1
|
Chen Z, Wang Y, Zhang S, Qiao H, Zhang S, Wang H, Zhang XD. Advances in the Treatment of Spinal Cord Injury with Nanozymes. Bioconjug Chem 2025; 36:627-651. [PMID: 40163781 DOI: 10.1021/acs.bioconjchem.5c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Spinal cord injury (SCI) with increasing incidence can lead to severe disability. The pathological process involves complex mechanisms such as oxidative stress, inflammation, and neuron apoptosis. Current treatment strategies focusing on the relief of oxidative stress and inflammation have achieved good effects, while many problems and challenges remain such as the side effect and short half-life of the therapeutic agents. Nanozymes exhibiting good biocatalytic activities can sustainably scavenge free radicals, inhibit neuroinflammation, and protect the neurons. With high stability in physiological conditions and cost-effectiveness, the nanozymes provide a new strategy for SCI treatment. In this Review, we outline the advances of nanozymes and their enzyme-mimicking activities and highlight the progress in the intervention of SCI-adopting nanozymes. We also propose future directions and clinical translation for the nanozyme strategy against SCI.
Collapse
Affiliation(s)
- Zuohong Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yili Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Huanhuan Qiao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuquan Zhang
- Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| |
Collapse
|
2
|
Sommi P, Callegari D, Ferraro D, Ghigna P, Castillo-Michel H, Viganò L, Vitali A, Fracchia M, Falqui A, Demichelis MP, Profumo A, Anselmi-Tamburini U. Unveiling the Role of Intracellular Dissolution Equilibria in the Antioxidant Mechanism of Ceria Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40177868 DOI: 10.1021/acsami.5c02505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
It is well-known that ceria nanoparticles (CNPs) exhibit significant antioxidant activity, offering potential applications in the treatment of ROS-related pathologies. This activity of CNPs as a nanozyme is typically interpreted by considering Ce(III)/Ce(IV) equilibria on the nanoparticles' surface. However, the validity of this mechanism has never been directly proven in a biological context. Furthermore, it is often overlooked that after endocytosis, CNPs are compartmentalized within endolysosomes, while ROS are primarily located in the cytoplasm, making their direct interaction difficult. This study presents chemical and biological evidence supporting an alternative mechanism of action. By utilizing synchrotron μXRF and μXANES analysis on individual cells, the study shows that the amount of Ce(III), the species responsible for the antioxidant activity, increases linearly with time within the endolysosomes, where CNPs are accumulated, and in their vicinity. Such an increase can be explained by the release of Ce3+ ions resulting from a partial reductive dissolution of CNPs in the acidic environment of the endolysosomes. The Ce3+ ions can then cross the endolysosomal membrane, reaching the cytosol, where they can exert their reducing activity on ROS. In fact, neutralizing the acidic endolysosomal pH results in a complete inhibition of the CNP activity. Consequently, CNP antioxidant activity should be regarded as the result of redox processes that extend beyond the nanoparticles surface but involve complex dissolution equilibria.
Collapse
Affiliation(s)
- Patrizia Sommi
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy
| | | | - Daniela Ferraro
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy
| | - Paolo Ghigna
- Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | | | - Lorenzo Viganò
- Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | - Agostina Vitali
- Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | - Martina Fracchia
- Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | - Andrea Falqui
- Department of Physics "Aldo Pontremoli", University of Milan (Statale), Via Celoria 16, Milan 20133, Italy
| | | | | | | |
Collapse
|
3
|
Zhao Y, Cheng J, Li Z, Wang J, Chen X. Nanozymes in Biomedical Applications: Innovations Originated From Metal-Organic Frameworks. Adv Healthc Mater 2025; 14:e2402066. [PMID: 39319491 DOI: 10.1002/adhm.202402066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/18/2024] [Indexed: 09/26/2024]
Abstract
Nanozymes exhibit significant potential in medical theranostics, environmental protection, energy development, and biopharmaceuticals due to their exceptional catalytic performance. Compared with natural enzymes, nanozymes have the advantages of simple preparation and purification, convenient production and low cost. Therefore, it is very important to prepare nanozymes quickly and efficiently, which not only helps to expand their application scope, but also can further exert their great potential in various fields. Metal-organic frameworks (MOF) materials serve as versatile substrates for constructing nanozymes, offering unique advantages like adjustable structure, high specific surface area, and porous channels. MOF coordination nodes constructed from metal ions or metal clusters have unique properties that can be leveraged to tailor nanozyme characteristics for different applications. This review describes and analyzes recent methods for constructing nanozymes using MOF materials, and explores their application prospects in biomedicine. By expounding the preparation techniques and biomedical applications of nanozymes, this review aims to inspire researchers to develop innovative nanozyme materials and explore new application directions.
