1
|
Shen K, Lv Z, Yang Y, Wang H, Liu J, Chen Q, Liu Z, Zhang M, Liu J, Cheng Y. A Wet-Adhesion and Swelling-Resistant Hydrogel for Fast Hemostasis, Accelerated Tissue Injury Healing and Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2414092. [PMID: 39713944 DOI: 10.1002/adma.202414092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/01/2024] [Indexed: 12/24/2024]
Abstract
Hydrogel bioadhesives with adequate wet adhesion and swelling resistance are urgently needed in clinic. However, the presence of blood or body fluid usually weakens the interfacial bonding strength, and even leads to adhesion failure. Herein, profiting from the unique coupling structure of carboxylic and phenyl groups in one component (N-acryloyl phenylalanine) for interfacial drainage and matrix toughening as well as various electrostatic interactions mediated by zwitterions, a novel hydrogel adhesive (PAAS) is developed with superior tissue adhesion properties and matrix swelling resistance in challenging wet conditions (adhesion strength of 85 kPa, interfacial toughness of 450 J m-2, burst pressure of 514 mmHg, and swelling ratio of <4%). The PAAS hydrogel can not only realize fast hemostasis of liver, heart, artery rupture, and sealing of pulmonary air-leakage but also accelerate the recovery of stomach and liver defects in rat, rabbit, and pig models. Moreover, PAAS hydrogel can precisely and durably monitor various physiological activities (pulse, electrocardiogram, and electromyogram) even under humid environments (immersion in water for 3 days), and can be employed for the evaluation of in vivo sealing efficiency for artery rupture. The work provides a promising hydrogel adhesive for clinical hemostasis, tissue injury repair, and bioelectronics.
Collapse
Affiliation(s)
- Kaixiang Shen
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuting Lv
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuxuan Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Haoyue Wang
- Institute of High Voltage Physics and Engineering, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiancheng Liu
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qifei Chen
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zheng Liu
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mengyuan Zhang
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaying Liu
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yilong Cheng
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
2
|
Li L, Wang B, Chen H, Wu H, Xing Y, Xia Y, Long X. Organogel Polymer Electrocatalysts for Two-Electron Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2410371. [PMID: 39703152 DOI: 10.1002/smll.202410371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/04/2024] [Indexed: 12/21/2024]
Abstract
Polymer gels, renowned for unparalleled chemical stability and self-sustaining properties, have garnered significant attention in electrocatalysis. Notably, organic polymer gels that exhibit temperature sensitivity and incorporate suitable polar nonvolatile liquids, enhance electronic conductivity, and impart distinct morphological features, but remain largely unexplored as electrocatalysts for oxygen reduction reaction (ORR). To address this issue, an innovative strategy is proposed for synergistic modulation of the rigidity of mainchain molecular skeleton and length of alkyl sidechains, enabling the development of organogel polymers with a sol-gel temperature-sensitive phase transition that promises high selectivity and enhanced activity in electrocatalytic processes. Notably, the shortening of alkyl sidechain length can significantly affect the gelation behavior and internal microstructure of the catalyst, which modifies the electron state, ultimately impacting the catalytic activity of the gel polymer catalysts. In particular, phenyl-containing Ph-FL1 with short alkyl sidechains demonstrates outstanding 2e- ORR activity in alkaline medium, achieving a remarkable hydrogen peroxide (H2O2) selectivity of 98.6% with an impressive yield of 4.08 mol g-1 h-1. This performance surpasses most metal-free carbon-based electrocatalysts. Through theoretical calculation, the carbon atom (site-3) of C═N group is identified as potential active sites, representing a significant advancement toward designing cost-effective and efficient ORR electrocatalysts.
Collapse
Affiliation(s)
- Lili Li
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Binbin Wang
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Hongni Chen
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Han Wu
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yali Xing
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yanzhi Xia
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaojing Long
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
3
|
Gao W, Kang H, Zhong M, Han L, Guo X, Su B, Lei Z. Chitosan-Promoted TiO 2-Loaded Double-Network Hydrogels for Dye Removal and Wearable Sensors. Biomacromolecules 2024; 25:8016-8025. [PMID: 39540546 DOI: 10.1021/acs.biomac.4c01286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The loading of photocatalysts on hydrogels can significantly reduce the loss of catalysts and effectively prevent secondary contamination, thus demonstrating great application potential and advantages in the field of wastewater treatment, especially in the removal of dyes. Herein, the semiconductor TiO2 was successfully loaded into a polyacrylic acid/chitosan (PAA/CS) double-network (DN) hydrogel, which exhibited superior removal of dyes in wastewater such as MG, MB, MV, and RhB. The dye degradation process followed first-order kinetics, and the first-order rate constants for dye degradation were further calculated under UV light irradiation. Furthermore, the photocatalytic mechanism of the hydrogel was explored and analyzed. More interestingly, the PAA/CS-TiO2 DN hydrogel has excellent tensile properties and superior electrical conductivity, which can be assembled into flexible sensors for real-time monitoring of mechanical deformations and human joint motions. It is envisioned that these excellent properties make hydrogel photocatalysts promising for a wide range of applications.
