1
|
Liang JL, Cao Y, Lv K, Xiao B, Sun J. Amplifying Ca 2+ overload by engineered biomaterials for synergistic cancer therapy. Biomaterials 2025; 316:123027. [PMID: 39700532 DOI: 10.1016/j.biomaterials.2024.123027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Ca2+ overload is one of the most widely causes of inducing apoptosis, pyroptosis, immunogenic cell death, autophagy, paraptosis, necroptosis, and calcification of tumor cells, and has become the most valuable therapeutic strategy in the field of cancer treatment. Nevertheless, several challenges remain in translating Ca2+ overload-mediated therapeutic strategies into clinical applications, such as the precise control of Ca2+ dynamics, specificity of Ca2+ homeostasis dysregulation, as well as comprehensive mechanisms of Ca2+ regulation. Given this, we comprehensively reviewed the Ca2+-driven intracellular signaling pathways and the application of Ca2+-based biomaterials (such as CaCO3-, CaP-, CaO2-, CaSi-, CaF2-, and CaH2-) in mediating cancer diagnosis, treatment, and immunotherapy. Meanwhile, the latest researches on Ca2+ overload-mediated therapeutic strategies, as well as those combined with multiple-model therapies in mediating cancer immunotherapy are further highlighted. More importantly, the critical challenges and the future prospects of the Ca2+ overload-mediated therapeutic strategies are also discussed. By consolidating recent findings and identifying future research directions, this review aimed to advance the field of oncology therapy and contribute to the development of more effective and targeted treatment modalities.
Collapse
Affiliation(s)
- Jun-Long Liang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Yangyang Cao
- Hangzhou Ultra-theranostics Biopharmaceuticals Technology Co., Ltd., Hangzhou, 311231, China
| | - Kaiwei Lv
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Bing Xiao
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
2
|
Lu H, Liang B, Hu A, Zhou H, Jia C, Aji A, Chen Q, Ma Y, Cui W, Jiang L, Dong J. Engineered Biomimetic Cancer Cell Membrane Nanosystems Trigger Gas-Immunometabolic Therapy for Spinal-Metastasized Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412655. [PMID: 39529570 DOI: 10.1002/adma.202412655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Indexed: 11/16/2024]
Abstract
Despite great progress in enhancing tumor immunogenicity, conventional gas therapy cannot effectively reverse the tumor immunosuppressive microenvironment (TIME), limiting immunotherapy. The development of therapeutic gases that are tumor microenvironment responsive and efficiently reverse the TIME for precisely targeted tumor gas-immunometabolic therapy remains a great challenge. In this study, a novel cancer cell membrane-encapsulated pH-responsive nitric oxide (NO)-releasing biomimetic nanosystem (MP@AL) is prepared. Lactate oxidase (Lox) in MP@AL consumed oxygen to promote the decomposition of lactate, a metabolic by-product of tumor glycolysis, and the generation of H2O2, while L-arginine (L-Arg) in MP@AL is oxidized by H2O2 to generate nitric oxide (NO). For one thing, NO led to mitochondrial dysfunction in tumor cells to reduce oxygen consumption and promote the efficiency of Lox in lactate decomposition, thus reversing lactate-induced TIME; for another, NO effectively triggered immunogenic cell death, activated anti-tumor immune response and long-term immune memory, and ensured a favorable effect in the synergistic interaction with PD-L1 antibody for inhibiting tumor growth and recurrence. Therefore, a novel gas-immunometabolic therapy dual closed-loop nanosystem for enhancing tumor immunogenicity and remodeling lactate-induced TIME is established. Overall, this work will provide new ideas for gas therapy to effectively remodel the TIME to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Hongwei Lu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, P. R. China
| | - Bing Liang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, P. R. China
| | - Annan Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, P. R. China
| | - Hao Zhou
- Department of Orthopaedic Surgery, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, P. R. China
| | - Chao Jia
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, P. R. China
| | - Abudula Aji
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, P. R. China
| | - Qing Chen
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, P. R. China
| | - Yiqun Ma
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Libo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
3
|
Yang EL, Wang WY, Liu YQ, Yi H, Lei A, Sun ZJ. Tumor-Targeted Catalytic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413210. [PMID: 39676382 DOI: 10.1002/adma.202413210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Indexed: 12/17/2024]
Abstract
Cancer immunotherapy holds significant promise for improving cancer treatment efficacy; however, the low response rate remains a considerable challenge. To overcome this limitation, advanced catalytic materials offer potential in augmenting catalytic immunotherapy by modulating the immunosuppressive tumor microenvironment (TME) through precise biochemical reactions. Achieving optimal targeting precision and therapeutic efficacy necessitates a thorough understanding of the properties and underlying mechanisms of tumor-targeted catalytic materials. This review provides a comprehensive and systematic overview of recent advancements in tumor-targeted catalytic materials and their critical role in enhancing catalytic immunotherapy. It highlights the types of catalytic reactions, the construction strategies of catalytic materials, and their fundamental mechanisms for tumor targeting, including passive, bioactive, stimuli-responsive, and biomimetic targeting approaches. Furthermore, this review outlines various tumor-specific targeting strategies, encompassing tumor tissue, tumor cell, exogenous stimuli-responsive, TME-responsive, and cellular TME targeting strategies. Finally, the discussion addresses the challenges and future perspectives for transitioning catalytic materials into clinical applications, offering insights that pave the way for next-generation cancer therapies and provide substantial benefits to patients in clinical settings.
