1
|
Liu X, Sun C, Ye X, Zhu X, Hu C, Tan H, He S, Shao M, Li RW. Neuromorphic Nanoionics for Human-Machine Interaction: From Materials to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311472. [PMID: 38421081 DOI: 10.1002/adma.202311472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Human-machine interaction (HMI) technology has undergone significant advancements in recent years, enabling seamless communication between humans and machines. Its expansion has extended into various emerging domains, including human healthcare, machine perception, and biointerfaces, thereby magnifying the demand for advanced intelligent technologies. Neuromorphic computing, a paradigm rooted in nanoionic devices that emulate the operations and architecture of the human brain, has emerged as a powerful tool for highly efficient information processing. This paper delivers a comprehensive review of recent developments in nanoionic device-based neuromorphic computing technologies and their pivotal role in shaping the next-generation of HMI. Through a detailed examination of fundamental mechanisms and behaviors, the paper explores the ability of nanoionic memristors and ion-gated transistors to emulate the intricate functions of neurons and synapses. Crucial performance metrics, such as reliability, energy efficiency, flexibility, and biocompatibility, are rigorously evaluated. Potential applications, challenges, and opportunities of using the neuromorphic computing technologies in emerging HMI technologies, are discussed and outlooked, shedding light on the fusion of humans with machines.
Collapse
Affiliation(s)
- Xuerong Liu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaoyu Ye
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaojian Zhu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Cong Hu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Hongwei Tan
- Department of Applied Physics, Aalto University, Aalto, FI-00076, Finland
| | - Shang He
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Mengjie Shao
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
2
|
Xu J, Luo Z, Chen L, Zhou X, Zhang H, Zheng Y, Wei L. Recent advances in flexible memristors for advanced computing and sensing. MATERIALS HORIZONS 2024; 11:4015-4036. [PMID: 38919028 DOI: 10.1039/d4mh00291a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Conventional computing systems based on von Neumann architecture face challenges such as high power consumption and limited data processing capability. Improving device performance via scaling guided by Moore's Law becomes increasingly difficult. Emerging memristors can provide a promising solution for achieving high-performance computing systems with low power consumption. In particular, the development of flexible memristors is an important topic for wearable electronics, which can lead to intelligent systems in daily life with high computing capacity and efficiency. Here, recent advances in flexible memristors are reviewed, from operating mechanisms and typical materials to representative applications. Potential directions and challenges for future study in this area are also discussed.
Collapse
Affiliation(s)
- Jiaming Xu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore.
| | - Ziwang Luo
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore.
| | - Long Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore.
| | - Xuhui Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore.
| | - Haozhe Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore.
| | - Yuanjin Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore.
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore.
| |
Collapse
|
3
|
Ren S, Wang K, Jia X, Wang J, Xu J, Yang B, Tian Z, Xia R, Yu D, Jia Y, Yan X. Fibrous MXene Synapse-Based Biomimetic Tactile Nervous System for Multimodal Perception and Memory. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400165. [PMID: 38329189 DOI: 10.1002/smll.202400165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/19/2024] [Indexed: 02/09/2024]
Abstract
Biomimetic tactile nervous system (BTNS) inspired by organisms has motivated extensive attention in wearable fields due to its biological similarity, low power consumption, and perception-memory integration. Though many works about planar-shape BTNS are developed, few researches could be found in the field of fibrous BTNS (FBTNS) which is superior in terms of strong flexibility, weavability, and high-density integration. Herein, a FBTNS with multimodal sensibility and memory is proposed, by fusing the fibrous poly lactic acid (PLA)/Ag/MXene/Pt artificial synapse and MXene/EMIMBF4 ionic conductive elastomer. The proposed FBTNS can successfully perceive external stimuli and generate synaptic responses. It also exhibits a short response time (23 ms) and low set power consumption (17 nW). Additionally, the proposed device demonstrates outstanding synaptic plasticity under both mechanical and electrical stimuli, which can simulate the memory function. Simultaneously, the fibrous devices are embedded into textiles to construct tactile arrays, by which biomimetic tactile perception and temporary memory functions are successfully implemented. This work demonstrates the as-prepared FBTNS can generate biomimetic synaptic signals to serve as artificial feeling signals, it is thought that it could offer a fabric electronic unit integrating with perception and memory for Human-Computer interaction, and has great potential to build lightweight and comfortable Brain-Computer interfaces.