Collapse
Affiliation(s)
- Wei Gao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Huichun Kang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Ming Zhong
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Lijuan Han
- Gansu Natural Energy Research Institute, Gansu Academy of Science, Lanzhou 730046, P. R. China
| | - Xue Guo
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Bitao Su
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Ziqiang Lei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
4
|
Li Q, Zheng S, Liu Z, Li W, Wang X, Cao Q, Yan F. Strong, Spontaneous, and Self-Healing Poly(Ionic Liquid) Elastomer Underwater Adhesive with Borate Ester Dynamic Crosslinking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2413901. [PMID: 39436052 DOI: 10.1002/adma.202413901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Indexed: 10/23/2024]
Abstract
Adhesion in aqueous environments is often hindered by the water layer on the surface of the substrate due to the water sensitivity of the adhesive, greatly limiting the application environment. Here, a borate ester dynamically crosslinked poly(ionic liquid) elastomer adhesive (PIEA) with high strength, toughness, self-healing abilities, and ionic conductivity is synthesized by copolymerizing hydrophobic ionic liquid monomer ([HPVIm][TFSI]) and 2-methoxyethyl acrylate (MEA). The adhesion strength of PIEA can increase spontaneously from almost no adhesion to 314 kPa after 12 h without any external preloading due to the dissociation of the borate ester in water, leading to noncovalent interactions between the hydroxyl groups of PIEA and the substrate. Additionally, PIEA can be developed for soft sensors or ion electrodes to enable underwater detection and communication. This strategy offers broad application potential for the development of novel underwater smart adhesives.
Collapse
Affiliation(s)
- Qingning Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Sijie Zheng
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ziyang Liu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaowei Wang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qiang Cao
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
5
|
Bai Y, Shi Y, Li X, Zhang Y, Wang Y. Cation-π Interactions Based Conductive Hydrogels with Slide-Ring Structure Toward Super Long-Time in-air/Underwater Linear Sensing and Communication. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406902. [PMID: 39363783 DOI: 10.1002/smll.202406902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/12/2024] [Indexed: 10/05/2024]
Abstract
Conductive hydrogels (CHs) are attracted more attention in the flexible wearable sensors field, however, how to stably apply CHs underwater is still a big challenge. In order to achieve the usage of CHs in aquatic environments, the integrated properties such as water retention ability, resistance to swelling, toughness, adhesiveness, linear GF sensing, and long-term usage are necessary to consider, but rarely reported in the previous reports. This paper proposes CHs prepared using cationic and aromatic monomers along with polyrotaxanes-based crosslinkers. Due to the intermolecular cation-π interactions and topological slide-ring-based polyrotaxanes, the CHs exhibit good mechanical performance, adhesive nature, and anti-swelling properties. The presence of slide-ring-based topological architecture effectively mitigates stress concentration. Additionally, the encapsulation of PA allows CHs to maintain functionality even after 240 days of direct placement at room temperature. Notably, the designed CHs exhibit linear sensitivity in detecting land/underwater human motions, and serve as Morse code signal transmitters for information transmission. Thus, the designed CHs may have broad applications in the underwater wearable sensors field.
Collapse
Affiliation(s)
- Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yuxin Shi
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xuchao Li
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yucong Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yaqi Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|
6
|
Zhang S, Sun R, Wang J, Jiang Z, Liu M, Chen H, Hu Z, Zhan X, Gao F, Zhang Q. Enhancement of hybrid organohydrogels by interpenetrating crosslinking strategies for multi-source signal recognition over a wide temperature range. MATERIALS HORIZONS 2024; 11:6107-6116. [PMID: 39319678 DOI: 10.1039/d4mh00970c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
With substantial temperature differentials between summer and winter in polar regions, there exists a pressing necessity for flexible sensors capable of functioning across a broad temperature spectrum to facilitate the construction of a more intelligent human-machine interface. Nevertheless, developing flexible sensors resilient to extremely low temperatures remains a significant challenge. In this study, we present an organohydrogel capable of functioning ranging from ambient to -78 °C, enabling real-time monitoring of multi-source signals, including motion, physiology, speech, and pressure. We synthesize organohydrogel employing a singular methodology: interpenetrating network structures as matrix frameworks, dynamic hydrophobic linkages as the physical cross-linking points, and incorporating a bionic binder. H-Bonding and chain entanglement synergistic supramolecular interactions build the organohydrogel matrix with microphase-separated domains, which, together with the combination of binary solvents and inorganic salts, allows it to exhibit excellent properties, including large stretchability (≈1700%), high ionic conductivity (1.57 S m-1), admirable sensing sensitivity performance (gauge factor: GF = 6.47, S = 0.32 kPa-1), an exceptionally low-pressure detection threshold (≈1 Pa), enables wireless transmission of distress signals through human-machine interaction even at -78 °C, which makes it possible to use it in polar exploration and to give robots a "sense of touch" for a variety of deep-diving tasks.
Collapse
Affiliation(s)
- Shen Zhang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Rui Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jun Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Zhiqin Jiang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Mingfang Liu
- Zhejiang University of Science and Technology, School of Environment and Natural Resources, Hangzhou 310023, China
| | - Hua Chen
- Zhejiang University of Science and Technology, School of Environment and Natural Resources, Hangzhou 310023, China
| | - Zhijun Hu
- Zhejiang University of Science and Technology, School of Environment and Natural Resources, Hangzhou 310023, China
| | - Xiaoli Zhan
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, 310027, China.
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou 324000, China.
- Donghai Laboratory of Zhejiang University, Zhoushan, 316000, China
| | - Feng Gao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, 310027, China.