Collapse
Affiliation(s)
- Yuewu Zhao
- College of Pharmacy, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, 253023, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Junjie Cheng
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Zhen Li
- College of Pharmacy, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, 253023, China
| | - Jine Wang
- College of Pharmacy, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, 253023, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore, 138667, Singapore
| |
Collapse
|
4
|
Zheng D, Tao J, Jiang L, Zhang X, He H, Shen X, Sang Y, Liu Y, Yang Z, Nie Z. Efficient Cytosolic Delivery of Single-Chain Polymeric Artificial Enzymes for Intracellular Catalysis and Chemo-Dynamic Therapy. J Am Chem Soc 2025; 147:998-1007. [PMID: 39780388 DOI: 10.1021/jacs.4c14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Designing artificial enzymes for in vivo catalysis presents a great challenge due to biomacromolecule contamination, poor biodistribution, and insufficient substrate interaction. Herein, we developed single-chain polymeric nanoparticles with Cu/N-heterocyclic carbene active sites (SCNP-Cu) to function as peroxidase mimics for in vivo catalysis and chemo-dynamic therapy (CDT). Compared with the enzyme mimics based on unfolded linear polymer scaffold and multichain cross-linked scaffold, SCNP-Cu exhibits improved tumor accumulation and CDT efficiency both in vitro and in vivo. Protein-like size of the SCNP scaffold promotes passive diffusion, whereas positive surface charge allows its active transcytosis for deep tumor penetration and hence accumulation in the tumor site. The submolecular compartments of the SCNP scaffold effectively protect the active sites from protein bindings, thereby providing a "cleaner" microenvironment for catalysis within a living system. The folded structure of SCNP-Cu facilitates their cytosolic delivery of and free diffusion within cytosol, ensuring efficient contact with endogenous H2O2, in situ generation of toxic hydroxyl radicals (·OH), and effective damage of intracellular targets (i.e., lipids, nucleic acids). This work establishes versatile SCNP-based nanoplatforms for developing artificial enzymes for in vivo catalysis.
Collapse
Affiliation(s)
- Di Zheng
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China
| | - Jing Tao
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China
| | - Liping Jiang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China
| | - Xinyue Zhang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China
| | - Huibin He
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China
| | - Xiaoxue Shen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China
| | - Yutao Sang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China
| | - Yunen Liu
- Shuren International College, Shenyang Medical College, Shenyang 110034, P. R. China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zhihong Nie
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China
| |
Collapse
|
5
|
Said R, Ghazzy A, Shakya AK, hunaiti AA. Iron oxide nanozymes as versatile analytical tools: an overview of their application as detection technique. Bioanalysis 2024; 16:1261-1278. [PMID: 39589819 PMCID: PMC11727870 DOI: 10.1080/17576180.2024.2415779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/09/2024] [Indexed: 11/28/2024] Open
Abstract
Iron oxide nanozymes (IONzymes) have become fundamental components in various analyte detection methodologies such as colorimetric, electrochemistry, fluorescence and luminescence. Their tunability, stability and the possibility of modification, alongside their ability to mimic the catalytic properties of natural enzymes like peroxidase, render them invaluable in analytical chemistry. This review explores the diverse applications of IONzymes across analytical chemistry, with a particular highlighting on their roles in different detection techniques and their potential in biomedical and diagnostic applications. This information would be valuable for researchers and practitioners in the fields of analytical chemistry, biochemistry, biotechnology and materials science who are interested in applying IONzymes in their work. In essence, this review article on iron oxide nanozymes in analytical chemistry would serve as a valuable resource for researchers, educators and industry professionals, offering insights, guidance and inspiration for further study and application of this promising class of nanomaterials.
