1
|
Miao X, Chen T, Lang Z, Wu Y, Wu X, Zhu Z, Xu RX. Design, fabrication, and application of bioengineering vascular networks based on microfluidic strategies. J Mater Chem B 2025; 13:1252-1269. [PMID: 39691980 DOI: 10.1039/d4tb02047b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Vascularization is a critical component of tissue engineering research and is essential for enhancing the success rate of tissue construction and function. Over the past decade, researchers have explored various methods to construct in vitro vascular networks, including 3D printing, cell sphere technology, and microfluidics. Microfluidic technology has garnered significant attention due to its notable advantages in precision, controllability, flexibility, and applicability. It can be primarily classified into two modes: (i) the pre-designed mode, which involves creating vascular networks by pre-designing vascular channels and seeding endothelial cells, encompassing microfluidic chips and microfluidic spinning technologies; and (ii) the self-assembly mode, where cell spheres are fabricated using microfluidic technology and subsequently self-assemble into vascular networks. In this review, we first provide a brief overview of the normal physiological and pathological characteristics of vascular networks, followed by a discussion of the factors to be considered in designing in vitro vascular networks, and conclude with an examination of the classification of technologies for the preparation of microfluidic vascular networks and recent advancements. It is anticipated that in vitro vascular network models will soon be successfully applied in regenerative medicine and drug development.
Collapse
Affiliation(s)
- Xiaoping Miao
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Tianao Chen
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhongliang Lang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
- Department of Plastic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China.
| | - Yongqi Wu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Xizhi Wu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhiqiang Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China.
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ronald X Xu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
2
|
Liu Z, Wu J, Luo Z, Hou Y, Xuan L, Xiao C, Chang J, Zhang D, Zheng G, Guo J, Tang G, Yu X. 3D Biofabrication of Microporous Hydrogels for Tissue Engineering. Adv Healthc Mater 2025; 14:e2403583. [PMID: 39641221 DOI: 10.1002/adhm.202403583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/17/2024] [Indexed: 12/07/2024]
Abstract
Microporous hydrogels have been utilized in an unprecedented manner in the last few decades, combining materials science, biology, and medicine. Their microporous structure makes them suitable for wide applications, especially as cell carriers in tissue engineering and regenerative medicine. Microporous hydrogel scaffolds provide spatial and platform support for cell growth and proliferation, which can promote cell growth, migration, and differentiation, influencing tissue repair and regeneration. This review gives an overview of recent developments in the fabrication techniques and applications of microporous hydrogels. The fabrication of microporous hydrogels can be classified into two distinct categories: fabrication of non-injectable microporous hydrogels including freeze-drying microporous method, two-phase sacrificial strategy, 3D biofabrication technology, etc., and fabrication of injectable microporous hydrogels mainly including microgel assembly. Then, the biomedical applications of microporous hydrogels in cell carriers for tissue engineering, including but not limited to bone regeneration, nerve regeneration, vascular regeneration, and muscle regeneration are emphasized. Additionally, the ongoing and foreseeable applications and current limitations of microporous hydrogels in biomedical engineering are illustrated. Through stimulating innovative ideas, the present review paves new avenues for expanding the application of microporous hydrogels in tissue engineering.
Collapse
Affiliation(s)
- Ziyang Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Jialin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Zeyu Luo
- Department of Orthopedics, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Yingying Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Leyan Xuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Changyi Xiao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Jishuo Chang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Dongyang Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Guodong Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Jie Guo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Xiyong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
3
|
Zhou J, Zhang F, Tang Q, Zhu T, Ni Y, Wu Q, Liu Q, Zhu R, Wang T, Zhang Y, Zhang X, He H. Deoxygenated hydroxyapatite inhibits macrophage inflammation through fibronectin restricted adsorption. Acta Biomater 2025; 191:177-188. [PMID: 39577482 DOI: 10.1016/j.actbio.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Macrophages can determine the ultimate outcome of the foreign body reaction (FBR). Although researchers confirmed that differences in the elemental composition of the implant interface can lead to varying levels of biological function, the mechanism underlying the polarization directions of macrophages induced by varying oxygen proportions remains unclear. This research presented the fabrication of a deoxygenated hydroxyapatite (dHAP) surface to investigate the impact of oxygen content on macrophage activation. The dHAP surface exhibited a pronounced inhibitory effect on the inflammatory activation of macrophages when compared to the HAP surface. Results from total internal reflection microscopy (TIRFM) and molecular dynamic (MD) simulation have revealed that the significant extracellular matrix adhesion protein, Fibronectin (Fn), showed a lower level of adsorption on dHAP surfaces. The Arg-Gly-Asp (RGD) structural domain showed a reduction in the exposure. The diminished adhesion capacity and impaired active site recognition ability of Fn resulted in lower activation of the integrin-focal adhesion kinase (FAK) pathway of macrophages on the dHAP surface, thereby suppressing the inflammation. In summary, this work explains the mechanism of the FBR impacted by the proportion of oxygen at the protein level. It also introduces a new approach to enhance the compatibility of biomaterials. STATEMENT OF SIGNIFICANCE: Macrophages are key in the foreign body response (FBR). Researches indicate that implant material's elemental interface content can regulate the functionality of biomaterials, but the mechanism of this regulation is unclear. To study the relationship between the elemental content at the interface and macrophages in the FBR, we prepared a deoxygenated hydroxyapatite (dHAP). Our results showed that the dHAP surface inhibited the adsorption behavior and changed the orientation of an ECM protein-fibronectin (Fn)-as well as the exposure of fewer active sites of the Arg-Gly-Asp (RGD) sequence, leading to less integrin activation. And then, the activation of the integrin- focal adhesion kinase (FAK) signaling pathway was reduced, leading to a greater activation of macrophages towards a pro-regenerative direction.