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou 324000, China.
| | - Qinghua Zhang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, 310027, China.
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou 324000, China.
- Donghai Laboratory of Zhejiang University, Zhoushan, 316000, China
| |
Collapse
|
7
|
Ren Z, Guo F, Wen Y, Yang Y, Liu J, Cheng S. Strong and anti-swelling nanofibrous hydrogel composites inspired by biological tissue for amphibious motion sensors. MATERIALS HORIZONS 2024; 11:5600-5613. [PMID: 39229702 DOI: 10.1039/d4mh01025f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Conductive hydrogel-based sensors are increasingly favored for flexible electronics due to their skin-like characteristics. However, conventional hydrogels suffer from significant swelling in humid environments and poor mechanical properties which largely restrict their applications in wearable electronic devices, especially for underwater sensing. Herein, drawing inspiration from the extracellular matrix (ECM) structure, a TPU-PVAc@AgNPs/MXene nanofibrous hydrogel composite (TPAMH) with excellent mechanical robustness and anti-swelling properties is developed. The TPAMH nanofibrous hydrogel composite is created by integrating the silver nanoparticles (AgNPs) and MXene nanosheets into an interwoven network comprising of stiff TPU nanofibers as the fibril scaffold and formic acid-crosslinked PVA hydrogel fibers as the elastic matrix (PVAc). Benefiting from the unique ECM structure, the obtained nanofibrous hydrogel composites exhibit exceptional tensile strength (4.47 MPa), remarkable elongation at break (621%), excellent anti-swelling properties, and high detection sensitivity (maximum gauge factor = 105.02), which are sufficient to monitor body motions in both air and water environments effectively. They can detect large strain movements of fingers, elbows, wrists, and knees, as well as small strain physiological signals such as frown, smile, and pulse beats, with high accuracy. Particularly noteworthy is their ability to accurately identify underwater multidirectional motions and facilitate underwater smart alarms using Morse code.
Collapse
Affiliation(s)
- Zheng Ren
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Fang Guo
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Yong Wen
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Yang Yang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Jinxin Liu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Si Cheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
8
|
Ren J, Chen G, Yang H, Zheng J, Li S, Zhu C, Yang H, Fu J. Super-Tough, Non-Swelling Zwitterionic Hydrogel Sensor Based on the Hofmeister Effect for Potential Motion Monitoring of Marine Animals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412162. [PMID: 39388508 DOI: 10.1002/adma.202412162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/21/2024] [Indexed: 10/12/2024]
Abstract
Hydrogel-based electronic devices in aquatic environments have sparked widespread research interest. Nevertheless, the challenge of developing hydrogel electronics underwater has not been profoundly surmounted because of the fragility and swelling of hydrogels in aquatic environments. In this work, a zwitterionic double network hydrogel comprised of polyvinyl alcohol (PVA), poly(sulfobetaine methacrylate) (PSBMA), and sulfuric acid (H2SO4) demonstrates super-tough and non-swelling performance. The Hofmeister effect of H2SO4 and PSBMA induces the PVA chains to form numerous nanocrystalline domains, which serve as the primary physical crosslinking points and provide effective energy dissipation. H2SO4 induces a strong salting-out effect to facilitate PVA crystallization and the formation of a dense and stable network structure that inhibits swelling. The resulting hydrogel exhibits an ultra-high toughness of 4.61 MJ m-3, non-swelling, and long-term stability for up to a month in pure water and seawater. Based on this, a hydrogel-based seawater strain sensor has been developed to monitor the underwater movements of marine animal models. Reliable and stable sensing performance ensures real-time collection of underwater motion signals, despite the impacts of water flow and the interference of ions. This study provides a facile approach to designing super-tough and non-swelling hydrogels and further expands the application of underwater electronic devices.
Collapse
Affiliation(s)
- Jiayuan Ren
- Guangdong Functional Biomaterials Engineering Technology Research Center, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guoqi Chen
- Guangdong Functional Biomaterials Engineering Technology Research Center, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hailong Yang
- Guangdong Functional Biomaterials Engineering Technology Research Center, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jingxia Zheng
- Guangdong Functional Biomaterials Engineering Technology Research Center, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shengnan Li
- Guangdong Functional Biomaterials Engineering Technology Research Center, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Canjie Zhu
- Guangdong Functional Biomaterials Engineering Technology Research Center, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hua Yang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Fu
- Guangdong Functional Biomaterials Engineering Technology Research Center, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
9
|
Lyu X, Zhang H, Shen S, Gong Y, Zhou P, Zou Z. Multi-Modal Sensing Ionogels with Tunable Mechanical Properties and Environmental Stability for Aquatic and Atmospheric Environments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410572. [PMID: 39292213 DOI: 10.1002/adma.202410572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Ionogels have garnered significant interest due to their great potential in flexible iontronic devices. However, their limited mechanical tunability and environmental intolerance have posed significant challenges for their integration into next-generation flexible electronics in different scenarios. Herein, the synergistic effect of cation-oxygen coordination interaction and hydrogen bonding is leveraged to construct a 3D supramolecular network, resulting in ionogels with tunable modulus, stretchability, and strength, achieving an unprecedented elongation at break of 10 800%. Moreover, the supramolecular network endows the ionogels with extremely high fracture energy, crack insensitivity, and high elasticity. Meanwhile, the high environmental stability and hydrophobic network of the ionogels further shield them from the unfavorable effects of temperature variations and water molecules, enabling them to operate within a broad temperature range and exhibit robust underwater adhesion. Then, the ionogel is assembled into a wearable sensor, demonstrating its great potential in flexible sensing (temperature, pressure, and strain) and underwater signal transmission. This work can inspire the applications of ionogels in multifunctional sensing and wearable fields.
