1
|
Wu J, Li H, Yang Y, Chen Y, Wang Z, Dong F, Liu X, Guo Y, Yao T, Xu Y, Ye Q, Wang H, Wang H, Fang Y. Bilateral Embedded Anchoring via Tailored Polymer Brush for Large-Area Air-Processed Blue Light-Emitting Diodes. Angew Chem Int Ed Engl 2024; 63:e202411361. [PMID: 39073279 DOI: 10.1002/anie.202411361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Perovskite light-emitting diodes (PeLEDs) that can be air-processed promises the development of displaying optoelectronic device, while is challenged by technical difficulty on both the active layer and hole transport layer (HTL) caused by the unavoidable humidity interference. Here, we propose and validate that, planting the polymer brush with tailored functional groups in inorganic HTL, provides unique bilateral embedded anchoring that is capable of simultaneously addressing the n phases crystallization rates in the active layer as well as the deteriorated particulate surface defects in HTL. Exemplified by zwitterionic polyethyleneimine-sulfonate (PEIS) in present study, its implanting in NiOx HTL offers abundant nuclei sites of amino and sulfonate groups that balance the growth rate of different n phases in quasi-2D perovskite films. Moreover, the PEIS effectively nailed the interfacial contact between perovskite and NiOx, and reduced the particulate surface defects in HTL, leading to the enhanced PLQY and stability of large-area blue perovskite film in ambient air. By virtue of these merits, present work achieves the first demonstration of the air-processed blue PeLEDs in large emitting area of 1.0 cm2 with peak external quantum efficiency (EQE) of 2.09 %, which is comparable to the similar pure-bromide blue PeLEDs fabricated in glovebox.
Collapse
Affiliation(s)
- Jiandong Wu
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710071, China
| | - Huixin Li
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710071, China
| | - Yang Yang
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710071, China
| | - Yiling Chen
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710071, China
| | - Zhongyu Wang
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710071, China
| | - Fan Dong
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710071, China
| | - Xinhao Liu
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710071, China
| | - Yangyang Guo
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710071, China
| | - Tanxi Yao
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710071, China
| | - Yadong Xu
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710071, China
| | - Qian Ye
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710071, China
| | - Hongyue Wang
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710071, China
| | - Hongqiang Wang
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710071, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710071, China
| |
Collapse
|
2
|
Kang Z, Wang K, Zhang L, Yang Y, Wu J, Tong Y, Yan P, Chen Y, Qi H, Sun K, Müller-Buschbaum P, Zhang X, Shang J, Wang H. Homogenizing The Low-Dimensional Phases for Stable 2D-3D Tin Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402028. [PMID: 38970557 DOI: 10.1002/smll.202402028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/13/2024] [Indexed: 07/08/2024]
Abstract
2D-3D tin-based perovskites are considered as promising candidates for achieving efficient lead-free perovskite solar cells (PSCs). However, the existence of multiple low-dimensional phases formed during the film preparation hinders the efficient transport of charge carriers. In addition, the non-homogeneous distribution of low-dimensional phases leads to lattice distortion and increases the defect density, which are undesirable for the stability of tin-based PSCs. Here, mixed spacer cations [diethylamine (DEA+) and phenethylamine (PEA+)] are introduced into tin perovskite films to modulate the distribution of the 2D phases. It is found that compared to the film with only PEA+, the combination of DEA+ and PEA+ favors the formation of homogeneous low-dimensional perovskite phases with three octahedral monolayers (n = 3), especially near the bottom interface between perovskite and hole transport layer. The homogenization of 2D phases help improve the film quality with reduced lattice distortion and released strain. With these merits, the tin PSC shows significantly improved stability with 94% of its initial efficiency retained after storing in a nitrogen atmosphere for over 4600 h, and over 80% efficiency maintained after continuous illumination for 400 h.