Collapse
Affiliation(s)
- Jingxuan Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Fanyu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qinchao Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Taomin Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yueqi Ni
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qian Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qunli Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Runlin Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Tianman Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Medical Research Institute School of Medicine, Wuhan University, Wuhan 430071, China
| | - Xiaoxin Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Hong He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
4
|
Hu Z, Lin H, Wang Z, Yi Y, Zou S, Liu H, Han X, Rong X. 3D Printing Hierarchical Porous Nanofibrous Scaffold for Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405406. [PMID: 39548932 DOI: 10.1002/smll.202405406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/16/2024] [Indexed: 11/18/2024]
Abstract
Current limitations in 3D printing pose significant challenges for the fabrication of hierarchical 3D scaffolds with nanofibrous structures that simulate the natural bone extracellular matrix (ECM) for enhanced bone regeneration. This study presents an innovative approach to 3D printing customized hierarchical porous scaffolds with nanofiber structures using biodegradable nanofibrous microspheres as the bio-ink. In vitro investigations demonstrate that the hierarchical porous architecture substantially enhances cell infiltration and proliferation rates, while the nanofiber topology provides physical cues to guide osteogenic differentiation and ECM deposition. When serving as a cell carrier, the 3D-printed nanofibrous scaffold promotes bone tissue regeneration and integration in vivo. Additionally, the facile and versatile chemical modification facilitates the precise tailoring of the scaffold's functionality. Using nanofibrous microspheres with highly biomimetic and versatile modification properties as the foundational constituent in this universal 3D printing methodology enables comprehensive manipulation of scaffolding biological properties, spanning from macroscopic external morphology to molecular-scale biochemical kinetics, thereby addressing a diverse spectrum of clinical requisites.
Collapse
Affiliation(s)
- Zhiai Hu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hengyi Lin
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhenming Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yating Yi
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hao Liu
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xin Rong
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
5
|
Asadikorayem M, Weber P, Surman F, Puiggalí‐Jou A, Zenobi‐Wong M. Foreign Body Immune Response to Zwitterionic and Hyaluronic Acid Granular Hydrogels Made with Mechanical Fragmentation. Adv Healthc Mater 2025; 14:e2402890. [PMID: 39498680 PMCID: PMC11730820 DOI: 10.1002/adhm.202402890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/19/2024] [Indexed: 11/07/2024]
Abstract
Granular hydrogels have recently attracted the attention for diverse tissue engineering applications due to their versatility and modularity. Despite previous studies showing enhanced viability and metabolism of cells encapsulated in these hydrogels, the in vitro immune response and long-term fibrotic response of these scaffolds have not been well characterized. Here, bulk and granular hydrogels are studied based on synthetic zwitterionic (ZI) and natural polysaccharide hyaluronic acid (HA) made with mechanical fragmentation. In vitro, immunomodulatory studies show an increased stimulatory effect of HA granular hydrogels compared to bulk, while both bulk and granular ZI hydrogels do not induce an inflammatory response. Subcutaneous implantation in mice shows that both ZI and HA granular hydrogels resulted in less collagen capsule deposition around implants compared to bulk HA hydrogels 10 weeks after implantation. Moreover, the HA granular hydrogels are infiltrated by host cells, including macrophages and mature blood vessels, in a porosity-dependent manner. However, a large number of cells, including multinucleated giant cells as well as blood vessels, surround bulk and granular ZI hydrogels and are not able to infiltrate. Overall, this study provides new insights on the long-term stability and fibrotic response of granular hydrogels, paving the way for future studies and applications.