Collapse
Affiliation(s)
- Rana Said
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Asma Ghazzy
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Ashok K. Shakya
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
- Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Aqaba, 11191, Jordan
| | - Afnan Al hunaiti
- Department of Chemistry, University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
6
|
Zamyatina EA, Goryacheva OA, Popov AL, Popova NR. Novel Pyrroloquinoline Quinone-Modified Cerium Oxide Nanoparticles and Their Selective Cytotoxicity Under X-Ray Irradiation. Antioxidants (Basel) 2024; 13:1445. [PMID: 39765774 PMCID: PMC11672564 DOI: 10.3390/antiox13121445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Ionizing radiation leads to the development of oxidative stress and damage to biologically important macromolecules (DNA, mitochondria, etc.), which in turn lead to cell death. In the case of radiotherapy, both cancer cells and normal cells are damaged. In this regard, the development of new selective antioxidants is relevant. In this study, we first investigated the redox activity of cerium oxide-pyrroloquinoline quinone nanoparticles (CeO2@PQQ NPs) and their cytotoxic effects on normal (mouse fibroblasts, L929) and cancer (mouse adenocarcinoma, EMT6/P) cell cultures. Furthermore, the biological activity of CeO2@PQQ NPs was evaluated in comparison with that of CeO2 NPs and PQQ. The nanoparticles demonstrated pH-dependent reductions in the content of hydrogen peroxide after X-ray exposure. Our findings indicate that viability of EMT6/P cells was more adversely affected by CeO2@PQQ NPs at lower concentrations (0.1 μM) compared to L929. Following X-ray irradiation at a dose of 5 Gy, significant changes in mitochondrial potential (by 29%) and decreased glutathione levels (by 32%) were also observed in EMT6/P culture following irradiation and incubation with CeO2@PQQ NPs. Furthermore, EMT6/P exhibited a 2.5-fold increase in micronuclei and a 2-fold reduction in survival fraction compared to L929. It is hypothesized that CeO2@PQQ NPs may exhibit selective cytotoxicity and radiosensitizing properties against EMT6/P cancer cells. The findings suggest that CeO2@PQQ NPs may have potential as a selective redox-active antioxidant/pro-oxidant in response to X-ray radiation.
Collapse
Affiliation(s)
- Elizaveta A. Zamyatina
- Isotope Research Laboratory, Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia;
| | - Olga A. Goryacheva
- Chemistry Institute, Saratov State University Named after N.G. Chernyshevsky, Saratov 410012, Russia;
| | - Anton L. Popov
- Theranostics and Nuclear Medicine Laboratory, Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia;
| | - Nelli R. Popova
- Isotope Research Laboratory, Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia;
| |
Collapse
|
7
|
Liao FH, Chen SP, Yao CN, Wu TH, Liu MT, Hsu CS, Chen HM, Lin SY. Oxygen-Binding Sites of Enriched Gold Nanoclusters for Capturing Mitochondrial Reverse Electrons. NANO LETTERS 2024; 24:11202-11209. [PMID: 39207943 PMCID: PMC11403762 DOI: 10.1021/acs.nanolett.4c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Reverse electron transfer (RET), an abnormal backward flow of electrons from complexes III/IV to II/I of mitochondria, causes the overproduction of a reduced-type CoQ to boost downstream production of mitochondrial superoxide anions that leads to ischemia-reperfusion injury (IRI) to organs. Herein, we studied low-coordinated gold nanoclusters (AuNCs) with abundant oxygen-binding sites to form an electron-demanding trapper that allowed rapid capture of electrons to compensate for the CoQ/CoQH2 imbalance during RET. The AuNCs were composed of only eight gold atoms that formed a Cs-symmetrical configuration with all gold atoms exposed on the edge site. The geometry and atomic configuration enhance oxygen intercalation to attain a d-band electron deficiency in frontier orbitals, forming an unusually high oxidation state for rapid mitochondrial reverse electron capture under a transient imbalance of CoQ/CoQH2 redox cycles. Using hepatic IRI cells/animals, we corroborated that the CoQ-like AuNCs prevent inflammation and liver damage from IRI via recovery of the mitochondrial function.
