confinement: Bridging Nanomaterials to Integrated Devices. Acc Chem Res 2024; 57:222-233. [PMID: 38170611 DOI: 10.1021/acs.accounts.3c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
ConspectusSelf-assembly, a spontaneous process that organizes disordered constituents into ordered structures, has revolutionized our fundamental understanding of living matter, nanotechnology, and molecular science. From the perspective of nanomaterials, self-assembly serves as a bottom-up method for creating long-range-ordered materials. This is accomplished by tailoring the geometry, chemistry, and interactions of the components, thereby facilitating the efficient fabrication of high-quality materials and high-performance functional devices. Over the past few decades, we have seen controllable organization and diverse phases in self-assembled materials, such as organic crystals, biomolecular structures, and colloidal nanoparticle supercrystals. However, most self-assembled ordered materials and their assembly mechanisms are derived from constituents in a liquid bulk medium, where the effects of boundaries and interfaces are negligible. In the context of nanostructure patterning, self-assembly occurs in confined spaces, with feature sizes ranging from a few to hundreds of nanometers. In such settings, ubiquitous boundaries and interfaces can trap the system in a kinetically favored but metastable state, devoid of long-range order. This makes it extremely difficult to achieve ordered structures in micro/nano-patterning techniques that rely on sessile microdroplets, such as inkjet printing, dip-pen lithography, and contact printing.In stark contrast to sessile droplets, capillary bridges─formed by liquids confined between two solid surfaces─provide unique opportunities for understanding the long-range-ordered self-assembly of crystalline materials under spatial confinement. Because capillary bridges are stabilized by Laplace pressure, which is inversely proportional to the feature size, the confinement and manipulation of solutions or suspensions of functional materials at the nanoscale become accessible through the rational design of surface chemistry and geometry. Although global thermodynamic equilibrium is unattainable in evaporative systems, ordered nucleation and packing of constituent components can be locally realized at the contact line of capillary bridges. This enables the unprecedented fabrication of long-range-ordered micro/nanostructures with deterministic patterns.In this Account, we review the advancements in long-range-ordered self-assembly of crystalline micro/nanostructures under confinement. First, we briefly introduce crystalline materials characterized by strong intramolecular interactions and relatively weak intermolecular forces, analyzing both the opportunities and challenges inherent to self-assembled nanomaterials. Next, we delve into the construction and manipulation of confined liquids, focusing especially on capillary bridges controlled by engineered chemistry and geometry to regulate Laplace pressure. Through this approach, we have achieved capillary bridges with thicknesses on the order of a few nanometers and wafer-scale homogeneity, facilitating the self-assembly of ordered structures. Supported by factors such as local free-volume entropy, electrostatic interactions, curvilinear geometry, directional microfluidics, and nanoconfinement, we have achieved long-range-ordered, deterministic patterning of organic semiconductors, metal-halide perovskites, and colloidal nanocrystal superlattices using this capillary-bridge platform. These long-range microstructures serve as a bridge between nanomaterials and integrated devices, enabling emergent functionalities like intrinsic stretchability, giant photoconductivity, propagating and interacting exciton polaritons, and spin-valley-locked lasing, which are otherwise unattainable in disordered materials. Finally, we discuss potential directions for both the fundamental understanding and practical applications of confined self-assembly.
Collapse
Affiliation(s)
- Jiangang Feng
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Yuchen Qiu
- College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Hanfei Gao
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Yuchen Wu
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
11
|
Sun B, Chen Y, Zhou G, Cao Z, Yang C, Du J, Chen X, Shao J. Memristor-Based Artificial Chips. ACS NANO 2024; 18:14-27. [PMID: 38153841 DOI: 10.1021/acsnano.3c07384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Memristors, promising nanoelectronic devices with in-memory resistive switching behavior that is assembled with a physically integrated core processing unit (CPU) and memory unit and even possesses highly possible multistate electrical behavior, could avoid the von Neumann bottleneck of traditional computing devices and show a highly efficient ability of parallel computation and high information storage. These advantages position them as potential candidates for future data-centric computing requirements and add remarkable vigor to the research of next-generation artificial intelligence (AI) systems, particularly those that involve brain-like intelligence applications. This work provides an overview of the evolution of memristor-based devices, from their initial use in creating artificial synapses and neural networks to their application in developing advanced AI systems and brain-like chips. It offers a broad perspective of the key device primitives enabling their special applications from the view of materials, nanostructure, and mechanism models. We highlight these demonstrations of memristor-based nanoelectronic devices that have potential for use in the field of brain-like AI, point out the existing challenges of memristor-based nanodevices toward brain-like chips, and propose the guiding principle and promising outlook for future device promotion and system optimization in the biomedical AI field.