Collapse
Affiliation(s)
- Ziyong Kang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Kun Wang
- School of microelectronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Lu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi, Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yang Yang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiandong Wu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yu Tong
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Peng Yan
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yali Chen
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Heng Qi
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Kun Sun
- Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Peter Müller-Buschbaum
- Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Xuewen Zhang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Jingzhi Shang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
3
|
Wang J, Nie G, Huang W, Guo Y, Li Y, Yang Z, Chen Y, Ding K, Yang Y, Wang W, Kuang LM, Yang K, Tang D, Zhai Y. Reconstruction and Solidification of Dion-Jacobson Perovskite Top and Buried Interfaces for Efficient and Stable Solar Cells. NANO LETTERS 2024; 24:11873-11881. [PMID: 39225707 DOI: 10.1021/acs.nanolett.4c03013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Quasi-two-dimensional (Q-2D) perovskites show great potential in the field of photonic and optoelectronic device applications. However, defects and local lattice dislocation still limit performance and stability improvement by nonradiative recombination, unpreferred phase distribution, and unbonded amines. Here, a low-temperature synergistic strategy for both reconstructing and solidifying the perovskite top and buried interface is developed. By post-treating the 1,4-phenylenedimethanammonium (PDMA) based (PDMA)MA4Pb5I16 films with cesium acetate (CsAc) before thermal annealing, a condensation reaction between R-COO- and -NH2 and ion exchange between Cs+ and MA+ occur. It converts the unbonded amines to amides and passivates uncoordinated Pb2+. Meanwhile, it adjusts film composition and improves the phase distribution without changing the out-of-plane grain orientation. Consequently, performance of 18.1% and much-enhanced stability (e.g., stability for photo-oxygen increased over 10 times, light-thermal for T90 over 4 times, and reverse bias over 3 times) of (PDMA)MA4Pb5I16 perovskite solar cells are demonstrated.
Collapse
Affiliation(s)
- Jifei Wang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China
| | - Guozheng Nie
- Department of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wenjin Huang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China
| | - Yuanyuan Guo
- School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830011, China
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
| | - Ying Li
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China
| | - Zhangqiang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan Chen
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China
| | - Kang Ding
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China
| | - Ye Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weike Wang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China
| | - Le-Man Kuang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China
| | - Kaike Yang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China
| | - Dongsheng Tang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China
| | - Yaxin Zhai
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
4
|
Cheng Y, Wan H, Sargent EH, Ma D. Reduced-Dimensional Perovskites: Quantum Well Thickness Distribution and Optoelectronic Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410633. [PMID: 39295466 DOI: 10.1002/adma.202410633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/01/2024] [Indexed: 09/21/2024]
Abstract
Reduced-dimensional perovskites (RDPs), a large category of metal halide perovskites, have attracted considerable attention and shown high potential in the fields of solid-state displays and lighting. RDPs feature a quantum-well-based structure and energy funneling effects. The multiple quantum well (QW) structure endows RDPs with superior energy transfer and high luminescence efficiency. The effect of QW confinement directly depends on the number of inorganic octahedral layers (QW thickness, i.e., n value), so the distribution of n values determines the optoelectronic properties of RDPs. Here, it is focused on the QW thickness distribution of RDPs, detailing its effect on the structural characteristics, carrier recombination dynamics, optoelectronic properties, and applications in light-emitting diodes. The reported distribution control strategies is also summarized and discuss the current challenges and future trends of RDPs. This review aims to provide deep insight into RDPs, with the hope of advancing their further development and applications.