Collapse
Affiliation(s)
- Shuhui Ren
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Kaiyang Wang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaotong Jia
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Jiuyang Wang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Jikang Xu
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding, 071002, P. R. China
| | - Biao Yang
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding, 071002, P. R. China
| | - Ziwei Tian
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Ruoxuan Xia
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Ding Yu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Yunfang Jia
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaobing Yan
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding, 071002, P. R. China
| |
Collapse
|
4
|
Liu X, Fan Z, Zheng Y, Zha J, Zhang Y, Zhu S, Zhang Z, Zhang X, Huang F, Liang T, Li C, Wang Q, Tan C. Controlled Synthesis of Lead-Free Double Perovskite Colloidal Nanocrystals for Nonvolatile Resistive Memory Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55991-56002. [PMID: 37987746 DOI: 10.1021/acsami.3c12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Although lead-free double perovskites such as Cs2AgBiBr6 have been widely explored, they still remain a daunting challenge for the controlled synthesis of lead-free double perovskite nanocrystals with highly tunable morphology and band structure. Here, we report the controlled synthesis of lead-free double perovskite colloidal nanocrystals including Cs2AgBiBr6 and Cs2AgInxBi1-xBr6 via a facile wet-chemical synthesis method for the fabrication of high-performance nonvolatile resistive memory devices. Cs2AgBiBr6 colloidal nanocrystals with well-defined cuboidal, hexagonal, and triangular morphologies are synthesized through a facile wet-chemical approach by tuning the reaction temperature from 150 to 190 °C. Further incorporating indium into Cs2AgBiBr6 to synthesize alloyed Cs2AgInxBi1-xBr6 nanocrystals not only can induce the indirect-to-direct bandgap transition with enhanced photoluminescence but also can improve its structural stability. After optimizing the active layers and device structure, the fabricated Ag/polymethylene acrylate@Cs2AgIn0.25Bi0.75Br6/ITO resistive memory device exhibits a low power consumption (the operating voltage is ∼0.17 V), excellent cycling stability (>10 000 cycles), and good synaptic property. Our study would enable the facile wet-chemical synthesis of lead-free double perovskite colloidal nanocrystals in a highly controllable manner for the development of high-performance resistive memory devices.
Collapse
Affiliation(s)
- Xingyu Liu
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhen Fan
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Yuhui Zheng
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, P. R. China
| | - Jiajia Zha
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - Yong Zhang
- Institute of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P. R. China
| | - Siyuan Zhu
- Institute of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P. R. China
| | - Zhang Zhang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Xuyan Zhang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Fei Huang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, P. R. China
| | - Tong Liang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, P. R. China
| | - Chunxia Li
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, P. R. China
| | - Qianming Wang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, P. R. China
| | - Chaoliang Tan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
5
|
Ding G, Zhao J, Zhou K, Zheng Q, Han ST, Peng X, Zhou Y. Porous crystalline materials for memories and neuromorphic computing systems. Chem Soc Rev 2023; 52:7071-7136. [PMID: 37755573 DOI: 10.1039/d3cs00259d] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Porous crystalline materials usually include metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs) and zeolites, which exhibit exceptional porosity and structural/composition designability, promoting the increasing attention in memory and neuromorphic computing systems in the last decade. From both the perspective of materials and devices, it is crucial to provide a comprehensive and timely summary of the applications of porous crystalline materials in memory and neuromorphic computing systems to guide future research endeavors. Moreover, the utilization of porous crystalline materials in electronics necessitates a shift from powder synthesis to high-quality film preparation to ensure high device performance. This review highlights the strategies for preparing porous crystalline materials films and discusses their advancements in memory and neuromorphic electronics. It also provides a detailed comparative analysis and presents the existing challenges and future research directions, which can attract the experts from various fields (e.g., materials scientists, chemists, and engineers) with the aim of promoting the applications of porous crystalline materials in memory and neuromorphic computing systems.
Collapse
Affiliation(s)
- Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Qi Zheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|