Collapse
Affiliation(s)
- Fang-Hsuean Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Town 35053, Taiwan
| | - Shu-Ping Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Town 35053, Taiwan
| | - Chun-Nien Yao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Town 35053, Taiwan
| | - Te-Haw Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Town 35053, Taiwan
| | - Meng-Ting Liu
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan
| | - Chia-Shuo Hsu
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan
| | - Hao Ming Chen
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Shu-Yi Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Town 35053, Taiwan
- Department of Chemistry, National Tsing-Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
8
|
Wu Z, Ding Y, Qin Z, Sun Z, Wang Z, Cao X. Hemostatic Dressing Immobilized with ε-poly-L-lysine and Alginate Coated Mesoporous Bioactive Glass Prevents Blood Permeation by Pseudo-Dewetting Behavior. Adv Healthc Mater 2024; 13:e2400958. [PMID: 38770831 DOI: 10.1002/adhm.202400958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/07/2024] [Indexed: 05/22/2024]
Abstract
The integration of hemostats with cotton fabrics is recognized as an effective approach to improve the hemostatic performance of dressings. However, concerns regarding the uncontrollable absorption of blood by hydrophilic dressings and the risk of distal thrombosis from shed hemostatic agents are increasingly scrutinized. To address these issues, this work develops an advanced dressing (AQG) with immobilized nano-scale mesoporous bioactive glass (MBG) to safely and durably augment hemostasis. The doubly immobilized MBGs, pre-coated with ε-poly-L-lysine and alginate, demonstrate less than 1% detachment after ultrasonic washing. Notably, this MBG layer significantly promotes the adhesion, aggregation, and activation of red blood cells and platelets, adhered five times more red blood cells and 29 times more platelets than raw dressing, respectively. Specially, with the rapid formation of protein corona and amplification of thrombin, dense fibrin network is built on MBG layer and then blocked blood permeation transversely and longitudinally, showing an autophobic pseudo-dewetting behavior and allowing AQG to concentrate blood in situ and culminate in faster hemostasis with lower blood loss. Furthermore, the potent antibacterial properties of AQG extend its potential for broader application in daily care and clinical setting.
Collapse
Affiliation(s)
- Zilin Wu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Yilin Ding
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Zhihao Qin
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Zhipeng Sun
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Zetao Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
9
|
Sozarukova MM, Kozlova TO, Beshkareva TS, Popov AL, Kolmanovich DD, Vinnik DA, Ivanova OS, Lukashin AV, Baranchikov AE, Ivanov VK. Gadolinium Doping Modulates the Enzyme-like Activity and Radical-Scavenging Properties of CeO 2 Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:769. [PMID: 38727363 PMCID: PMC11085435 DOI: 10.3390/nano14090769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024]
Abstract
Their unique physicochemical properties and multi-enzymatic activity make CeO2 nanoparticles (CeO2 NPs) the most promising active component of the next generation of theranostic drugs. When doped with gadolinium ions, CeO2 NPs constitute a new type of contrast agent for magnetic resonance imaging, possessing improved biocatalytic properties and a high level of biocompatibility. The present study is focused on an in-depth analysis of the enzyme-like properties of gadolinium-doped CeO2 NPs (CeO2:Gd NPs) and their antioxidant activity against superoxide anion radicals, hydrogen peroxide, and alkylperoxyl radicals. Using an anion-exchange method, CeO2:Gd NPs (~5 nm) with various Gd-doping levels (10 mol.% or 20 mol.%) were synthesized. The radical-scavenging properties and biomimetic activities (namely SOD- and peroxidase-like activities) of CeO2:Gd NPs were assessed using a chemiluminescent method with selective chemical probes: luminol, lucigenin, and L-012 (a highly sensitive luminol analogue). In particular, gadolinium doping has been shown to enhance the radical-scavenging properties of CeO2 NPs. Unexpectedly, both bare CeO2 NPs and CeO2:Gd NPs did not exhibit SOD-like activity, acting as pro-oxidants and contributing to the generation of reactive oxygen species. Gadolinium doping caused an increase in the pro-oxidant properties of nanoscale CeO2. At the same time, CeO2:Gd NPs did not significantly inhibit the intrinsic activity of the natural enzyme superoxide dismutase, and CeO2:Gd NPs conjugated with SOD demonstrated SOD-like activity. In contrast to SOD-like properties, peroxidase-like activity was observed for both bare CeO2 NPs and CeO2:Gd NPs. This type of enzyme-like activity was found to be pH-dependent. In a neutral medium (pH = 7.4), nanoscale CeO2 acted as a prooxidant enzyme (peroxidase), while in an alkaline medium (pH = 8.6), it lost its catalytic properties; thus, it cannot be regarded as a nanozyme. Both gadolinium doping and conjugation with a natural enzyme were shown to modulate the interaction of CeO2 NPs with the key components of redox homeostasis.
