1
|
Chen J, Zhou X, Liu X, Zheng H, Wang Y, Zhou Y. Aqueous PEIE Soaking on ZnO for Ultraviolet Light Activation-Free Organic Photovoltaic Modules. SMALL METHODS 2024:e2400345. [PMID: 38966877 DOI: 10.1002/smtd.202400345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/15/2024] [Indexed: 07/06/2024]
Abstract
Ultraviolet (UV) light is typically needed to activate inverted organic photovoltaics (OPVs) with zinc oxide (ZnO) as electron transporting layer (ETL) for higher efficiency. However, UV light is a major cause for the degradation of organic active layers in OPVs. This is a contradiction that UV light activation enhances the efficiency but UV illumination deteriorates the stability. It is important to solve this contradiction to develop UV light activation-free OPV devices. Herein, a method of aqueous polyethylenimine ethoxylated (PEIE) soaking on ZnO is reported to realize UV light activation-free OPV devices. The S-shape in current density-voltage (J-V) characteristics of devices tested without UV light activation is eliminated through the treatment of aqueous PEIE soaking on ZnO. The treatment reduces the oxygen adsorbates, which is confirmed by Kelvin probe and X-ray photoelectron spectroscopy. A 10.08 cm2 organic photovoltaic module with the treated ZnO as ETL showed high photovoltaic performance: VOC = 5.68 V, JSC = 2.7 mA cm-2, FF = 75.1%, and POutput = 11.5 mW cm-2 tested with the UV filter (light intensity of 0.788 sun). UV light activation is not needed for the modules to obtain high efficiency.
Collapse
Affiliation(s)
- Jianping Chen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xianmin Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xinlu Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Zheng
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuanyuan Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
2
|
Tran HN, Park CB, Lee JH, Seo JH, Kim JY, Oh SH, Cho S. γ-Ray Irradiation Enables Annealing- and Light-Soaking-Free Solution Processable SnO 2 Electron Transport Layer for Inverted Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307441. [PMID: 38054784 DOI: 10.1002/smll.202307441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/13/2023] [Indexed: 12/07/2023]
Abstract
The electrode buffer layer is crucial for high-performance and stable OSCs, optimizing charge transport and energy level alignment at the interface between the polymer active layer and electrode. Recently, SnO2 has emerged as a promising material for the cathode buffer layer due to its desirable properties, such as high electron mobility, transparency, and stability. Typically, SnO2 nanoparticle layers require a postannealing treatment above 150°C in an air environment to remove the surfactant ligands and obtain high-quality thin films. However, this poses challenges for flexible electronics as flexible substrates can't tolerate temperatures exceeding 100°C. This study presents solution-processable and annealing-free SnO2 nanoparticles by employing y-ray irradiation to disrupt the bonding between surfactant ligands and SnO2 nanoparticles. The SnO2 layer treated with y-ray irradiation is used as an electron transport layer in OSCs based on PTB7-Th:IEICO-4F. Compared to the conventional SnO2 nanoparticles that required high-temperature annealing, the y-SnO2 nanoparticle-based devices exhibit an 11% comparable efficiency without postannealing at a high temperature. Additionally, y-ray treatment has been observed to eliminate the light-soaking effect of SnO2. By eliminating the high-temperature postannealing and light-soaking effect, y-SnO2 nanoparticles offer a promising, cost-effective solution for future flexible solar cells fabricated using roll-to-roll mass processing.