Collapse
Affiliation(s)
- En-Li Yang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Wu-Yin Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Ying-Qi Liu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Zhi-Jun Sun
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
4
|
Cai L, Sun T, Han F, Zhang H, Zhao J, Hu Q, Shi T, Zhou X, Cheng F, Peng C, Zhou Y, Long S, Sun W, Fan J, Du J, Peng X. Degradable and Piezoelectric Hollow ZnO Heterostructures for Sonodynamic Therapy and Pro-Death Autophagy. J Am Chem Soc 2024; 146:34188-34198. [PMID: 39582172 DOI: 10.1021/jacs.4c14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Piezoelectric materials can generate charges and reactive oxygen species (ROS) under external force stimulation for ultrasound-induced sonodynamic therapy (SDT). However, their poor piezoelectricity, fast electron-hole pair recombination rate, and biological toxicity of piezoelectric materials limit the therapeutic effects of piezoelectric SDT. In this study, hollow ZnO (HZnO) nanospheres were synthesized by using a one-step method. The hollow structure facilitated the deformation of HZnO under stimulation by ultrasound mechanical force and increased the piezoelectric constant. Subsequently, black phosphorus quantum dots (BPQDs) and arginine-glycine-aspartic acid peptide (RGD)-poly(ethylene glycol) (PEG) were combined with HZnO to further enhance the piezoelectric effect by constructing heterojunctions and enable tumor-targeting ability. During treatment, HZnO-BPQDs-PEG could degrade in an acidic tumor microenvironment and release Zn2+ and PO43- ions to induce pro-death autophagy. The ROS produced by SDT also accelerated autophagy and promoted ferroptosis in cancer cells. This study demonstrates that HZnO-BPQDs-PEG has a strong piezoelectric SDT effect and can effectively induce autophagy in cancer cells, providing a new idea for the design and application of piezoelectric materials for tumor therapy.
Collapse
Affiliation(s)
- Lihan Cai
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Tao Sun
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Fuping Han
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Han Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jiyu Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qiao Hu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Tiancong Shi
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiao Zhou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P. R. China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P. R. China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P. R. China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
5
|
Zang P, Yu C, Zhang R, Yang D, Gai S, Yang P, Lin J. Revealing the Optimization Route of Piezoelectric Sonosensitizers: From Mechanism to Engineering Methods. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401650. [PMID: 38712474 DOI: 10.1002/smll.202401650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/17/2024] [Indexed: 05/08/2024]
Abstract
Piezoelectric catalysis is a novel catalytic technology that has developed rapidly in recent years and has attracted extensive interest among researchers in the field of tumor therapy for its acoustic-sensitizing properties. Nevertheless, researchers are still controversial about the key technical difficulties in the modulation of piezoelectric sonosensitizers for tumor therapy applications, which is undoubtedly a major obstacle to the performance modulation of piezoelectric sonosensitizers. Clarification of this challenge will be beneficial to the design and optimization of piezoelectric sonosensitizers in the future. Here, the authors start from the mechanism of piezoelectric catalysis and elaborate the mechanism and methods of defect engineering and phase engineering for the performance modulation of piezoelectric sonosensitizers based on the energy band theory. The combined therapeutic strategy of piezoelectric sonosensitizers with enzyme catalysis and immunotherapy is introduced. Finally, the challenges and prospects of piezoelectric sonosensitizers are highlighted. Hopefully, the explorations can guide researchers toward the optimization of piezoelectric sonosensitizers and can be applied in their own research.
Collapse
Affiliation(s)
- Pengyu Zang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Chenghao Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Rui Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
6
|
Liang J, Tian X, Zhou M, Yan F, Fan J, Qin Y, Chen B, Huo X, Yu Z, Tian Y, Deng S, Peng Y, Wang Y, Liu B, Ma X. Shikonin and chitosan-silver nanoparticles synergize against triple-negative breast cancer through RIPK3-triggered necroptotic immunogenic cell death. Biomaterials 2024; 309:122608. [PMID: 38744189 DOI: 10.1016/j.biomaterials.2024.122608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Necroptotic immunogenic cell death (ICD) can activate the human immune system to treat the metastasis and recurrence of triple-negative breast cancer (TNBC). However, developing the necroptotic inducer and precisely delivering it to the tumor site is the key issue. Herein, we reported that the combination of shikonin (SHK) and chitosan silver nanoparticles (Chi-Ag NPs) effectively induced ICD by triggering necroptosis in 4T1 cells. Moreover, to address the lack of selectivity of drugs for in vivo application, we developed an MUC1 aptamer-targeted nanocomplex (MUC1@Chi-Ag@CPB@SHK, abbreviated as MUC1@ACS) for co-delivering SHK and Chi-Ag NPs. The accumulation of MUC1@ACS NPs at the tumor site showed a 6.02-fold increase compared to the free drug. Subsequently, upon reaching the tumor site, the acid-responsive release of SHK and Chi-Ag NPs from MUC1@ACS NPs cooperatively induced necroptosis in tumor cells by upregulating the expression of RIPK3, p-RIPK3, and tetrameric MLKL, thereby effectively triggering ICD. The sequential maturation of dendritic cells (DCs) subsequently enhanced the infiltration of CD8+ and CD4+ T cells in tumors, while inhibiting regulatory T cells (Treg cells), resulting in the effective treatment of primary and distal tumor growth and the inhibition of TNBC metastasis. This work highlights the importance of nanoparticles in mediating drug interactions during necroptotic ICD.
