1
|
Wang Z, Su Q, Deng W, Wang X, Zhou H, Zhang M, Lin W, Xiao J, Duan X. Morphology-Mediated Tumor Deep Penetration for Enhanced Near Infrared II Photothermal and Chemotherapy of Colorectal Cancer. ACS NANO 2024; 18:28038-28051. [PMID: 39363419 DOI: 10.1021/acsnano.4c07085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The low permeability and heterogeneous distribution of drugs (including nanomedicines) have limited their deep penetration into solid tumors. Herein we report the design of gold nanoparticles with virus-like spikes (AuNVs) to mimic viral shapes and facilitate tumor penetration. Mechanistic studies revealed that AuNVs mainly entered cells through macropinocytosis, then transported to the Golgi/endoplasmic reticulum system via Rab11-regulated pathway, and finally exocytosed through recycling endosomes, leading to high cellular uptake, effective transcytosis, and deep tumor penetration compared to gold nanospheres (AuNPs) and gold nanostars (AuNSs). The high tumor accumulation and deep tumor penetration of mitoxantrone (MTO) facilitated by AuNVs endowed effective chemophotothermal therapy when exposed to a near-infrared II laser, significantly reducing tumor sizes in a mouse model of colorectal cancer. This study reveals a potent mechanism of viral-like structures in tissue penetration and highlights their potential as effective drug delivery carriers.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research, Center for Cardiovascular Disease, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Qianyi Su
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenjia Deng
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiao Wang
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huimin Zhou
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Miaomiao Zhang
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenbin Lin
- Departments of Chemistry and Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jisheng Xiao
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research, Center for Cardiovascular Disease, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaopin Duan
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
2
|
Huang Y, Yu Z, Peng J, Yu Q, Xu H, Yang M, Yuan S, Zhang Q, Yang Y, Gao J, Yuan Y. Amino-Acid-Encoded Supramolecular Nanostructures for Persistent Bioluminescence Imaging of Tumor. Adv Healthc Mater 2024; 13:e2401244. [PMID: 38934340 DOI: 10.1002/adhm.202401244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Indexed: 06/28/2024]
Abstract
Bioluminescence imaging (BLI) is a powerful technique for noninvasive monitoring of biological processes and cell transplantation. Nonetheless, the application of D-luciferin, which is widely employed as a bioluminescent probe, is restricted in long-term in vivo tracking due to its short half-life. This study presents a novel approach using amino acid-encoded building blocks to accumulate and preserve luciferin within tumor cells, through a supramolecular self-assembly strategy. The building block platform called Cys(SEt)-X-CBT (CXCBT, with X representing any amino acid) utilizes a covalent-noncovalent hybrid self-assembly mechanism to generate diverse luciferin-containing nanostructures in tumor cells after glutathione reduction. These nanostructures exhibit efficient tumor-targeted delivery as well as sequence-dependent well-designed morphologies and prolonged bioluminescence performance. Among the selected amino acids (X = Glu, Lys, Leu, Phe), Cys(SEt)-Lys-CBT (CKCBT) exhibits the superior long-lasting bioluminescence signal (up to 72 h) and good biocompatibility. This study demonstrates the potential of amino-acid-encoded supramolecular self-assembly as a convenient and effective method for developing BLI probes for long-term biological tracking and disease imaging.
Collapse
Affiliation(s)
- Yifan Huang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zian Yu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiancheng Peng
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qin Yu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hao Xu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Miaomiao Yang
- Clinical Pathology Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Sijie Yuan
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qianzijing Zhang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yanyun Yang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jin Gao
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Hefei Ion Medical Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230088, China
| | - Yue Yuan
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei Ion Medical Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230088, China
| |
Collapse
|
3
|
Li Y, Liu J, Weichselbaum RR, Lin W. Mitochondria-Targeted Multifunctional Nanoparticles Combine Cuproptosis and Programmed Cell Death-1 Downregulation for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403520. [PMID: 39013093 PMCID: PMC11425249 DOI: 10.1002/advs.202403520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/02/2024] [Indexed: 07/18/2024]
Abstract
The combination of cuproptosis and immune checkpoint inhibition has shown promise in treating malignant tumors. However, it remains a challenge to deliver copper ions and immune checkpoint inhibitors efficiently and simultaneously to tumors. Herein, a mitochondria-targeted nanoscale coordination polymer particle, Cu/TI, comprising Cu(II), and a triphenylphosphonium conjugate of 5-carboxy-8-hydroxyquinoline (TI), for effective cuproptosis induction and programmed cell death-1 (PD-L1) downregulation is reported. Upon systemic administration, Cu/TI efficiently accumulates in tumor tissues to induce immunogenic cancer cell death and reduce PD-L1 expression. Consequently, Cu/TI promotes the intratumoral infiltration and activation of cytotoxic T lymphocytes to greatly inhibit tumor progression of colorectal carcinoma and triple-negative breast cancer in mouse models without causing obvious side effects.