Collapse
Affiliation(s)
- Yuanzhuang Cheng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haoyue Wan
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Edward H Sargent
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Dongxin Ma
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
5
|
Zhuang D, Wang Y, Cai Q, Zhai L, Huang H, Yang G, Yang Y, Zhang L, Zou C. Restraint of Nonradiative Recombination via Modulation of n-Phase Distribution through Interfacial Lithium Salt Insertion for High-Performance Pure-Blue Perovskite LEDs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31274-31282. [PMID: 38842415 DOI: 10.1021/acsami.4c03752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Quasi-two-dimensional perovskite has been widely used in blue perovskite light-emitting diodes. However, the performance of these devices is still hampered by random phase distribution, nonradiative recombination, and imbalanced carrier transport. In this work, an effective strategy is proposed to mitigate these limitations by inserting lithium salts at the interfaces between the hole transport layer (HTL) and the perovskite layer. The perovskite film on the inserted Li2CO3 layer exhibits reasonable n-value redistribution, which leads to the repressive nonradiation recombination and enhanced carrier transport. Moreover, the inserted Li2CO3 layer also improves the electrical conductivity of PEDOT:PSS and hinders indium ion diffusion from the PEDOT:PSS layer to the perovskite film, which inhibits exciton quenching and nonradiative recombination loss at the HTL/perovskite interface. Taking advantage of these merits, we have successfully fabricated efficient pure-blue PeLEDs with an external quantum efficiency of 6.2% at 472 nm and a luminance of 726 cd cm-2. The restraint of nonradiative recombination at the interface offers a promising approach for efficient pure-blue PeLEDs.
Collapse
Affiliation(s)
- Dicai Zhuang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yingyu Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Qiuting Cai
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lanlan Zhai
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - He Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Guanghong Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yun Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Lijie Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Chao Zou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| |
Collapse
|
6
|
Gao H, Chen Y, Zhang R, Cao R, Wang Y, Tian Y, Xiao Y. Dual-ligand quasi-2D perovskites with chiral-induced spin selectivity for room temperature spin-LEDs. MATERIALS HORIZONS 2024; 11:2906-2913. [PMID: 38567407 DOI: 10.1039/d3mh02029k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Spin-LEDs have been a central topic in semiconductor spintronics research and represent a promising avenue for advanced optoelectronic devices and applications. The future advancements of spin-LEDs will undoubtedly hinge on the generation and manipulation of spin-polarized population at room temperature. In this research, we elucidate the development of room-temperature spin-LEDs using quasi-2D perovskites, based on the chiral-induced spin selectivity (CISS) effect. During the carrier transfer from the chiral n2 phase to the randomly oriented high-n phase caused by the bandgap gradient distribution, CISS works to generate non-equilibrium spin population, leading to room-temperature spin-polarized fluorescence. A spin-polarization of ∼93% is observed for the films. Finally, we realize spin-LEDs at room temperature, exhibiting a |gCP-EL| value of 0.05 and an EQE of 3.8%. This work highlights the potential of integrating dual ligands to optimize the phase distribution and crystalline orientation in quasi-2D films to achieve efficient CISS for spin-LED applications.
Collapse
Affiliation(s)
- Haotian Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yu Chen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ruxi Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Rui Cao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yong Wang
- School of Science, Tianjin University, Tianjin 300072, P. R. China.
| | - Yunfei Tian
- Analytical & Testing Center, Sichuan University, Sichuan 610065, P. R. China.
| | - Yin Xiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| |
Collapse
|
7
|
Liu H, He M, Zhang S. Energy Transfer-Dominated Quasi-2D Blue Perovskite Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38652581 DOI: 10.1021/acsami.4c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The bromide-chloride mixed quasi-two-dimensional (2D) perovskite, with a natural quantum well structure and tunable exciton binding energy, has gained significant attention for high-performance blue perovskite light-emitting diodes (PeLEDs). However, the relative importance of having a low trap state density or efficient exciton transfer for high-efficiency electroluminescence (EL) performance remains elusive. Here, two molecules with the benzoic acid group, sodium 4-fluorobenzoate (SFB) and 3,5-dibromobenzoic acid (DBA), are used to modulate the phase distribution and trap state to explore the effect between energy transfer and defect passivation. As a result, when the n = 1 phase is inhibited in both films, the DBA@SFB-modified perovskite films achieve a higher photoluminescence quantum yield (PLQY) than the SFB-modified perovskite films due to effective defect passivation. However, DBA@SFB-modified PeLEDs exhibit lower external quantum efficiency (EQE) compared to SFB-modified PeLEDs due to the poor exciton transfer between the low-dimensional phase. This demonstrates that passivation strategies may enhance photoluminescence through reducing nonradiative recombination, but the effect of phase distribution is pivotal for EL performance by efficient energy transfer in quasi-2D perovskites. Femtosecond time-resolved transient absorption measurements confirm the fastest carrier dynamics in SFB-modified perovskite films, further corroborating the above result. This work provides useful information about phase modulation and defect passivation for high-efficiency blue quasi-2D PeLEDs.