Collapse
Affiliation(s)
- Maryam Asadikorayem
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - Patrick Weber
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - František Surman
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - Anna Puiggalí‐Jou
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - Marcy Zenobi‐Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| |
Collapse
|
6
|
Li Y, Yao L, Zhang C, Li T, Wang D, Li J, Huang Y, Tang X. Growth Hormone-Releasing Peptide 2 May Be Associated With Decreased M1 Macrophage Production and Increased Histologic and Biomechanical Tendon-Bone Healing Properties in a Rat Rotator Cuff Tear Model. Arthroscopy 2024:S0749-8063(24)01027-2. [PMID: 39672241 DOI: 10.1016/j.arthro.2024.11.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/15/2024]
Abstract
PURPOSE To explore the potential of growth hormone-releasing peptide 2 (GHRP-2) for tendon-bone healing in a rat rotator cuff tear (RCT) model. METHODS The impact of GHRP-2 on M1 macrophage polarization in vitro was determined using real-time polymerase chain reaction, Western blot, and immunofluorescence staining. GHRP-2 was then applied in a rat RCT model, and the healing of the tendon-bone interface was systemically evaluated by histologic staining, radiologic assessments, gait analysis, and biomechanical tests. M1 macrophage polarization at the tendon-bone interface was assessed by immunofluorescence staining. RESULTS GHRP-2 was found to reduce the expression of Cd86, Nos2, and tnfa (all P < .01), suggesting inhibited M1 macrophage polarization in vitro. The in vivo experiments showed that the proportion of M1 macrophages was reduced both 2 and 4 weeks after surgery (P < .01), and the number of M1 was reduced 4 weeks after surgery (P < .01) at the tendon-bone interface. The in vivo experiments also showed that histologic scores and bone mineral density were increased by GHRP-2 at 8 weeks postsurgery (P < .01), suggesting improved healing of the tendon-bone interface. Furthermore, the GHRP-2 group showed a better biomechanical property at both 4 and 8 weeks postsurgery, including maximal failure load, stiffness, and tension (all P < .01), and better gait parameters at 8 weeks postsurgery, including mean area of the left front foot and mean intensity of the right front foot (all P < .05). CONCLUSIONS GHRP-2 may be associated with decreased M1 macrophage production and increased histologic and biomechanical tendon-bone healing properties in a rat RCT model. CLINICAL RELEVANCE The present study might be a transitional study to show the efficacy of GHRP-2 in enhancing bone-tendon healing and reduce retear rate after rotator cuff repair.
Collapse
Affiliation(s)
- Yinghao Li
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, China; Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Yao
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, China; Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Chunsen Zhang
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, China; Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Li
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, China; Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Duan Wang
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, China; Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Li
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, China; Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yizhou Huang
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, China; Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Tang
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, China; Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Da Silva André G, Labouesse C. Mechanobiology of 3D cell confinement and extracellular crowding. Biophys Rev 2024; 16:833-849. [PMID: 39830117 PMCID: PMC11735831 DOI: 10.1007/s12551-024-01244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/30/2024] [Indexed: 01/22/2025] Open
Abstract
Cells and tissues are often under some level of confinement, imposed by the microenvironment and neighboring cells, meaning that there are limitations to cell size, volume changes, and fluid exchanges. 3D cell culture, increasingly used for both single cells and organoids, inherently impose levels of confinement absent in 2D systems. It is thus key to understand how different levels of confinement influences cell survival, cell function, and cell fate. It is well known that the mechanical properties of the microenvironment, such as stiffness and stress relaxation, are important in activating mechanosensitive pathways, and these are responsive to confinement conditions. In this review, we look at how low, intermediate, and high levels of confinement modulate the activation of known mechanobiology pathways, in single cells, organoids, and tumor spheroids, with a specific focus on 3D confinement in microwells, elastic, or viscoelastic scaffolds. In addition, a confining microenvironment can drastically limit cellular communication in both healthy and diseased tissues, due to extracellular crowding. We discuss potential implications of extracellular crowding on molecular transport, extracellular matrix deposition, and fluid transport. Understanding how cells sense and respond to various levels of confinement should inform the design of 3D engineered matrices that recapitulate the physical properties of tissues.