Collapse
Affiliation(s)
- Xiaolin Lyu
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| | - Haoqi Zhang
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shengtao Shen
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yue Gong
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Piaopiao Zhou
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Zhigang Zou
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- Eco-materials and Renewable Energy Research Center, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
10
|
Wang S, Ou R, Li J, Jin K, Yu L, Murto P, Wang Z, Xu X. Deformation-Resistant Underwater Adhesion in a Wide Salinity Range. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403350. [PMID: 38988140 DOI: 10.1002/smll.202403350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Indexed: 07/12/2024]
Abstract
Conventional adhesives experience reduced adhesion when exposed to aqueous environments. The development of underwater adhesives capable of forming strong and durable bonds across various wet substrates is crucial in biomedical and engineering domains. Nonetheless, limited emphasis placed on retaining high adhesion strengths in different saline environments, addressing challenges such as elevated osmotic pressure and spontaneous dimensional alterations. Herein, a series of ionogel-based underwater adhesives are developed using a copolymerization approach that incorporates "dynamic complementary cross-linking" networks. Synergistic engineering of building blocks, cross-linking networks, pendant groups and counterions within ionogels ensures their adhesion and cohesion in brine spanning a wide salinity range. A high adhesion strength of ≈3.6 MPa is attained in freshwater. Gratifyingly, steady adhesion strengths exceeding 3.3 MPa are retained in hypersaline solutions with salinity ranging from 50 to 200 g kg-1, delivering one of the best-performing underwater adhesives suitable for diverse saline solutions. A combination of outstanding durability, reliability, deformation resistance, salt tolerance, and self-healing properties showcases the "self-contained" underwater adhesion. This study shines light on the facile fabrication of catechol-free ionogel-based adhesives, not merely boosting adhesion strengths in freshwater, but also broadening their applicability across various saline environments.
Collapse
Affiliation(s)
- Shuxue Wang
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Richang Ou
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jingjing Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Kai Jin
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Petri Murto
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Zhihang Wang
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Xiaofeng Xu
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
11
|
Sun Z, Ou Q, Dong C, Zhou J, Hu H, Li C, Huang Z. Conducting polymer hydrogels based on supramolecular strategies for wearable sensors. EXPLORATION (BEIJING, CHINA) 2024; 4:20220167. [PMID: 39439497 PMCID: PMC11491309 DOI: 10.1002/exp.20220167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Conductive polymer hydrogels (CPHs) are gaining considerable attention in developing wearable electronics due to their unique combination of high conductivity and softness. However, in the absence of interactions, the incompatibility between hydrophobic conductive polymers (CPs) and hydrophilic polymer networks gives rise to inadequate bonding between CPs and hydrogel matrices, thereby significantly impairing the mechanical and electrical properties of CPHs and constraining their utility in wearable electronic sensors. Therefore, to endow CPHs with good performance, it is necessary to ensure a stable and robust combination between the hydrogel network and CPs. Encouragingly, recent research has demonstrated that incorporating supramolecular interactions into CPHs enhances the polymer network interaction, improving overall CPH performance. However, a comprehensive review focusing on supramolecular CPH (SCPH) for wearable sensing applications is currently lacking. This review provides a summary of the typical supramolecular strategies employed in the development of high-performance CPHs and elucidates the properties of SCPHs that are closely associated with wearable sensors. Moreover, the review discusses the fabrication methods and classification of SCPH sensors, while also exploring the latest application scenarios for SCPH wearable sensors. Finally, it discusses the challenges of SCPH sensors and offers suggestions for future advancements.
Collapse
Affiliation(s)
- Zhiyuan Sun
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Qingdong Ou
- Macao Institute of Materials Science and Engineering (MIMSE)Faculty of Innovation EngineeringMacau University of Science and TechnologyMacao TaipaPeople's Republic of China
| | - Chao Dong
- Chemistry and Physics DepartmentCollege of Art and ScienceThe University of Texas of Permian BasinOdessaTexasUSA
| | - Jinsheng Zhou
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenPeople's Republic of China
| | - Huiyuan Hu
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenPeople's Republic of China
| | - Chong Li
- Guangdong Polytechnic of Science and TechnologyZhuhaiPeople's Republic of China
| | - Zhandong Huang
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'anPeople's Republic of China
| |
Collapse
|
12
|
Tang H, Li Y, Liao S, Liu H, Qiao Y, Zhou J. Multifunctional Conductive Hydrogel Interface for Bioelectronic Recording and Stimulation. Adv Healthc Mater 2024; 13:e2400562. [PMID: 38773929 DOI: 10.1002/adhm.202400562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/11/2024] [Indexed: 05/24/2024]
Abstract
The past few decades have witnessed the rapid advancement and broad applications of flexible bioelectronics, in wearable and implantable electronics, brain-computer interfaces, neural science and technology, clinical diagnosis, treatment, etc. It is noteworthy that soft and elastic conductive hydrogels, owing to their multiple similarities with biological tissues in terms of mechanics, electronics, water-rich, and biological functions, have successfully bridged the gap between rigid electronics and soft biology. Multifunctional hydrogel bioelectronics, emerging as a new generation of promising material candidates, have authentically established highly compatible and reliable, high-quality bioelectronic interfaces, particularly in bioelectronic recording and stimulation. This review summarizes the material basis and design principles involved in constructing hydrogel bioelectronic interfaces, and systematically discusses the fundamental mechanism and unique advantages in bioelectrical interfacing with the biological surface. Furthermore, an overview of the state-of-the-art manufacturing strategies for hydrogel bioelectronic interfaces with enhanced biocompatibility and integration with the biological system is presented. This review finally exemplifies the unprecedented advancement and impetus toward bioelectronic recording and stimulation, especially in implantable and integrated hydrogel bioelectronic systems, and concludes with a perspective expectation for hydrogel bioelectronics in clinical and biomedical applications.