Collapse
Affiliation(s)
- Hongxin Liu
- College of Physics, Sichuan University, Chengdu 610065, Sichuan, China
| | - Min He
- Chongqing Key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Sijie Zhang
- College of Physics, Sichuan University, Chengdu 610065, Sichuan, China
- Guizhou University of Engineering Science, Bijie 551700, Guizhou, China
| |
Collapse
|
8
|
Gong X, Hao X, Si J, Deng Y, An K, Hu Q, Cai Q, Gao Y, Ke Y, Wang N, Du Z, Cai M, Ye Z, Dai X, Liu Z. High-Performance All-Inorganic Architecture Perovskite Light-Emitting Diodes Based on Tens-of-Nanometers-Sized CsPbBr 3 Emitters in a Carrier-Confined Heterostructure. ACS NANO 2024; 18:8673-8682. [PMID: 38471123 DOI: 10.1021/acsnano.3c09004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Developing green perovskite light-emitting diodes (PeLEDs) with a high external quantum efficiency (EQE) and low efficiency roll-off at high brightness remains a critical challenge. Nanostructured emitter-based devices have shown high efficiency but restricted ascending luminance at high current densities, while devices based on large-sized crystals exhibit low efficiency roll-off but face great challenges to high efficiency. Herein, we develop an all-inorganic device architecture combined with utilizing tens-of-nanometers-sized CsPbBr3 (TNS-CsPbBr3) emitters in a carrier-confined heterostructure to realize green PeLEDs that exhibit high EQEs and low efficiency roll-off. A typical type-I heterojunction containing TNS-CsPbBr3 crystals and wide-bandgap Cs4PbBr6 within a grain is formed by carefully controlling the precursor ratio. These heterostructured TNS-CsPbBr3 emitters simultaneously enhance carrier confinement and retain low Auger recombination under a large injected carrier density. Benefiting from a simple device architecture consisting of an emissive layer and an oxide electron-transporting layer, the PeLEDs exhibit a sub-bandgap turn-on voltage of 2.0 V and steeply rising luminance. In consequence, we achieved green PeLEDs demonstrating a peak EQE of 17.0% at the brightness of 36,000 cd m-2, and the EQE remained at 15.7% and 12.6% at the brightness of 100,000 and 200,000 cd m-2, respectively. In addition, our results underscore the role of interface degradation during device operation as a factor in device failure.