Collapse
Affiliation(s)
- Hong Nhan Tran
- Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Chan Beom Park
- Department of Energy Engineering and School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jin Hee Lee
- Department of Physics, University of Seoul, Seoul, 02504, Republic of Korea
| | - Jung Hwa Seo
- Department of Physics, University of Seoul, Seoul, 02504, Republic of Korea
| | - Jin Young Kim
- Department of Energy Engineering and School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seung-Hwan Oh
- Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute (KAERI), Jeollabuk-do, 56212, Republic of Korea
| | - Shinuk Cho
- Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan, 44610, Republic of Korea
| |
Collapse
|
3
|
Li H, Tan J, Yang S, Sun Y, Yu H. p-Toluenesulfonic Acid Modified Two-Dimensional ZrSe 2 as a Hole Transport Layer for High-Performance Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38624163 DOI: 10.1021/acsami.4c00928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Two-dimensional (2D) materials have attracted attention due to their excellent optoelectronic properties, but their applications are limited by their defects and vacancies. Surface modification is an effective method to restore their performance. Here, ZrSe2 is modified with conductive polymer p-toluenesulfonic acid (PTSA). It is found that PTSA can obtain electrons of ZrSe2 through the combination of -SO3H and ZrSe2, thus forming interfacial dipoles, which improve the work function of ZrSe2. In addition, -OH in PTSA can effectively fill the Se vacancy in ZrSe2 to form P-type doping, thereby improving its conductivity. ZrSe2 modified by the PTSA material is first used as a hole transport layer (HTL) in organic solar cells (OSCs). The efficiency of OSCs based on the PBDB-T:ITIC and PM6:L8-BO binary active layer with ZrSe2:PTSA as the novel HTL reaches 10.66 and 18.14%, which are obviously higher than the efficiency of OSCs with pure ZrSe2 as the HTL (8.48 and 15.64%). More interestingly, the stability of the device with ZrSe2:PTSA as HTL is significantly better than that of PEDOT:PSS. This study shows that the modification of the organic material can effectively improve the photoelectric performance of ZrSe2 and explores the physical mechanism of the interaction between the organic modifier and 2D materials.
Collapse
Affiliation(s)
- Hongye Li
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| | - Jingyu Tan
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| | - Song Yang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| | - Yapeng Sun
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| | - Huangzhong Yu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
4
|
Ahmadpour M, Ahmad M, Prete M, Hansen JL, Miakota DI, Greenbank W, Zheng YJ, Top M, Ebel T, Rubahn HG, Turkovic V, Canulescu S, Witkowski N, Madsen M. Tuning Surface Defect States in Sputtered Titanium Oxide Electron Transport Layers for Enhanced Stability of Organic Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16580-16588. [PMID: 38529895 DOI: 10.1021/acsami.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Nonfullerene acceptors (NFAs) have dramatically improved the power conversion efficiency (PCE) of organic photovoltaics (OPV) in recent years; however, their device stability currently remains a bottleneck for further technological progress. Photocatalytic decomposition of nonfullerene acceptor molecules at metal oxide electron transport layer (ETL) interfaces has in several recent reports been demonstrated as one of the main degradation mechanisms for these high-performing OPV devices. While some routes for mitigating such degradation effects have been proposed, e.g., through a second layer integrated on the ETL surface, no clear strategy that complies with device scale-up and application requirements has been presented to date. In this work, it is demonstrated that the development of sputtered titanium oxide layers as ETLs in nonfullerene acceptor based OPV can lead to significantly enhanced device lifetimes. This is achieved by tuning the concentration of defect states at the oxide surface, via the reactive sputtering process, to mitigate the photocatalytic decomposition of NFA molecules at the metal oxide interlayers. Reduced defect state formation at the oxide surface is confirmed through X-ray photoelectron spectroscopy (XPS) studies, while the reduced photocatalytic decomposition of nonfullerene acceptor molecules is confirmed via optical spectroscopy investigations. The PBDB-T:ITIC organic solar cells show power conversion efficiencies of around 10% and significantly enhanced photostability. This is achieved through a reactive sputtering process that is fully scalable and industry compatible.