Collapse
Affiliation(s)
- Gabriela Da Silva André
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Céline Labouesse
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
8
|
Kamaraj M, Moghimi N, McCarthy A, Chen J, Cao S, Chethikkattuveli Salih AR, Joshi A, Jucaud V, Panayi A, Shin SR, Noshadi I, Khademhosseini A, Xie J, John JV. Granular Porous Nanofibrous Microspheres Enhance Cellular Infiltration for Diabetic Wound Healing. ACS NANO 2024; 18:28335-28348. [PMID: 39356827 DOI: 10.1021/acsnano.4c10044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Diabetic foot ulcers (DFUs) are a significant challenge in the clinical care of diabetic patients, often necessitating limb amputation and compromising the quality of life and life expectancy of this cohort. Minimally invasive therapies, such as modular scaffolds, are at the forefront of current DFU treatment, offering an efficient approach for administering therapeutics that accelerate tissue repair and regeneration. In this study, we report a facile method for fabricating granular nanofibrous microspheres (NMs) with predesigned structures and porosities. The proposed technology combines electrospinning and electrospraying to develop a therapeutic option for DFUs. Specifically, porous NMs were constructed using electrospun poly(lactic-co-glycolic acid) (PLGA):gelatin short nanofibers, followed by gelatin cross-linking. These NMs demonstrated enhanced cell adhesion to human dermal fibroblasts (HDF) during an in vitro cytocompatibility assessment. Notably, porous NMs displayed superior performance owing to their interconnected pores compared to nonporous NMs. Cell-laden NMs demonstrated higher Young's modulus values than NMs without loaded cells, suggesting improved material resiliency attributed to the reinforcement of cells and their secreted extracellular matrix. Dynamic injection studies on cell-laden NMs further elucidated their capacity to safeguard loaded cells under pressure. In addition, porous NMs promoted host cell infiltration, neovascularization, and re-epithelialization in a diabetic mouse wound model, signifying their effectiveness in healing diabetic wounds. Taken together, porous NMs hold significant potential as minimally invasive, injectable treatments that effectively promote tissue integration and regeneration.
Collapse
Affiliation(s)
- Meenakshi Kamaraj
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Nafiseh Moghimi
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Alec McCarthy
- Department of Surgery-Transplant and Mary & Dick Holland, Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Junjie Chen
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Selena Cao
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | | | - Akshat Joshi
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Adriana Panayi
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Heidelberg 69117, Germany
| | - Su Ryon Shin
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Iman Noshadi
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland, Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Johnson V John
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| |
Collapse
|
9
|
Segura T. From Soft Microgel Assemblies to Advanced Healthcare Materials. Adv Healthc Mater 2024; 13:e2402905. [PMID: 39171761 DOI: 10.1002/adhm.202402905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| |
Collapse
|
10
|
Jaberi A, Kedzierski A, Kheirabadi S, Tagay Y, Ataie Z, Zavari S, Naghashnejad M, Waldron O, Adhikari D, Lester G, Gallagher C, Borhan A, Ravnic D, Tabdanov E, Sheikhi A. Engineering Microgel Packing to Tailor the Physical and Biological Properties of Gelatin Methacryloyl Granular Hydrogel Scaffolds. Adv Healthc Mater 2024; 13:e2402489. [PMID: 39152936 DOI: 10.1002/adhm.202402489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Granular hydrogel scaffolds (GHS) are fabricated via placing hydrogel microparticles (HMP) in close contact (packing), followed by physical and/or chemical interparticle bond formation. Gelatin methacryloyl (GelMA) GHS have recently emerged as a promising platform for biomedical applications; however, little is known about how the packing of building blocks, physically crosslinked soft GelMA HMP, affects the physical (pore microarchitecture and mechanical/rheological properties) and biological (in vitro and in vivo) attributes of GHS. Here, the GHS pore microarchitecture is engineered via the external (centrifugal) force-induced packing and deformation of GelMA HMP to regulate GHS mechanical and rheological properties, as well as biological responses in vitro and in vivo. Increasing the magnitude and duration of centrifugal force increases the HMP deformation/packing, decreases GHS void fraction and median pore diameter, and increases GHS compressive and storage moduli. MDA-MB-231 human triple negative breast adenocarcinoma cells spread and flatten on the GelMA HMP surface in loosely packed GHS, whereas they adopt an elongated morphology in highly packed GHS as a result of spatial confinement. Via culturing untreated or blebbistatin-treated cells in GHS, the effect of non-muscle myosin II-driven contractility on cell morphology is shown. In vivo subcutaneous implantation in mice confirms a significantly higher endothelial, fibroblast, and macrophage cell infiltration within the GHS with a lower packing density, which is in accordance with the in vitro cell migration outcome. These results indicate that the packing state of GelMA GHS may enable the engineering of cell response in vitro and tissue response in vivo. This research is a fundamental step forward in standardizing and engineering GelMA GHS microarchitecture for tissue engineering and regeneration.