Collapse
Affiliation(s)
- Hao Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yuanfang Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shufei Liao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Houfang Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yancong Qiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
13
|
Wu M, Wang G, Zhang M, Li J, Wang C, Sun G, Zheng J. A tough and piezoelectric poly(acrylamide/ N, N-dimethylacrylamide) hydrogel-based flexible wearable sensor. SOFT MATTER 2024; 20:6800-6807. [PMID: 39148339 DOI: 10.1039/d4sm00363b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A flexible, tough, highly transparent and piezoelectric polyacrylamide hydrogel was fabricated induced by blue light photocuring, with camphorquinone/diphenyliodonium hexafluorophosphate (CQ/DPI) as the blue light initiator, acrylamide (AM) and N,N-dimethylacrylamide (DMAA) as monomers, polyethylene glycol diacrylate (PEGDA) as the crosslinker, lecithin as the dispersant, and BaTiO3 as the piezoelectric material. Various performance tests were carried out on the hydrogel, and the results showed that lecithin enhances the dispersion of BaTiO3 within the system and improves the tensile properties (>100% strain) of the hydrogel, and the addition of PEGDA not only improves the photopolymerization performance of the hydrogel, but also significantly improves its fracture strength (∼0.3 MPa). In addition, BaTiO3 enables the resultant hydrogels to show excellent conductivity (>1.5) and stable response to strain. The assembled hydrogel sensor shows a sensitive response to human joint activities, which is expected to be applied in self-powered sensors and energy collection.
Collapse
Affiliation(s)
- Mingyue Wu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Guohui Wang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Mihan Zhang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Jinchao Li
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Chenglong Wang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Guangdong Sun
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
- The Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310018, P. R. China.
| | - Jinhuan Zheng
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
14
|
Zhang W, Qin Z, Yu L, Lian J, Liu J, He Z, Huang ZH. A self-bonding conductive electrode triggered by water-induced structure reconfiguration. Chem Commun (Camb) 2024; 60:9074-9077. [PMID: 39104310 DOI: 10.1039/d4cc03396e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
This study presents a self-bonding conductive electrode triggered by water-induced structure reconfiguration. Water wetting causes the swelling and mobility of cotton-derived cellulose nanofibers in the conductive electrode, and the formation of hydrogen bonds, which enables the conductive electrode to heal damage, bond separated pieces, and directly bond on diverse substrates.
Collapse
Affiliation(s)
- Wenjie Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China.
| | - Zhouyang Qin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Lingxiao Yu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Jiabiao Lian
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China.
| | - Junfeng Liu
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China.
| | - Zhixia He
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China.
| | - Zheng-Hong Huang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Zhang H, He Q, Yu H, Qin M, Feng Y, Feng W. Mussel-Inspired Polymer-Based Composites for Efficient Thermal Management in Dry and Underwater Environments. ACS NANO 2024. [PMID: 39094105 DOI: 10.1021/acsnano.4c05894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
To address the escalating power consumption of processors in data centers and the growing emphasis on environmental sustainability, the prospective shift from traditional air-cooling to immersion liquid cooling necessitates multiple functional integrations in polymer-based thermal conductive materials. Here, drawing inspiration from mussels, we showed a copolymer, poly(dimethylsiloxane-co-dopamine methacrylate) (PDMS-DMA), with a variety of reversible molecular interactions and simply combined with liquid metal (EGaIn) can yield a flexible, waterproof, and electrically insulating thermal conductive composite. The obtained PDMS-DMA/EGaIn composites demonstrate a harmonious blend of attributes, including a low modulus (75.8 kPa), high thermal conductivity of 6.9 W m-1 K-1, and rapid room-temperature self-healing capabilities, capable of complete repair within 20 min, even under water. Based on its electrically insulating and water resistance properties, PDMS-DMA/EGaIn emerges as a promising candidate for efficient and stable heat transfer in both air and underwater thermal management. Consequently, this water-resistant polymer-based composite holds significance for application in thermal protective layers for future immersion liquid cooling systems.