Collapse
Affiliation(s)
- Mehrad Ahmadpour
- Mads Clausen Institute, Center for Advanced Photovoltaics and Thin Film Energy Devices (SDU CAPE), University of Southern Denmark, So̷nderborg 6400, Denmark
- SDU Climate Cluster, University of Southern Denmark, Odense 5230, Denmark
| | - Mariam Ahmad
- Mads Clausen Institute, Center for Advanced Photovoltaics and Thin Film Energy Devices (SDU CAPE), University of Southern Denmark, So̷nderborg 6400, Denmark
- SDU Climate Cluster, University of Southern Denmark, Odense 5230, Denmark
| | - Michela Prete
- Mads Clausen Institute, Center for Advanced Photovoltaics and Thin Film Energy Devices (SDU CAPE), University of Southern Denmark, So̷nderborg 6400, Denmark
- SDU Climate Cluster, University of Southern Denmark, Odense 5230, Denmark
| | - John Lundsgaard Hansen
- Department of Physics and Astronomy/Interdisciplinary Nanoscience Center (iNano), Aarhus University, Ny Munkegade 120, Aarhus C DK-8000, Denmark
| | - Denys I Miakota
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Frederiksborgvej 399, Roskilde DK-4000, Denmark
| | - William Greenbank
- Centre for Industrial Electronics, Department of Mechanical and Electrical Engineering, University of Southern Denmark, Alsion 2, So̷nderborg DK-6400, Denmark
| | - Yunlin Jacques Zheng
- UMR CNRS 7588, Institut des Nanosciences de Paris, Sorbonne Université, Paris F-75005, France
| | - Michiel Top
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Winterbergstrasse 28, Dresden 01277, Germany
| | - Thomas Ebel
- Centre for Industrial Electronics, Department of Mechanical and Electrical Engineering, University of Southern Denmark, Alsion 2, So̷nderborg DK-6400, Denmark
| | - Horst-Günter Rubahn
- University of Southern Denmark, SDU NanoSYD, Mads Clausen Institute, So̷nderborg 6400, Denmark
| | - Vida Turkovic
- Mads Clausen Institute, Center for Advanced Photovoltaics and Thin Film Energy Devices (SDU CAPE), University of Southern Denmark, So̷nderborg 6400, Denmark
- SDU Climate Cluster, University of Southern Denmark, Odense 5230, Denmark
| | - Stela Canulescu
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Frederiksborgvej 399, Roskilde DK-4000, Denmark
| | - Nadine Witkowski
- UMR CNRS 7588, Institut des Nanosciences de Paris, Sorbonne Université, Paris F-75005, France
| | - Morten Madsen
- Mads Clausen Institute, Center for Advanced Photovoltaics and Thin Film Energy Devices (SDU CAPE), University of Southern Denmark, So̷nderborg 6400, Denmark
- SDU Climate Cluster, University of Southern Denmark, Odense 5230, Denmark
| |
Collapse
|
5
|
Xiong Z, Wu L, Zhou X, Yang S, Liu Z, Liu W, Zhao J, Li W, Yu C, Yao K. Constructing tin oxides Interfacial Layer with Gradient Compositions for Efficient Perovskite/Silicon Tandem Solar Cells with Efficiency Exceeding 28. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308024. [PMID: 37992243 DOI: 10.1002/smll.202308024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Indexed: 11/24/2023]
Abstract
Atomic layer deposition (ALD) growth of conformal thin SnOx films on perovskite absorbers offers a promising method to improve carrier-selective contacts, enable sputter processing, and prevent humidity ingress toward high-performance tandem perovskite solar cells. However, the interaction between perovskite materials and reactive ALD precursor limits the process parameters of ALD-SnOx film and requires an additional fullerene layer. Here, it demonstrates that reducing the water dose to deposit SnOx can reduce the degradation effect upon the perovskite underlayer while increasing the water dose to promote the oxidization can improve the electrical properties. Accordingly, a SnOx buffer layer with a gradient composition structure is designed, in which the compositionally varying are achieved by gradually increasing the oxygen source during the vapor deposition from the bottom to the top layer. In addition, the gradient SnOx structure with favorable energy funnels significantly enhances carrier extraction, further minimizing its dependence on the fullerene layer. Its broad applicability for different perovskite compositions and various textured morphology is demonstrated. Notably, the design boosts the efficiencies of perovskite/silicon tandem cells (1.0 cm2) on industrially textured Czochralski (CZ) silicon to a certified efficiency of 28.0%.