Collapse
Affiliation(s)
- Xinquan Gong
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Xiaoming Hao
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Junjie Si
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Yunzhou Deng
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE U.K
| | - Kai An
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Qianqing Hu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Qiuting Cai
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou Zhejiang University, Wenzhou 325006, People's Republic of China
| | - Yun Gao
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou Zhejiang University, Wenzhou 325006, People's Republic of China
| | - You Ke
- Shaanxi Institute of Flexible Electronics (SIFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road, Xi'an 710072, People's Republic of China
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Nana Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Zhuopeng Du
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Muzhi Cai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Zhizhen Ye
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou Zhejiang University, Wenzhou 325006, People's Republic of China
| | - Xingliang Dai
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou Zhejiang University, Wenzhou 325006, People's Republic of China
| | - Zugang Liu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
9
|
Liu J, Ma Q, Li R, Tang Y, Liu J, Feng X. Phase Control and Singlet Energy Transfer Enabled by Trimethylamine Modified Boron Dipyrromethene for Stable CsPbBr 3 Quantum Wells. Angew Chem Int Ed Engl 2024; 63:e202314092. [PMID: 38193569 DOI: 10.1002/anie.202314092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/23/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
The phase distribution and organic spacer cations play pivotal roles in determining the emission performance and stability of perovskite quantum wells (QWs). Here, we propose a universal molecular regulation strategy to tailor phase distribution and enhance the stability of CsPbBr3 QWs. The capability of sterically hindered ligands with formidable surface binding groups is underscored in directing CsPbBr3 growth and refining phase distribution. With trimethylamine modified boron dipyrromethene (BDP-TMA) ligand as a representative, the BDP-TMA driven can precisely control phase distribution and passivate defects of CsPbBr3 . Notably, BDP-TMA acts as a co-spacer organic entity in obtained BDP-TMA-CsPbBr3 , facilitating efficient singlet energy transfer and tailoring the luminescence to produce a distinctive bluish-white emission. The BDP-TMA-CsPbBr3 demonstrates significant phase stability under water exposure, light irradiation, and moderate temperature. Interestingly, BDP-TMA-CsPbBr3 exhibits the thermally-induced dynamic fluorescence control at elevated temperatures, which can be achieved feasible for advanced information encryption. This discovery paves the way for the exploration of perovskite QWs in applications like temperature sensing, anti-counterfeiting, and other advanced optical smart technologies.
Collapse
Affiliation(s)
- Jinli Liu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Qian Ma
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Ruicong Li
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jiacheng Liu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Xiaoxia Feng
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
10
|
Zheng C, Zheng F. Carrier Transport in 2D Hybrid Organic-Inorganic Perovskites: The Role of Spacer Molecules. J Phys Chem Lett 2024; 15:1254-1263. [PMID: 38277685 DOI: 10.1021/acs.jpclett.3c03357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Two-dimensional organic-inorganic hybrid perovskites (2D HOIPs) have been widely used for various optoelectronics applications owing to their excellent photoelectric properties. However, the selection of organic spacer cations is mostly qualitative without quantitative guidance. Meanwhile, the fundamental mechanism of the carrier transport across the organic spacer layer is still unclear. Here, by using the first-principles nonadiabatic molecular dynamics (NAMD) method, we have studied the transport process of excited carriers between 2D HOIPs separated by a spacer cation layer in real time at atomic levels. We find that the excited electrons and holes can transfer from single-inorganic-layer 2D HOIP to bi-inorganic-layer 2D HOIP on a subpicosecond to picosecond scale. Moreover, we have developed a new method to capture the electron-hole interaction in the frame of NAMD. This work provides a promising direction to design new materials toward high-performance optoelectronics.
Collapse
Affiliation(s)
- Caihong Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fan Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
11
|
Tang J, Zhang G, Wang C, Deng L, Zhu X, Yu H, Wang K, Li J. Investigation of the Role of K 2SO 4 Electrolyte in Hole Transport Layer for Efficient Quasi-2D Perovskite Light-Emitting Diodes. J Phys Chem Lett 2024; 15:1112-1120. [PMID: 38262437 DOI: 10.1021/acs.jpclett.3c03417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Quasi-two-dimensional (2D) perovskite light-emitting diodes are promising light sources for color display and lighting. However, poor carrier injection and transport between the bottom hole transport layer (HTL) and perovskite limit the device performance. Here we demonstrate a simple and effective way to modify the HTL for enhancing the performance of perovskite light-emitting diodes (PeLEDs). An electrolyte K2SO4 is used to mix with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as the hole transport layer. The K+ doping helped the quasi-2D perovskite phases grow vertically along the interface of the PEDOT:PSS, fine-modulate the phase distribution, and simultaneously reduce the defect density of quasi-2D perovskites. It also significantly reduced the exciton quenching and injection barrier at PEDOT:PSS and quasi-2D perovskite interface. The optimized green PeLEDs with the K2SO4 doped PEDOT:PSS HTL showed a maximum luminance of 17185 cd/m2 which is almost 4.7 times brighter than the control one, with a maximum external quantum efficiency of 18.64%.