Collapse
Affiliation(s)
- Heng Zhang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
| | - Qingxia He
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
| | - Huitao Yu
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
| | - Mengmeng Qin
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
| | - Yiyu Feng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
16
|
Wu X, Li M, Li H, Gao H, Wang Z, Wang Z. Autonomous Underwater Self-Healable Adhesive Elastomers Enabled by Dynamical Hydrophobic Phase-Separated Microdomains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311131. [PMID: 38644339 DOI: 10.1002/smll.202311131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/01/2024] [Indexed: 04/23/2024]
Abstract
High-efficient underwater self-healing materials with reliable mechanical attributes hold great promise for applications in ocean explorations and diverse underwater operations. Nevertheless, achieving these functions in aquatic environments is challenging because the recombination of dynamic interactions will suffer from resistance to interfacial water molecules. Herein, an ultra-robust and all-environment stable self-healable polyurethane-amide supramolecular elastomer is developed through rational engineering of hydrophobic domains and multistrength hydrogen bonding interactions to provide mechanical and healing compatibility as well as efficient suppression of water ingress. The coupling of hydrophobic chains and hierarchical hydrogen bonds within a multiphase matrix self-assemble to generate dynamical hydrophobic hard-phase microdomains, which synergistically realize high stretchability (1601%), extreme toughness (87.1 MJ m-3), and outstanding capability to autonomous self-healing in various harsh aqueous conditions with an efficiency of 58% and healed strength of 12.7 MPa underwater. Furthermore, the self-aggregation of hydrophobic clusters with sufficient dynamic interactions endows the resultant elastomer with effective instantaneous adhesion (6.2 MPa, 941.9 N m-1) in extremely harsh aqueous conditions. It is revealed that the dynamical hydrophobic hard-phase microdomain composed of hydrophobic barriers and cooperative reversible interactions allows for regulating its mechanical enhancement and underwater self-healing efficiency, enabling the elastomers as intelligent sealing devices in marine applications.
Collapse
Affiliation(s)
- Xiankun Wu
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Min Li
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Haonan Li
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Huihui Gao
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Zhongkai Wang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Zhong Wang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| |
Collapse
|
17
|
Xu W, Shen T, Ding Y, Ye H, Wu B, Chen F. Wearable and Recyclable Water-Toleration Sensor Derived from Lipoic Acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310072. [PMID: 38470190 DOI: 10.1002/smll.202310072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/02/2024] [Indexed: 03/13/2024]
Abstract
Flexible wearable sensors recently have made significant progress in human motion detection and health monitoring. However, most sensors still face challenges in terms of single detection targets, single application environments, and non-recyclability. Lipoic acid (LA) shows a great application prospect in soft materials due to its unique properties. Herein, ionic conducting elastomers (ICEs) based on polymerizable deep eutectic solvents consisting of LA and choline chloride are prepared. In addition to the good mechanical strength, high transparency, ionic conductivity, and self-healing efficiency, the ICEs exhibit swelling-strengthening behavior and enhanced adhesion strength in underwater environments due to the moisture-induced association of poly(LA) hydrophobic chains, thus making it possible for underwater sensing applications, such as underwater communication. As a strain sensor, it exhibits highly sensitive strain response with repeatability and durability, enabling the monitoring of both large and fine human motions, including joint movements, facial expressions, and pulse waves. Furthermore, due to the enhancement of ion mobility at higher temperatures, it also possesses excellent temperature-sensing performance. Notably, the ICEs can be fully recycled and reused as a new strain/temperature sensor through heating. This study provides a novel strategy for enhancing the mechanical strength of poly(LA) and the fabrication of multifunctional sensors.
Collapse
Affiliation(s)
- Weikun Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Tao Shen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yutong Ding
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Huijian Ye
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Bozhen Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Feng Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
18
|
Ye H, Wu B, Sun S, Wu P. A Solid-Liquid Bicontinuous Fiber with Strain-Insensitive Ionic Conduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402501. [PMID: 38562038 DOI: 10.1002/adma.202402501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Stretchable ionic conductors are crucial for enabling advanced iontronic devices to operate under diverse deformation conditions. However, when employed as interconnects, existing ionic conductors struggle to maintain stable ionic conduction under strain, hindering high-fidelity signal transmission. Here, it is shown that strain-insensitive ionic conduction can be achieved by creating a solid-liquid bicontinuous microstructure. A bicontinuous fiber from polymerization-induced phase separation, which contains a solid elastomer phase interpenetrated by a liquid ion-conducting phase, is fabricated. The spontaneous partitioning of dissolved salts leads to the formation of a robust self-wrinkled interface, fostering the development of highly tortuous ionic channels. Upon stretch, these meandering ionic channels are straightened, effectively enhancing ionic conductivity to counteract the strain effect. Remarkably, the fiber retains highly stable ionic conduction till fracture, with only 7% resistance increase at 200% strain. This approach presents a promising avenue for designing durable ionic cables capable of signal transmission with minimal strain-induced distortion.