Collapse
Affiliation(s)
- Zhijun Xiong
- Institute of Photovoltaics, School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
| | - Long Wu
- Institute of Photovoltaics, School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
| | - Xiaoheng Zhou
- Institute of Photovoltaics, School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
| | - Shaofei Yang
- Suzhou Maxwell Technologies Co., Ltd., Suzhou, 215200, China
| | - Zhiliang Liu
- Institute of Photovoltaics, School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
- Suzhou Maxwell Technologies Co., Ltd., Suzhou, 215200, China
| | - Wentao Liu
- Institute of Photovoltaics, School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
| | - Jie Zhao
- Institute of Photovoltaics, School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
| | - Wei Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Cao Yu
- Suzhou Maxwell Technologies Co., Ltd., Suzhou, 215200, China
| | - Kai Yao
- Institute of Photovoltaics, School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
6
|
Ahmad M, Cruguel H, Ahmadpour M, Vannucchi N, Samie NM, Leuillet C, Generalov A, Li Z, Madsen M, Witkowski N. Uncovering the Electronic State Interplay at Metal Oxide Electron Transport Layer/Nonfullerene Acceptor Interfaces in Stable Organic Photovoltaic Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55065-55072. [PMID: 37972316 DOI: 10.1021/acsami.3c11103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The implementation of sputter-deposited TiOx as an electron transport layer in nonfullerene acceptor-based organic photovoltaics has been shown to significantly increase the long-term stability of devices compared to conventional solution-processed ZnO due to a decreased photocatalytic activity of the sputtered TiOx. In this work, we utilize synchrotron-based photoemission and absorption spectroscopies to investigate the interface between the electron transport layer, TiOx prepared by magnetron sputtering, and the nonfullerene acceptor, ITIC, prepared in situ by spray deposition to study the electronic state interplay and defect states at this interface. This is used to unveil the mechanisms behind the decreased photocatalytic activity of the sputter-deposited TiOx and thus also the increased stability of the organic solar cell devices. The results have been compared to similar measurements on anatase TiOx since anatase TiOx is known to have a strong photocatalytic activity. We show that the deposition of ITIC on top of the sputter-deposited TiOx results in an oxidation of Ti3+ species in the TiOx and leads to the emergence of a new O 1s peak that can be attributed to the oxygen in ITIC. In addition, increasing the thickness of ITIC on TiOx leads to a shift in the O 1s and C 1s core levels toward higher binding energies, which is consistent with electron transfer at the interface. Resonant photoemission at the Ti L-edge shows that oxygen vacancies in sputtered TiOx lie mostly in the surface region, which contrasts the anatase TiOx where an equal distribution between surface and subsurface oxygen vacancies is observed. Furthermore, it is shown that the subsurface oxygen vacancies in sputtered TiOx are strongly reduced after ITIC deposition, which can reduce the photocatalytic activity of the oxide, while the oxygen vacancies in model anatase TiOx are not affected upon ITIC deposition. This difference can explain the inferior photocatalytic activity of the sputter-deposited TiOx and thus also the increased stability of devices with sputter-deposited TiOx used as an electron transport layer.
Collapse
Affiliation(s)
- Mariam Ahmad
- SDU Centre for Advanced Photovoltaics and Thin-Film Energy Devices (SDU CAPE), Mads Clausen Institute, University of Southern Denmark, Alsion 2, So̷nderborg DK-6400, Denmark
- SDU Climate Cluster, University of Southern Denmark, Odense 5230, Denmark
| | - Hervé Cruguel
- UMR CNRS 7588, Institut des Nanosciences de Paris, Sorbonne Université, Paris F-75005, France
| | - Mehrad Ahmadpour
- SDU Centre for Advanced Photovoltaics and Thin-Film Energy Devices (SDU CAPE), Mads Clausen Institute, University of Southern Denmark, Alsion 2, So̷nderborg DK-6400, Denmark
| | - Noemi Vannucchi
- UMR CNRS 7588, Institut des Nanosciences de Paris, Sorbonne Université, Paris F-75005, France
- Division of X-ray Photon Science, Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala 752 36,Sweden
| | - Nahed Mohammad Samie
- UMR CNRS 7588, Institut des Nanosciences de Paris, Sorbonne Université, Paris F-75005, France
| | - Céline Leuillet
- UMR CNRS 7588, Institut des Nanosciences de Paris, Sorbonne Université, Paris F-75005, France
| | | | - Zheshen Li
- ISA, Centre for Storage Ring Facilities, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Bldg. 1520, Aarhus C DK-8000, Denmark
| | - Morten Madsen
- SDU Centre for Advanced Photovoltaics and Thin-Film Energy Devices (SDU CAPE), Mads Clausen Institute, University of Southern Denmark, Alsion 2, So̷nderborg DK-6400, Denmark
- SDU Climate Cluster, University of Southern Denmark, Odense 5230, Denmark
| | - Nadine Witkowski
- UMR CNRS 7588, Institut des Nanosciences de Paris, Sorbonne Université, Paris F-75005, France
| |
Collapse
|