Collapse
Affiliation(s)
- Jun Tang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Guoshuai Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Chenming Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Liangliang Deng
- Center of Micro-Nano System, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Xixiang Zhu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Haomiao Yu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Kai Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinpeng Li
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
12
|
Caiazzo A, Datta K, Bellini L, Wienk MM, Janssen RAJ. Impact of Alkyl Chain Length on the Formation of Regular- and Reverse-Graded Quasi-2D Perovskite Thin Films. ACS MATERIALS LETTERS 2024; 6:267-274. [PMID: 38178980 PMCID: PMC10762656 DOI: 10.1021/acsmaterialslett.3c01073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Crystallization of low-dimensional perovskites is a complex process that leads to multidimensional films comprising two-dimensional (2D), quasi-2D, and three-dimensional (3D) phases. Most quasi-2D perovskite films possess a regular gradient with 2D phases located at the bottom of the film and 3D phases at the top. Recently, multiple studies have reported reverse-graded perovskite films, where the location of the 2D and 3D structures is inverted. The underlying reasons for such a peculiar phase distribution are unclear. While crystallization of regular-graded quasi-2D perovskites has been described as starting with 3D phases from the liquid-air interface, the film formation of reverse-graded films has not been investigated yet. Here, we examine the impact of the alkyl chain length on the formation of regular- and reverse-graded perovskites using n-alkylammonium ions. We find that long alkyl chains reverse the phase distribution gradient. By combining photoluminescence spectroscopy with in situ optical absorption measurements, we demonstrate that crystallization starts at the liquid-N2 interface, though as 3D phases for short-chain n-alkylammonium ions and as quasi-2D phases for long chains. We link this behavior to enhanced van der Waals interactions between long-chain n-alkylammonium ions in polar solvents and their tendency to accumulate at the liquid-N2 interface, creating a concentration gradient along the film thickness.
Collapse
Affiliation(s)
- Alessandro Caiazzo
- Molecular
Materials and Nanosystems and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Kunal Datta
- Molecular
Materials and Nanosystems and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Laura Bellini
- Molecular
Materials and Nanosystems and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Martijn M. Wienk
- Molecular
Materials and Nanosystems and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - René A. J. Janssen
- Molecular
Materials and Nanosystems and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Dutch
Institute for Fundamental Energy Research, De Zaale 20, 5612
AJ Eindhoven, The
Netherlands
| |
Collapse
|
13
|
Hu M, Zhang Y, Meng N, Wang W, Lu Y, Dong J, Zhao S, Qiao B, Song D, Xu Z. Modulation Phase Distribution of Ruddlesden-Popper Quasi-2D Perovskites with a Similarly Spaced Dion-Jacobson Phase. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42706-42716. [PMID: 37646254 DOI: 10.1021/acsami.3c03110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Quasi-two-dimensional (quasi-2D) perovskites exhibit excellent performance when applied to light-emitting diodes (LEDs). However, quasi-2D perovskite films generally have nonuniform n phases and irregular internal crystal structures, which degrade the device's performance. Here, we propose using a Dion-Jacobson (DJ)-type organic spacer to modulate the phase distribution of the Ruddlesden-Popper (RP) quasi-2D perovskite. A DJ-type organic spacer cation, 1.6-hexamethylenediamine (HDABr2), was introduced into the perovskite as the second spacer cation with propylamine hydrobromide (PABr). As DJ-type and RP-type perovskites have similar spacings, RP-DJ style does not cause a chaotic crystalline structure; instead, it modulates the perovskite crystallization and narrows the phase distribution. In parallel, there is a substantial improvement in the maximum luminance, current efficiency, external quantum efficiency, and device stability of the quasi-2D perovskite LEDs. This work provides a novel concept for combining the organic spacer cations for quasi-2D perovskites.
Collapse
Affiliation(s)
- Mengli Hu
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Yu Zhang
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Ning Meng
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Wei Wang
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Yao Lu
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Jie Dong
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Suling Zhao
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Bo Qiao
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Dandan Song
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Zheng Xu
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|