Collapse
Affiliation(s)
- Huating Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Shengtong Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
19
|
Chen H, Shi J, Ji C, Fan W, Sui K. Facile Multiple Graded Wrinkle Construction Strategy for Vastly Boosting the Sensing Performance of Ionic Skins. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38700267 DOI: 10.1021/acsami.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The construction of surface microstructures (e.g., micropyramids and wrinkles) has been proven as the most effective means to boost the sensitivity of ionic skins (I-skins). However, the single-scale micronano patterns constructed by the common fabrication strategy generally lead to a limited pressure-response range. Here, a convenient repeated stretching/coordinating/releasing strategy is developed to controllably construct multiple graded wrinkles on the polyelectrolyte hydrogel-based I-skins for increasing their sensitivity over a broad pressure range. We find that the small wrinkles allow for high sensitivity yet small pressure detection range, while the large wrinkles can reduce structural stiffening to generate large pressure-response range but incur limited sensitivity. The multiple graded wrinkles can combine the merits of both the small and large wrinkles to simultaneously improve the sensitivity and broaden the pressure-response range. In particular, the sensing performance of multiple-wrinkle-based I-skins substantially outperforms the superposition of the sensing performance of different single-wrinkle-based I-skins. As a proof of concept, the triple-wrinkle-based I-skins can provide an extremely high sensitivity of 17,309 kPa-1 and an ultrawide pressure detection range of 0.38 Pa to 372 kPa. The approach and insight contribute to the future development of I-skins with a broader pressure-response range and higher sensitivity.
Collapse
Affiliation(s)
- Hongen Chen
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Jianzhuang Shi
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Changbin Ji
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Wenxin Fan
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Kunyan Sui
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
20
|
Li Y, Cheng Q, Deng Z, Zhang T, Luo M, Huang X, Wang Y, Wang W, Zhao X. Recent Progress of Anti-Freezing, Anti-Drying, and Anti-Swelling Conductive Hydrogels and Their Applications. Polymers (Basel) 2024; 16:971. [PMID: 38611229 PMCID: PMC11013939 DOI: 10.3390/polym16070971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Hydrogels are soft-wet materials with a hydrophilic three-dimensional network structure offering controllable stretchability, conductivity, and biocompatibility. However, traditional conductive hydrogels only operate in mild environments and exhibit poor environmental tolerance due to their high water content and hydrophilic network, which result in undesirable swelling, susceptibility to freezing at sub-zero temperatures, and structural dehydration through evaporation. The application range of conductive hydrogels is significantly restricted by these limitations. Therefore, developing environmentally tolerant conductive hydrogels (ETCHs) is crucial to increasing the application scope of these materials. In this review, we summarize recent strategies for designing multifunctional conductive hydrogels that possess anti-freezing, anti-drying, and anti-swelling properties. Furthermore, we briefly introduce some of the applications of ETCHs, including wearable sensors, bioelectrodes, soft robots, and wound dressings. The current development status of different types of ETCHs and their limitations are analyzed to further discuss future research directions and development prospects.
Collapse
Affiliation(s)
- Ying Li
- College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Qiwei Cheng
- College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Zexing Deng
- College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Tao Zhang
- College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Man Luo
- College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Xiaoxiao Huang
- College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Yuheng Wang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
| | - Wen Wang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
21
|
Ye H, Wu B, Sun S, Wu P. Self-compliant ionic skin by leveraging hierarchical hydrogen bond association. Nat Commun 2024; 15:885. [PMID: 38287011 PMCID: PMC10825218 DOI: 10.1038/s41467-024-45079-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
Robust interfacial compliance is essential for long-term physiological monitoring via skin-mountable ionic materials. Unfortunately, existing epidermal ionic skins are not compliant and durable enough to accommodate the time-varying deformations of convoluted skin surface, due to an imbalance in viscosity and elasticity. Here we introduce a self-compliant ionic skin that consistently works at the critical gel point state with almost equal viscosity and elasticity over a super-wide frequency range. The material is designed by leveraging hierarchical hydrogen bond association, allowing for the continuous release of polymer strands to create topological entanglements as complementary crosslinks. By embodying properties of rapid stress relaxation, softness, ionic conductivity, self-healability, flaw-insensitivity, self-adhesion, and water-resistance, this ionic skin fosters excellent interfacial compliance with cyclically deforming substrates, and facilitates the acquisition of high-fidelity electrophysiological signals with alleviated motion artifacts. The presented strategy is generalizable and could expand the applicability of epidermal ionic skins to more complex service conditions.
Collapse
Affiliation(s)
- Huating Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Shengtong Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China.
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
22
|
Cao X, Cao Q, Zhang T, Ji W, Muhammad U, Chen J, Wei Y. Hydrophobically Associated Hydrogel for High Sensitivity and Resolution of an Interdigital Electrode Pressure Sensor. Biomacromolecules 2024; 25:143-154. [PMID: 38054613 DOI: 10.1021/acs.biomac.3c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Hydrogel-based flexible strain sensors have been known for their excellent ability to convert different motions of humans into electrical signals, thus enabling real-time monitoring of various human health parameters. In this work, a composite hydrogel with hydrophobic association and hybrid cross-linking was fabricated by using polyacrylamide (PAm), surfactant sodium dodecyl sulfate (SDS), lauryl methacrylate (LMA), and polypyrrole (PPy). The dynamic dissociation-conjugation among LMA, SDS, and PPy could dissipate energy to improve the toughness of hydrogels. The SDS/PPy/LMPAm composite hydrogel with a toughness of 1.44 MJ/m3, tensile fracture stress of 345 kPa, tensile strain of 1021%, and electrical conductivity of 0.57 S/m was obtained. Furthermore, an interdigital electrode flexible pressure sensor was designed to replace the bipolar electrode flexible pressure sensor, which greatly improved the sensitivity and resolution of the pressure sensor. The SDS/PPy/LMPAm composite hydrogel-based interdigital electrode flexible pressure sensor showed extraordinary stability and identified different hand gestures as well as monitored the pulse signal of humans. Moreover, the characteristic systolic and diastolic peaks were clearly observed. The pulse frequency (65 times/min) and the radial artery augmentation index (0.57) were calculated, which are very important in evaluating the arterial vessel wall and function of human arteries.