Collapse
Affiliation(s)
- Youyou Li
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Jing Liu
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, IL, 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, IL, 60637, USA
| | - Wenbin Lin
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, IL, 60637, USA
| |
Collapse
|
4
|
Jin S, Ahn Y, Park J, Park M, Lee S, Lee WJ, Seo D. Temporal Patterns of Angular Displacement of Endosomes: Insights into Motor Protein Exchange Dynamics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306849. [PMID: 38828676 PMCID: PMC11304332 DOI: 10.1002/advs.202306849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/24/2024] [Indexed: 06/05/2024]
Abstract
The material transport system, facilitated by motor proteins, plays a vital role in maintaining a non-equilibrium cellular state. However, understanding the temporal coordination of motor protein activity requires an advanced imaging technique capable of measuring 3D angular displacement in real-time. In this study, a Fourier transform-based plasmonic dark-field microscope has been developed using anisotropic nanoparticles, enabling the prolonged and simultaneous observation of endosomal lateral and rotational motion. A sequence of discontinuous 3D angular displacements has been observed during the pause and run phases of transport. Notably, a serially correlated temporal pattern in the intermittent rotational events has been demonstrated during the tug-of-war mechanism, indicating Markovian switching between the exploitational and explorational modes of motor protein exchange prior to resuming movement. Alterations in transition frequency and the exploitation-to-exploration ratio upon dynein inhibitor treatment highlight the relationship between disrupted motor coordination and reduced endosomal transport efficiency. Collectively, these results suggest the importance of orchestrated temporal motor protein patterns for efficient cellular transport.
Collapse
Affiliation(s)
- Siwoo Jin
- Department of Physics and ChemistryDGISTDaegu42988Republic of Korea
| | - Yongdeok Ahn
- Department of Physics and ChemistryDGISTDaegu42988Republic of Korea
| | - Jiseong Park
- Department of Physics and ChemistryDGISTDaegu42988Republic of Korea
| | - Minsoo Park
- Department of Physics and ChemistryDGISTDaegu42988Republic of Korea
| | - Sang‐Chul Lee
- Division of Nanotechnology, and Department of DGISTDaegu42988Republic of Korea
| | - Wonhee J. Lee
- Department of Physics and ChemistryDGISTDaegu42988Republic of Korea
| | - Daeha Seo
- Department of Physics and ChemistryDGISTDaegu42988Republic of Korea
| |
Collapse
|
5
|
Tian Y, Cheng T, Sun F, Zhou Y, Yuan C, Guo Z, Wang Z. Effect of biophysical properties of tumor extracellular matrix on intratumoral fate of nanoparticles: Implications on the design of nanomedicine. Adv Colloid Interface Sci 2024; 326:103124. [PMID: 38461766 DOI: 10.1016/j.cis.2024.103124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/11/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Nanomedicine has a profound impact on various research domains including drug delivery, diagnostics, theranostics, and regenerative medicine. Nevertheless, the clinical translation of nanomedicines for solid cancer remains limited due to the abundant physiological and pathological barriers in tumor that hinder the intratumoral penetration and distribution of these nanomedicines. In this article, we review the dynamic remodeling of tumor extracellular matrix during the tumor progression, discuss the impact of biophysical obstacles within tumors on the penetration and distribution of nanomedicines within the solid tumor and collect innovative approaches to surmount these obstacles for improving the penetration and accumulation of nanomedicines in tumor. Furthermore, we dissect the challenges and opportunities of the respective approaches, and propose potential avenues for future investigations. The purpose of this review is to provide a perspective guideline on how to effectively enhance the penetration of nanomedicines within tumors using promising methods.