Collapse
Affiliation(s)
- Bai Sun
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yuanzheng Chen
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| | - Guangdong Zhou
- College of Artificial Intelligence, Brain-inspired Computing & Intelligent Control of Chongqing Key Lab, Southwest University, Chongqing 400715, People's Republic of China
| | - Zelin Cao
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chuan Yang
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| | - Junmei Du
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| | - Xiaoliang Chen
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinyou Shao
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
12
|
Chen S, Ju Y, Yang Y, Xiang F, Yao Z, Zhang H, Li Y, Zhang Y, Xiang S, Chen B, Zhang Z. Multistate structures in a hydrogen-bonded polycatenation non-covalent organic framework with diverse resistive switching behaviors. Nat Commun 2024; 15:298. [PMID: 38182560 PMCID: PMC10770064 DOI: 10.1038/s41467-023-44214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
The inherent structural flexibility and reversibility of non-covalent organic frameworks have enabled them to exhibit switchable multistate structures under external stimuli, providing great potential in the field of resistive switching (RS), but not well explored yet. Herein, we report the 0D+1D hydrogen-bonded polycatenation non-covalent organic framework (HOF-FJU-52), exhibiting diverse and reversible RS behaviors with the high performance. Triggered by the external stimulus of electrical field E at room temperature, HOF-FJU-52 has excellent resistive random-access memory (RRAM) behaviors, comparable to the state-of-the-art materials. When cooling down below 200 K, it was transferred to write-once-read-many-times memory (WORM) behaviors. The two memory behaviors exhibit reversibility on a single crystal device through the temperature changes. The RS mechanism of this non-covalent organic framework has been deciphered at the atomic level by the detailed single-crystal X-ray diffraction analyses, demonstrating that the structural dual-flexibility both in the asymmetric hydrogen bonded dimers within the 0D loops and in the infinite π-π stacking column between the loops and chains contribute to reversible structure transformations between multi-states and thus to its dual RS behaviors.
Collapse
Affiliation(s)
- Shimin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Yan Ju
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Yisi Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Fahui Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Zizhu Yao
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Yongfan Zhang
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian, China.
| |
Collapse
|
13
|
Zhao W, Fu GE, Yang H, Zhang T. Two-Dimensional Conjugated Polymers: a New Choice For Organic Thin-Film Transistors. Chem Asian J 2023:e202301076. [PMID: 38151907 DOI: 10.1002/asia.202301076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 12/29/2023]
Abstract
Organic thin-film transistors (OTFTs) as a vital component among transistors have shown great potential in smart sensing, flexible displays, and bionics due to their flexibility, biocompatibility and customizable chemical structures. Even though linear conjugated polymer semiconductors are common for constructing channel materials of OTFTs, advanced materials with high charge carrier mobility, tunable band structure, robust stability, and clear structure-property relationship are indispensable for propelling the evolution of OTFTs. Two-dimensional conjugated polymers (2DCPs), featured with conjugated lattice, tailorable skeletons, and functional porous structures, match aforementioned criteria closely. In this review, we firstly introduce the synthesis of 2DCP thin films, focusing on their characteristics compatible with the channels of OTFTs. Subsequently, the physics and operating mechanisms of OTFTs and the applications of 2DCPs in OTFTs are summarized in detail. Finally, the outlook and perspective in the field of OTFTs using 2DCPs are provided as well.