Collapse
Affiliation(s)
- Madina M. Sozarukova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Taisiya O. Kozlova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana S. Beshkareva
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
- Materials Science Department, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anton L. Popov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Danil D. Kolmanovich
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Darya A. Vinnik
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Olga S. Ivanova
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Alexey V. Lukashin
- Materials Science Department, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexander E. Baranchikov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
10
|
Karthika V, Badrinathan Sridharan, Nam JW, Kim D, Gyun Lim H. Neuromodulation by nanozymes and ultrasound during Alzheimer's disease management. J Nanobiotechnology 2024; 22:139. [PMID: 38555420 PMCID: PMC10981335 DOI: 10.1186/s12951-024-02406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with complex pathogenesis and effective clinical treatment strategies for this disease remain elusive. Interestingly, nanomedicines are under extensive investigation for AD management. Currently, existing redox molecules show highly bioactive property but suffer from instability and high production costs, limiting clinical application for neurological diseases. Compared with natural enzymes, artificial enzymes show high stability, long-lasting catalytic activity, and versatile enzyme-like properties. Further, the selectivity and performance of artificial enzymes can be modulated for neuroinflammation treatments through external stimuli. In this review, we focus on the latest developments of metal, metal oxide, carbon-based and polymer based nanozymes and their catalytic mechanisms. Recent developments in nanozymes for diagnosing and treating AD are emphasized, especially focusing on their potential to regulate pathogenic factors and target sites. Various applications of nanozymes with different stimuli-responsive features were discussed, particularly focusing on nanozymes for treating oxidative stress-related neurological diseases. Noninvasiveness and focused application to deep body regions makes ultrasound (US) an attractive trigger mechanism for nanomedicine. Since a complete cure for AD remains distant, this review outlines the potential of US responsive nanozymes to develop future therapeutic approaches for this chronic neurodegenerative disease and its emergence in AD management.
Collapse
Affiliation(s)
- Viswanathan Karthika
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Badrinathan Sridharan
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Ji Won Nam
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Daehun Kim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hae Gyun Lim
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
11
|
Unnikrishnan G, Joy A, Megha M, Kolanthai E, Senthilkumar M. Exploration of inorganic nanoparticles for revolutionary drug delivery applications: a critical review. DISCOVER NANO 2023; 18:157. [PMID: 38112849 PMCID: PMC10730791 DOI: 10.1186/s11671-023-03943-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
The nanosystems for delivering drugs which have evolved with time, are being designed for greater drug efficiency and lesser side-effects, and are also complemented by the advancement of numerous innovative materials. In comparison to the organic nanoparticles, the inorganic nanoparticles are stable, have a wide range of physicochemical, mechanical, magnetic, and optical characteristics, and also have the capability to get modified using some ligands to enrich their attraction towards the molecules at the target site, which makes them appealing for bio-imaging and drug delivery applications. One of the strong benefits of using the inorganic nanoparticles-drug conjugate is the possibility of delivering the drugs to the affected cells locally, thus reducing the side-effects like cytotoxicity, and facilitating a higher efficacy of the therapeutic drug. This review features the direct and indirect effects of such inorganic nanoparticles like gold, silver, graphene-based, hydroxyapatite, iron oxide, ZnO, and CeO2 nanoparticles in developing effective drug carrier systems. This article has remarked the peculiarities of these nanoparticle-based systems in pulmonary, ocular, wound healing, and antibacterial drug deliveries as well as in delivering drugs across Blood-Brain-Barrier (BBB) and acting as agents for cancer theranostics. Additionally, the article sheds light on the plausible modifications that can be carried out on the inorganic nanoparticles, from a researcher's perspective, which could open a new pathway.
Collapse
Affiliation(s)
- Gayathri Unnikrishnan
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Anjumol Joy
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - M Megha
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Elayaraja Kolanthai
- Department of Materials Sciences and Engineering, Advanced Materials Processing and Analysis Centre, University of Central Florida, Orlando, FL, USA.
| | - M Senthilkumar
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India.