Collapse
Affiliation(s)
- Arian Jaberi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alexander Kedzierski
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sina Kheirabadi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yerbol Tagay
- Department of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Zaman Ataie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Saman Zavari
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mohammad Naghashnejad
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Olivia Waldron
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Daksh Adhikari
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gerald Lester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Colin Gallagher
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ali Borhan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Dino Ravnic
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Erdem Tabdanov
- Department of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
- Penn State Cancer Institute, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| |
Collapse
|
11
|
Recalde Phillips S, Perez-Ponce KD, Ruben E, Baig T, Poux E, Gregory CA, Alge DL. Impact of Annealing Chemistry on the Properties and Performance of Microporous Annealed Particle Hydrogels. Biomacromolecules 2024; 25:5798-5808. [PMID: 39190621 PMCID: PMC11388458 DOI: 10.1021/acs.biomac.4c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Microporous annealed particle (MAP) hydrogels are a promising class of in situ-forming scaffolds for tissue repair and regeneration. While an expansive toolkit of annealing chemistries has been described, the effects of different annealing chemistries on MAP hydrogel properties and performance have not been studied. In this study, we address this gap through a controlled head-to-head comparison of poly(ethylene glycol) (PEG)-based MAP hydrogels that were annealed using tetrazine-norbornene and thiol-norbornene click chemistry. Characterization of material properties revealed that tetrazine click annealing significantly increases MAP hydrogel shear storage modulus and results in slower in vitro degradation kinetics when microgels with a higher cross-link density are used. However, these effects are muted when the MAP hydrogels are fabricated from microgels with a lower cross-link density. In contrast, in vivo testing in murine critical-sized calvarial defects revealed that these differences in physicochemical properties do not translate to differences in bone volume or calvarial defect healing when growth-factor-loaded MAP hydrogel scaffolds are implanted into mouse calvarial defects. Nonetheless, the impact of tetrazine click annealing could be important in other applications and should be investigated further.
Collapse
Affiliation(s)
- Sarea
Y. Recalde Phillips
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Kiara D. Perez-Ponce
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Elizabeth Ruben
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Talia Baig
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Emily Poux
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Carl A. Gregory
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Medical Physiology, School of Medicine, Texas A&M University, Bryan, Texas 77807, United States
| | - Daniel L. Alge
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
| |
Collapse
|
12
|
Wang M, Hong Y, Fu X, Sun X. Advances and applications of biomimetic biomaterials for endogenous skin regeneration. Bioact Mater 2024; 39:492-520. [PMID: 38883311 PMCID: PMC11179177 DOI: 10.1016/j.bioactmat.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 06/18/2024] Open
Abstract
Endogenous regeneration is becoming an increasingly important strategy for wound healing as it facilitates skin's own regenerative potential for self-healing, thereby avoiding the risks of immune rejection and exogenous infection. However, currently applied biomaterials for inducing endogenous skin regeneration are simplistic in their structure and function, lacking the ability to accurately mimic the intricate tissue structure and regulate the disordered microenvironment. Novel biomimetic biomaterials with precise structure, chemical composition, and biophysical properties offer a promising avenue for achieving perfect endogenous skin regeneration. Here, we outline the recent advances in biomimetic materials induced endogenous skin regeneration from the aspects of structural and functional mimicry, physiological process regulation, and biophysical property design. Furthermore, novel techniques including in situ reprograming, flexible electronic skin, artificial intelligence, single-cell sequencing, and spatial transcriptomics, which have potential to contribute to the development of biomimetic biomaterials are highlighted. Finally, the prospects and challenges of further research and application of biomimetic biomaterials are discussed. This review provides reference to address the clinical problems of rapid and high-quality skin regeneration.
Collapse
Affiliation(s)
- Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| |
Collapse
|
13
|
Cao H, Wang M, Ding J, Lin Y. Hydrogels: a promising therapeutic platform for inflammatory skin diseases treatment. J Mater Chem B 2024; 12:8007-8032. [PMID: 39045804 DOI: 10.1039/d4tb00887a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Inflammatory skin diseases, such as psoriasis and atopic dermatitis, pose significant health challenges due to their long-lasting nature, potential for serious complications, and significant health risks, which requires treatments that are both effective and exhibit minimal side effects. Hydrogels offer an innovative solution due to their biocompatibility, tunability, controlled drug delivery capabilities, enhanced treatment adherence and minimized side effects risk. This review explores the mechanisms that guide the design of hydrogel therapeutic platforms from multiple perspectives, focusing on the components of hydrogels, their adjustable physical and chemical properties, and their interactions with cells and drugs to underscore their clinical potential. We also examine various therapeutic agents for psoriasis and atopic dermatitis that can be integrated into hydrogels, including traditional drugs, novel compounds targeting oxidative stress, small molecule drugs, biologics, and emerging therapies, offering insights into their mechanisms and advantages. Additionally, we review clinical trial data to evaluate the effectiveness and safety of hydrogel-based treatments in managing psoriasis and atopic dermatitis under complex disease conditions. Lastly, we discuss the current challenges and future opportunities for hydrogel therapeutics in treating psoriasis and atopic dermatitis, such as improving skin barrier penetration and developing multifunctional hydrogels, and highlight emerging opportunities to enhance long-term safety and stability.