Collapse
Affiliation(s)
- Yachao Tian
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Guoru Biotechnology Co., Ltd., Xiangfang District, Harbin City 150030, China; School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yaxin Zhou
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chao Yuan
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
6
|
Zhao P, Song S, He Z, Dai G, Liu D, Shen J, Asakawa T, Zheng M, Lu H. Development of a novel cholesterol tag-based system for trans-membrane transport of protein drugs. Biosci Trends 2024; 17:503-507. [PMID: 38072446 DOI: 10.5582/bst.2023.01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The main technological difficulties of developing an intracellular (transmembrane) transport system for protein drugs lie in two points: i) overcoming the barriers in the cellular membrane, and ii) loading enough protein drugs, and particularly high-dose proteins, into particles. To address these two technological problems, we recently developed a novel cholesterol tag (C-Tag)-based transmembrane transport system. This pilot study found that the C-Tag dramatically improved the cellular uptake of Fab (902-fold, vs. Fab alone) into living cells, indicating that it successfully achieved transmembrane transport. Moreover, C-Tag-mediated membrane transport was verified using micron-scale large unilamellar vesicles (LUVs, approximately 1.5 μm)-based particles. The C-Tagged Fab was able to permeate the liposomal bilayer and it greatly enhanced (a 10.1-fold increase vs. Fab alone) internalization of proteins into the LUV-based particles, indicating that the C-Tag loaded enough proteins into particles for use of high-dose proteins. Accordingly, we established a novel C-Tag-based transport system that has overcome the known technological difficulties of protein transmembrane delivery, and this might be a useful technology for drug development in the future.
Collapse
Affiliation(s)
- Pengfei Zhao
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- National Clinical Research Center for Infectious Disease, Shenzhen Clinical Medical Research Center for Tuberculosis, Institute for Hepatology, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - Shuo Song
- Shenzhen Samii Medical Center, Shenzhen, Guangdong, China
| | - Zhuojun He
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, Guangdong, China
- National Clinical Research Center for Infectious Disease, Shenzhen Clinical Medical Research Center for Tuberculosis, Institute for Hepatology, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Guiqin Dai
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- National Clinical Research Center for Infectious Disease, Shenzhen Clinical Medical Research Center for Tuberculosis, Institute for Hepatology, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Deliang Liu
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- National Clinical Research Center for Infectious Disease, Shenzhen Clinical Medical Research Center for Tuberculosis, Institute for Hepatology, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Jiayin Shen
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- National Clinical Research Center for Infectious Disease, Shenzhen Clinical Medical Research Center for Tuberculosis, Institute for Hepatology, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Tetsuya Asakawa
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Mingbin Zheng
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, Guangdong, China
- National Clinical Research Center for Infectious Disease, Shenzhen Clinical Medical Research Center for Tuberculosis, Institute for Hepatology, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Shenzhen Samii Medical Center, Shenzhen, Guangdong, China
| | - Hongzhou Lu
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- National Clinical Research Center for Infectious Disease, Shenzhen Clinical Medical Research Center for Tuberculosis, Institute for Hepatology, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Ren H, Hu Q, Yang J, Zhou X, Liu X, Tang J, Hu H, Shen Y, Zhou Z. Single-Molecule Dendritic MRI Nanoprobes Reveal the Size-Dependent Tumor Entrance. Adv Healthc Mater 2023; 12:e2302210. [PMID: 37715937 DOI: 10.1002/adhm.202302210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/03/2023] [Indexed: 09/18/2023]
Abstract
The tumor entrance of drug delivery systems, including therapeutic proteins and nanomedicine, plays an essential role in affecting the treatment outcome. Nanoparticle size is a critical but contradictory factor in making a trade-off among blood circulation, tumor accumulation, and penetration. Here, this work designs a series of single-molecule gadolinium (Gd)-based magnetic resonance imaging (MRI) nanoprobes with well-defined sizes to precisely explore the size-dependent tumor entrance in vivo. The MRI nanoprobes obtained by divergent synthesis contain a core molecule of macrocyclic Gd(III)-chelate and different layers of dendritic lysine units, mimicking globular protein. This work finds that the r1 relaxivity and MR imaging signals increase with the nanoparticle size. The nanoprobe with a lower limit of critical size threshold ≈8.0 nm achieves superior tumor accumulation and penetration. These single-molecule MRI nanoprobes can be served to precisely examine the size-related nanoparticle-biological interactions.
Collapse
Affiliation(s)
- Huiming Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Qiuhui Hu
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, 310027, China
| | - Jiajia Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Xiaoxuan Zhou
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, 310027, China
| | - Xiangrui Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, 310027, China
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| |
Collapse
|