| |
Collapse
|
12
|
Sotoudeh Bagha P, Kolanthai E, Wei F, Neal CJ, Kumar U, Braun G, Coathup M, Seal S, Razavi M. Ultrasound-Responsive Nanobubbles for Combined siRNA-Cerium Oxide Nanoparticle Delivery to Bone Cells. Pharmaceutics 2023; 15:2393. [PMID: 37896153 PMCID: PMC10609961 DOI: 10.3390/pharmaceutics15102393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
This study aims to present an ultrasound-mediated nanobubble (NB)-based gene delivery system that could potentially be applied in the future to treat bone disorders such as osteoporosis. NBs are sensitive to ultrasound (US) and serve as a controlled-released carrier to deliver a mixture of Cathepsin K (CTSK) siRNA and cerium oxide nanoparticles (CeNPs). This platform aimed to reduce bone resorption via downregulating CTSK expression in osteoclasts and enhance bone formation via the antioxidant and osteogenic properties of CeNPs. CeNPs were synthesized and characterized using transmission electron microscopy and X-ray photoelectron spectroscopy. The mixture of CTSK siRNA and CeNPs was adsorbed to the surface of NBs using a sonication method. The release profiles of CTSK siRNA and CeNPs labeled with a fluorescent tag molecule were measured after low-intensity pulsed ultrasound (LIPUS) stimulation using fluorescent spectroscopy. The maximum release of CTSK siRNA and the CeNPs for 1 mg/mL of NB-(CTSK siRNA + CeNPs) was obtained at 2.5 nM and 1 µg/mL, respectively, 3 days after LIPUS stimulation. Then, Alizarin Red Staining (ARS) was applied to human bone marrow-derived mesenchymal stem cells (hMSC) and tartrate-resistant acid phosphatase (TRAP) staining was applied to human osteoclast precursors (OCP) to evaluate osteogenic promotion and osteoclastogenic inhibition effects. A higher mineralization and a lower number of osteoclasts were quantified for NB-(CTSK siRNA + CeNPs) versus control +RANKL with ARS (p < 0.001) and TRAP-positive staining (p < 0.01). This study provides a method for the delivery of gene silencing siRNA and CeNPs using a US-sensitive NB system that could potentially be used in vivo and in the treatment of bone fractures and disorders such as osteoporosis.
Collapse
Affiliation(s)
- Pedram Sotoudeh Bagha
- BiionixTM (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA; (P.S.B.); (F.W.); (M.C.)
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (E.K.); (C.J.N.); (U.K.); (S.S.)
| | - Fei Wei
- BiionixTM (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA; (P.S.B.); (F.W.); (M.C.)
| | - Craig J. Neal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (E.K.); (C.J.N.); (U.K.); (S.S.)
| | - Udit Kumar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (E.K.); (C.J.N.); (U.K.); (S.S.)
| | - Gillian Braun
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA;
| | - Melanie Coathup
- BiionixTM (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA; (P.S.B.); (F.W.); (M.C.)
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (E.K.); (C.J.N.); (U.K.); (S.S.)
| | - Mehdi Razavi
- BiionixTM (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA; (P.S.B.); (F.W.); (M.C.)
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
13
|
Fox CR, Kedarinath K, Neal CJ, Sheiber J, Kolanthai E, Kumar U, Drake C, Seal S, Parks GD. Broad-Spectrum, Potent, and Durable Ceria Nanoparticles Inactivate RNA Virus Infectivity by Targeting Virion Surfaces and Disrupting Virus-Receptor Interactions. Molecules 2023; 28:5190. [PMID: 37446852 DOI: 10.3390/molecules28135190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
There is intense interest in developing long-lasting, potent, and broad-spectrum antiviral disinfectants. Ceria nanoparticles (CNPs) can undergo surface redox reactions (Ce3+ ↔ Ce4+) to generate ROS without requiring an external driving force. Here, we tested the mechanism behind our prior finding of potent inactivation of enveloped and non-enveloped RNA viruses by silver-modified CNPs, AgCNP1 and AgCNP2. Treatment of human respiratory viruses, coronavirus OC43 and parainfluenza virus type 5 (PIV5) with AgCNP1 and 2, respectively, prevented virus interactions with host cell receptors and resulted in virion aggregation. Rhinovirus 14 (RV14) mutants were selected to be resistant to inactivation by AgCNP2. Sequence analysis of the resistant virus genomes predicted two amino acid changes in surface-located residues D91V and F177L within capsid protein VP1. Consistent with the regenerative properties of CNPs, surface-applied AgCNP1 and 2 inactivated a wide range of structurally diverse viruses, including enveloped (OC43, SARS-CoV-2, and PIV5) and non-enveloped RNA viruses (RV14 and feline calicivirus; FCV). Remarkably, a single application of AgCNP1 and 2 potently inactivated up to four sequential rounds of virus challenge. Our results show broad-spectrum and long-lasting anti-viral activity of AgCNP nanoparticles, due to targeting of viral surface proteins to disrupt interactions with cellular receptors.
Collapse
Affiliation(s)
- Candace R Fox
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Kritika Kedarinath
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Craig J Neal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Jeremy Sheiber
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Udit Kumar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | | | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
- Nano Science Technology Center, University of Central Florida, Orlando, FL 32816, USA
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Griffith D Parks
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|