Collapse
Affiliation(s)
- Xuan Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, P. R. China
| | - Qinglong Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, P. R. China
| | - Taoyi Zhang
- Sinopec Beijing Research Institute of Chemical Industry, 14 North Third Ring Road East, Chaoyang District, Beijing 100014, China
| | - Wenxi Ji
- Sinopec Beijing Research Institute of Chemical Industry, 14 North Third Ring Road East, Chaoyang District, Beijing 100014, China
| | - Usman Muhammad
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, P. R. China
| | - Jing Chen
- Sinopec Beijing Research Institute of Chemical Industry, 14 North Third Ring Road East, Chaoyang District, Beijing 100014, China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, P. R. China
| |
Collapse
|
23
|
Li H, Li L, Wei J, Chen T, Wei P. Salt-Adaptively Conductive Ionogel Sensor for Marine Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305848. [PMID: 37670215 DOI: 10.1002/smll.202305848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/22/2023] [Indexed: 09/07/2023]
Abstract
Hydrophobic ionogel has attracted much attention in underwater sensing as the artificial electronic skins and wearable sensors. However, when the low conductive ionogel-based sensor works in the marine environment, the salty seawater weakens its sensing performance, which is difficult to recognize. Herein, a salt-adaptively conductive ionogel with high submarine strain sensitivity is reported. Based on the preliminary improvement via the proton conduction mechanism, the conductivity of the ionogel further increases with the surrounding salinity rising up since the salt-induced dissociation phenomenon, which is described as the environmental salt-adaptive feature. In seawater, the conductivity of the ionogel is as high as 2.90 × 10-1 S m-1 . Significantly, with its long-term underwater stability and adhesion, the resultant ionogel-based sensor features prominent strain sensing performance (gauge factor: 1.12) while combining with various soft actuators in the marine environment. The ionogel-based sensor is capable of monitoring human breath frequency, human actions, and the locomotion of soft actuators, demonstrating its great potential in diving detection and intelligent preceptive soft robotics for marine environmental protection and exploration.
Collapse
Affiliation(s)
- Huijing Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Long Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Junjie Wei
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Peng Wei
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, 315010, China
| |
Collapse
|
24
|
Fang K, Wan Y, Wei J, Chen T. Hydrogel-Based Sensors for Human-Machine Interaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16975-16985. [PMID: 37994525 DOI: 10.1021/acs.langmuir.3c02444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
In the past decades, remarkable progress has been made in the field of human-machine interaction. The need for accurate sensing devices with satisfactory user experiences has propelled the development of flexible, stretchable, biocompatible, and imperceptible hydrogel-based interfaces. These innovative interfaces facilitate direct interactions between humans and machines while receiving detected input signals from sensors and giving output commands to controllers, thus motivating accurate real-time responsiveness. This Perspective discusses the sensing mechanisms for the two categories of hydrogel-based sensors and summarizes the recent progress in the development of different representations of human-machine interactions, including intelligent identification, information secrecy, interactive control, and virtual reality and augmented reality technologies. The advantages of hydrogel-based systems over conventionally used rigid electrical components are explicitly discussed. The conclusion provides a perspective on current challenges and outlines a future roadmap for the realization of state-of-the-art hydrogel-based smart systems.
Collapse
Affiliation(s)
- Kecheng Fang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yan Wan
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Junjie Wei
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| |
Collapse
|
25
|
Hu F, Huang Z, Luo C, Yue K. High-sensitivity and ultralow-hysteresis fluorine-rich ionogel strain sensors for multi-environment contact and contactless sensing. MATERIALS HORIZONS 2023; 10:5907-5919. [PMID: 37870851 DOI: 10.1039/d3mh01138k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Information transduction via soft strain sensors under harsh conditions such as marine, oily liquid, vacuum, and extreme temperatures without excess encapsulation facilitates modern scientific and military exploration. However, most reported soft strain sensors struggle to meet these requirements, especially in complex environments. Herein, a class of fluorine-rich ionogels with tunable ultimate strain, high conductivity, and multi-environment tolerance are designed. Abundant ion-dipole and dipole-dipole interactions lead to excellent miscibility between the hydrophobic ionic liquid and the fluorinated polyacrylate matrix, as well as adhesion to diverse substrates in amphibious environments. The ionogel-based sensors, even in encapsulation-free form, exhibit stable operation with a negligible hysteresis (as low as 0.119%) and high sensitivity (gauge factor of up to 6.54) under amphibious conditions. Multi-environment sensing instances in contact and even contactless forms are also demonstrated. This study opens the door for the artificial syntheses of multi-environment tolerance ionic skins with robust sensing applications in soft electronics and robotics.
Collapse
Affiliation(s)
- Faqi Hu
- South China Advanced Institute for Soft Matter Science and Technology and School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
| | - Zhenkai Huang
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Chuan Luo
- South China Advanced Institute for Soft Matter Science and Technology and School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
| | - Kan Yue
- South China Advanced Institute for Soft Matter Science and Technology and School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
- Jiangsu Key Laboratory of Advanced Functional Polymers Design and Application, Soochow University, Suzhou 215000, China
| |
Collapse
|