Collapse
Affiliation(s)
- Wenkai Zhao
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guang-En Fu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Haoyong Yang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tao Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
14
|
Li B, Zhang S, Xu L, Su Q, Du B. Emerging Robust Polymer Materials for High-Performance Two-Terminal Resistive Switching Memory. Polymers (Basel) 2023; 15:4374. [PMID: 38006098 PMCID: PMC10675020 DOI: 10.3390/polym15224374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Facing the era of information explosion and the advent of artificial intelligence, there is a growing demand for information technologies with huge storage capacity and efficient computer processing. However, traditional silicon-based storage and computing technology will reach their limits and cannot meet the post-Moore information storage requirements of ultrasmall size, ultrahigh density, flexibility, biocompatibility, and recyclability. As a response to these concerns, polymer-based resistive memory materials have emerged as promising candidates for next-generation information storage and neuromorphic computing applications, with the advantages of easy molecular design, volatile and non-volatile storage, flexibility, and facile fabrication. Herein, we first summarize the memory device structures, memory effects, and memory mechanisms of polymers. Then, the recent advances in polymer resistive switching materials, including single-component polymers, polymer mixtures, 2D covalent polymers, and biomacromolecules for resistive memory devices, are highlighted. Finally, the challenges and future prospects of polymer memory materials and devices are discussed. Advances in polymer-based memristors will open new avenues in the design and integration of high-performance switching devices and facilitate their application in future information technology.
Collapse
Affiliation(s)
- Bixin Li
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China; (B.L.)
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi’an 710072, China
- School of Physics, Central South University, 932 South Lushan Road, Changsha 410083, China
| | - Shiyang Zhang
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China; (B.L.)
| | - Lan Xu
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China; (B.L.)
| | - Qiong Su
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China; (B.L.)
| | - Bin Du
- School of Materials Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| |
Collapse
|
15
|
Ding G, Zhao J, Zhou K, Zheng Q, Han ST, Peng X, Zhou Y. Porous crystalline materials for memories and neuromorphic computing systems. Chem Soc Rev 2023; 52:7071-7136. [PMID: 37755573 DOI: 10.1039/d3cs00259d] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Porous crystalline materials usually include metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs) and zeolites, which exhibit exceptional porosity and structural/composition designability, promoting the increasing attention in memory and neuromorphic computing systems in the last decade. From both the perspective of materials and devices, it is crucial to provide a comprehensive and timely summary of the applications of porous crystalline materials in memory and neuromorphic computing systems to guide future research endeavors. Moreover, the utilization of porous crystalline materials in electronics necessitates a shift from powder synthesis to high-quality film preparation to ensure high device performance. This review highlights the strategies for preparing porous crystalline materials films and discusses their advancements in memory and neuromorphic electronics. It also provides a detailed comparative analysis and presents the existing challenges and future research directions, which can attract the experts from various fields (e.g., materials scientists, chemists, and engineers) with the aim of promoting the applications of porous crystalline materials in memory and neuromorphic computing systems.
Collapse
Affiliation(s)
- Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Qi Zheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
16
|
Zhou K, Jia Z, Zhou Y, Ding G, Ma XQ, Niu W, Han ST, Zhao J, Zhou Y. Covalent Organic Frameworks for Neuromorphic Devices. J Phys Chem Lett 2023; 14:7173-7192. [PMID: 37540588 DOI: 10.1021/acs.jpclett.3c01711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Neuromorphic computing could enable the potential to break the inherent limitations of conventional von Neumann architectures, which has led to widespread research interest in developing novel neuromorphic memory devices, such as memristors and bioinspired artificial synaptic devices. Covalent organic frameworks (COFs), as crystalline porous polymers, have tailorable skeletons and pores, providing unique platforms for the interplay with photons, excitons, electrons, holes, ions, spins, and molecules. Such features encourage the rising research interest in COF materials in neuromorphic electronics. To develop high-performance COF-based neuromorphic memory devices, it is necessary to comprehensively understand materials, devices, and applications. Therefore, this Perspective focuses on discussing the use of COF materials for neuromorphic memory devices in terms of molecular design, thin-film processing, and neuromorphic applications. Finally, we provide an outlook for future directions and potential applications of COF-based neuromorphic electronics.
Collapse
Affiliation(s)
- Kui Zhou
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Ziqi Jia
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Yao Zhou
- College of Materials Science and Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Guanglong Ding
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Xin-Qi Ma
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Wenbiao Niu
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Jiyu Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| |
Collapse
|