Collapse
Affiliation(s)
- Huali Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
- Department of Dermatology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ming Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Jianwei Ding
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Yiliang Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
14
|
Cao Y, Sun J, Qin S, Zhou Z, Xu Y, Liu C. Advances and Challenges in Immune-Modulatory Biomaterials for Wound Healing Applications. Pharmaceutics 2024; 16:990. [PMID: 39204335 PMCID: PMC11360739 DOI: 10.3390/pharmaceutics16080990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Wound healing progresses through three distinct stages: inflammation, proliferation, and remodeling. Immune regulation is a central component throughout, crucial for orchestrating inflammatory responses, facilitating tissue repair, and restraining scar tissue formation. Elements such as mitochondria, reactive oxygen species (ROS), macrophages, autophagy, ferroptosis, and cytokines collaboratively shape immune regulation in this healing process. Skin wound dressings, recognized for their ability to augment biomaterials' immunomodulatory characteristics via antimicrobial, antioxidative, pro- or anti-inflammatory, and tissue-regenerative capacities, have garnered heightened attention. Notwithstanding, a lack of comprehensive research addressing how these dressings attain immunomodulatory properties and the mechanisms thereof persists. Hence, this paper pioneers a systematic review of biomaterials, emphasizing immune regulation and their underlying immunological mechanisms. It begins by highlighting the importance of immune regulation in wound healing and the peculiarities and obstacles faced in skin injury recovery. This segment explores the impact of wound metabolism, infections, systemic illnesses, and local immobilization on the immune response during healing. Subsequently, the review examines a spectrum of biomaterials utilized in skin wound therapy, including hydrogels, aerogels, electrospun nanofiber membranes, collagen scaffolds, microneedles, sponges, and 3D-printed constructs. It elaborates on the immunomodulatory approaches employed by these materials, focusing on mitochondrial and ROS modulation, autophagic processes, ferroptosis, macrophage modulation, and the influence of cytokines on wound healing. Acknowledging the challenge of antibiotic resistance, the paper also summarizes promising plant-based alternatives for biomaterial integration, including curcumin. In its concluding sections, the review charts recent advancements and prospects in biomaterials that accelerate skin wound healing via immune modulation. This includes exploring mitochondrial transplantation materials, biomaterial morphology optimization, metal ion incorporation, electrostimulation-enabled immune response control, and the benefits of composite materials in immune-regulatory wound dressings. The ultimate objective is to establish a theoretical foundation and guide future investigations in the realm of skin wound healing and related materials science disciplines.
Collapse
Affiliation(s)
- Yuqi Cao
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China; (Y.C.); (J.S.); (Z.Z.); (Y.X.)
| | - Jiagui Sun
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China; (Y.C.); (J.S.); (Z.Z.); (Y.X.)
| | - Shengao Qin
- Beijing Laboratory of Oral Health, Capital Medical University, 10 Xitoutiao, Beijing 100054, China;
| | - Zhengshu Zhou
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China; (Y.C.); (J.S.); (Z.Z.); (Y.X.)
| | - Yanan Xu
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China; (Y.C.); (J.S.); (Z.Z.); (Y.X.)
| | - Chenggang Liu
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China; (Y.C.); (J.S.); (Z.Z.); (Y.X.)
| |
Collapse
|
15
|
Hao R, Ye X, Chen X, Du J, Tian F, Zhang L, Ma G, Rao F, Xue J. Integrating Bioactive Graded Hydrogel with Radially Aligned Nanofibers to Dynamically Manipulate Wound Healing Process. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37770-37782. [PMID: 38987992 DOI: 10.1021/acsami.4c09204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Skin wound healing is a complex process that requires appropriate treatment and management. Using a single scaffold to dynamically manipulate angiogenesis, cell migration and proliferation, and tissue reconstruction during skin wound healing is a great challenge. We developed a hybrid scaffold platform that integrates the spatiotemporal delivery of bioactive cues with topographical cues to dynamically manipulate the wound-healing process. The scaffold comprised gelatin methacryloyl hydrogels and electrospun poly(ε-caprolactone)/gelatin nanofibers. The hydrogels had graded cross-linking densities and were loaded with two different functional bioactive peptides. The nanofibers comprised a radially aligned nanofiber array layer and a layer of random fibers. During the early stages of wound healing, the KLTWQELYQLKYKGI peptide, which mimics vascular endothelial growth factor, was released from the inner layer of the hydrogel to accelerate angiogenesis. During the later stages of wound healing, the IKVAVS peptide, which promotes cell migration, synergized with the radially aligned nanofiber membrane to promote cell migration, while the nanofiber membrane also supported further cell proliferation. In an in vivo rat skin wound-healing model, the hybrid scaffold significantly accelerated wound healing and collagen deposition, and the ratio of type I to type III collagen at the wound site resembled that of normal skin. The prepared scaffold dynamically regulated the skin tissue regeneration process in stages to achieve rapid wound repair with clinical application potential, providing a strategy for skin wound repair.
Collapse
Affiliation(s)
- Ruinan Hao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Xilin Ye
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiaofeng Chen
- Trauma Center, Peking University People's Hospital, Beijing 100044, P.R. China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, National Trauma Medical Center, Peking University, Beijing 100044, P.R. China
| | - Jinzhi Du
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Feng Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Feng Rao
- Trauma Center, Peking University People's Hospital, Beijing 100044, P.R. China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, National Trauma Medical Center, Peking University, Beijing 100044, P.R. China
| | - Jiajia Xue
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
16
|
Pham JPA, Coronel MM. Unlocking Transplant Tolerance with Biomaterials. Adv Healthc Mater 2024:e2400965. [PMID: 38843866 DOI: 10.1002/adhm.202400965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Indexed: 07/04/2024]
Abstract
For patients suffering from organ failure due to injury or autoimmune disease, allogeneic organ transplantation with chronic immunosuppression is considered the god standard in terms of clinical treatment. However, the true "holy grail" of transplant immunology is operational tolerance, in which the recipient exhibits a sustained lack of alloreactivity toward unencountered antigen presented by the donor graft. This outcome is resultant from critical changes to the phenotype and genotype of the immune repertoire predicated by the activation of specific signaling pathways responsive to soluble and mechanosensitive cues. Biomaterials have emerged as a medium for interfacing with and reprogramming these endogenous pathways toward tolerance in precise, minimally invasive, and spatiotemporally defined manners. By viewing seminal and contemporary breakthroughs in transplant tolerance induction through the lens of biomaterials-mediated immunomodulation strategies-which include intrinsic material immunogenicity, the depot effect, graft coatings, induction and delivery of tolerogenic immune cells, biomimicry of tolerogenic immune cells, and in situ reprogramming-this review emphasizes the stunning diversity of approaches in the field and spotlights exciting future directions for research to come.
Collapse
Affiliation(s)
- John-Paul A Pham
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - María M Coronel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
17
|
Sun Y, Zhang Y, Guo Y, He D, Xu W, Fang W, Zhang C, Zuo Y, Zhang Z. Electrical aligned polyurethane nerve guidance conduit modulates macrophage polarization and facilitates immunoregulatory peripheral nerve regeneration. J Nanobiotechnology 2024; 22:244. [PMID: 38735969 PMCID: PMC11089704 DOI: 10.1186/s12951-024-02507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
Biomaterials can modulate the local immune microenvironments to promote peripheral nerve regeneration. Inspired by the spatial orderly distribution and endogenous electric field of nerve fibers, we aimed to investigate the synergistic effects of electrical and topological cues on immune microenvironments of peripheral nerve regeneration. Nerve guidance conduits (NGCs) with aligned electrospun nanofibers were fabricated using a polyurethane copolymer containing a conductive aniline trimer and degradable L-lysine (PUAT). In vitro experiments showed that the aligned PUAT (A-PUAT) membranes promoted the recruitment of macrophages and induced their polarization towards the pro-healing M2 phenotype, which subsequently facilitated the migration and myelination of Schwann cells. Furthermore, NGCs fabricated from A-PUAT increased the proportion of pro-healing macrophages and improved peripheral nerve regeneration in a rat model of sciatic nerve injury. In conclusion, this study demonstrated the potential application of NGCs in peripheral nerve regeneration from an immunomodulatory perspective and revealed A-PUAT as a clinically-actionable strategy for peripheral nerve injury.
Collapse
Affiliation(s)
- Yiting Sun
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yinglong Zhang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Yibo Guo
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Dongming He
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Wanlin Xu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Wei Fang
- MOE Key Laboratory of Low-Grade Energy, Utilization Technologies and Systems, CQU-NUS Renewable, Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Chenping Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China.
| | - Zhen Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
- Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
18
|
Carvalho BG, Nakayama A, Miwa H, Han SW, de la Torre LG, Di Carlo D, Lee J, Kim HJ, Khademhosseini A, de Barros NR. Gelatin methacryloyl granular scaffolds for localized mRNA delivery. AGGREGATE (HOBOKEN, N.J.) 2024; 5:e464. [PMID: 38800607 PMCID: PMC11126212 DOI: 10.1002/agt2.464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
mRNA therapy is the intracellular delivery of messenger RNA (mRNA) to produce desired therapeutic proteins. Developing strategies for local mRNA delivery is still required where direct intra-articular injections are inappropriate for targeting a specific tissue. The mRNA delivery efficiency depends on protecting nucleic acids against nuclease-mediated degradation and safe site-specific intracellular delivery. Herein, we report novel mRNA-releasing matrices based on RGD-moiety-rich gelatin methacryloyl (GelMA) microporous annealed particle (MAP) scaffolds. GelMA concentration in aerogel-based microgels (μgels) produced through a microfluidic process, MAP stiffnesses, and microporosity are crucial parameters for cell adhesion, spreading, and proliferation. After being loaded with mRNA complexes, MAP scaffolds composed of 10 % GelMA μgels display excellent cell viability with increasing cell infiltration, adhesion, proliferation, and gene transfer. The intracellular delivery is achieved by the sustained release of mRNA complexes from MAP scaffolds and cell adhesion on mRNA-releasing scaffolds. These findings highlight that hybrid systems can achieve efficient protein expression by delivering mRNA complexes, making them promising mRNA-releasing biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Bruna Gregatti Carvalho
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), 13083-970, Brazil; Terasaki Institute for Biomedical Innovation (TIBI), 90064, USA
| | - Aya Nakayama
- Terasaki Institute for Biomedical Innovation (TIBI), 90064, USA
| | - Hiromi Miwa
- Department of Bioengineering, University of California at Los Angeles (UCLA), 90095, USA
| | - Sang Won Han
- Center for Cell Therapy and Molecular, Federal University of São Paulo (UNIFESP), 04044-010, Brazil
| | - Lucimara Gaziola de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), 13083-970, Brazil
| | - Dino Di Carlo
- Department of Bioengineering, University of California at Los Angeles (UCLA), 90095, USA
| | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Incheon 21983, Republic of Korea
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI), 90064, USA; College of Pharmacy, Korea University, 30019, Republic of Korea; Vellore Institute of Technology (VIT), Vellore, 632014, India
| | | | | |
Collapse
|
19
|
Chen Y, Zhang X, Wang Q, Du C, Dong CM. Wound microenvironment regulatory poly(L-glutamic acid) composite hydrogels containing metal ion-coordinated nanoparticles for effective hemostasis and wound healing. Biomater Sci 2024; 12:1211-1227. [PMID: 38240342 DOI: 10.1039/d3bm01978k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Regulating the wound microenvironment to promote proliferation, vascularization, and wound healing is challenging for hemostats and wound dressings. Herein, polypeptide composite hydrogels have been simply fabricated by mixing a smaller amount of metal ion-coordinated nanoparticles into dopamine-modified poly(L-glutamic acid) (PGA), which had a microporous size of 10-16 μm, photothermal conversion ability, good biocompatibility, and multiple biological activities. In vitro scratch healing of fibroblast L929 cells and the tube formation of HUVECs provide evidence that the PGA composite hydrogels could promote cell proliferation, migration, and angiogenesis with the assistance of mild photothermia. Moreover, these composite hydrogels plus mild photothermia could effectively eliminate reactive oxygen species (ROS), alleviate inflammation, and polarize the pro-inflammatory M1 macrophage phenotype into the pro-healing M2 phenotype to accelerate wound healing, as assessed by means of fluorescent microscopy, flow cytometry, and quantitative real-time polymerase chain reaction (qRT-PCR). Meanwhile, a rat liver bleeding model illustrates that the composite hydrogels reduced the blood loss ratio to about 10% and shortened the hemostasis time to about 25 s better than commercial chitosan-based hemostats. Furthermore, the full-thickness rat skin defect models showcase that the composite hydrogels plus mild photothermia could proheal wounds completely with a fast healing rate, optimal neovascularization, and collagen deposition. Therefore, the biodegradable polypeptide PGA composite hydrogels are promising as potent wound hemostats and dressings.
Collapse
Affiliation(s)
- Yanzheng Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xueliang Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Qing Wang
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, P. R. China
| | - Chang Du
- Clinical Cancer Institute, Center for Translational Medicine, Naval Military Medical University, Shanghai, 200433, P. R. China.
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
20
|
Li J, Zhao M, Liang J, Geng Z, Fan Y, Sun Y, Zhang X. Hollow Copper Sulfide Photothermal Nanodelivery Platform Boosts Angiogenesis of Diabetic Wound by Scavenging Reactive Oxygen Species. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4395-4407. [PMID: 38247262 DOI: 10.1021/acsami.3c15593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Sharply rising oxidative stress and ineffectual angiogenesis have imposed restrictions on diabetic wound healing. Here, a photothermal-responsive nanodelivery platform (HHC) was prepared by peroxidase (CAT)-loaded hollow copper sulfide dispersed in photocurable methacrylamide hyaluronan. The HHC could scavenge reactive oxygen species (ROS) and promote angiogenesis by photothermally driven CAT and Cu2+ release. Under near-infrared light irradiation, the HHC presented safe photothermal performance (<43 °C), efficient bacteriostatic ability against E. coli and S. aureus. It could rapidly release CAT into the external environment for decomposing H2O2 and oxygen generation to alleviate oxidative stress while promoting fibroblast migration and VEGF protein expression of endothelial cells by reducing intracellular ROS levels. The nanodelivery platform presented satisfactory therapeutic effects on murine diabetic wound healing by modulating tissue inflammation, promoting collagen deposition and increasing vascularization in the neodermis. This HHC provided a viable strategy for diabetic wound dressing design.
Collapse
Affiliation(s)
- Jiadong Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Mingda Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- Sichuan Testing Centre for Biomaterials and Medical Devices, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|