Collapse
Affiliation(s)
- Jiahao Liang
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiangge Tian
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Meirong Zhou
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Fei Yan
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jialong Fan
- College of Biology, Hunan University, Changsha, China
| | - Yan Qin
- College of Biology, Hunan University, Changsha, China
| | - Binlong Chen
- College of Biology, Hunan University, Changsha, China
| | - Xiaokui Huo
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhenlong Yu
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China.
| | - Yan Tian
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Sa Deng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yulin Peng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yan Wang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, China.
| | - Xiaochi Ma
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
7
|
Zheng X, Luo H, Li J, Yang Z, Zhuan X, Li X, Chen Y, Huo S, Zhou X. Zinc-doped bioactive glass-functionalized polyetheretherketone to enhance the biological response in bone regeneration. J Biomed Mater Res A 2024; 112:1565-1577. [PMID: 38514993 DOI: 10.1002/jbm.a.37710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Polyether ether ketone (PEEK) is gaining recognition as a highly promising polymer for orthopedic implants, attributed to its exceptional biocompatibility, ease of processing, and radiation resistance. However, its long-term in vivo application faces challenges, primarily due to suboptimal osseointegration from postimplantation inflammation and immune reactions. Consequently, biofunctionalization of PEEK implant surfaces emerges as a strategic approach to enhance osseointegration and increase the overall success rates of these implants. In our research, we engineered a multifaceted PEEK implant through the in situ integration of chitosan-coated zinc-doped bioactive glass nanoparticles (Zn-BGNs). This novel fabrication imbues the implant with immunomodulatory capabilities while bolstering its osseointegration potential. The biofunctionalized PEEK composite elicited several advantageous responses; it facilitated M2 macrophage polarization, curtailed the production of inflammatory mediators, and augmented the osteogenic differentiation of bone marrow mesenchymal stem cells. The experimental findings underscore the vital and intricate role of biofunctionalized PEEK implants in preserving normal bone immunity and metabolism. This study posits that utilizing chitosan-BGNs represents a direct and effective method for creating multifunctional implants. These implants are designed to facilitate biomineralization and immunomodulation, making them especially apt for orthopedic applications.
Collapse
Affiliation(s)
- Xiaoyu Zheng
- Guangdong Medical University, Zhanjiang, China
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Zhanjiang, China
| | - Han Luo
- Guangdong Medical University, Zhanjiang, China
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Zhanjiang, China
| | - Jingzhi Li
- Guangdong Medical University, Zhanjiang, China
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Zhanjiang, China
| | - Zhenyu Yang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Zhanjiang, China
- Southern Medical University, Guangzhou, China
| | - Xiaoquan Zhuan
- Southern Medical University, Guangzhou, China
- The Department of Orthopaedic, Clifford Hospital affiliated to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoquan Li
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Zhanjiang, China
| | - Yuting Chen
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Zhanjiang, China
| | - Shicheng Huo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Xiaozhong Zhou
- Guangdong Medical University, Zhanjiang, China
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Zhanjiang, China
- Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Ma J, Yuan M, Yang Z, Ma Z, Zhang J, Li Z, Ma P, Cheng Z, Lin J. Surface Oxygen Vacancies and Corona Polarization of Bi 4Ti 3O 12 Nanosheets for Synergistically Enhanced Sonopiezoelectric Therapy. J Am Chem Soc 2024; 146:22348-22359. [PMID: 39088418 DOI: 10.1021/jacs.4c05103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Sonopiezoelectric therapy, an ultrasound-activated piezoelectric nanomaterial for tumor treatment, has emerged as a novel alternative modality. However, the limited piezoelectric catalytic efficiency is a serious bottleneck for its practical application. Excellent piezoelectric catalysts with high piezoelectric coefficients, good deformability, large mechanical impact surface area, and abundant catalytically active sites still need to be developed urgently. In this study, the classical ferroelectric material, bismuth titanate (Bi4Ti3O12, BTO), is selected as a sonopiezoelectric sensitizer for tumor therapy. BTO generates electron-hole pairs under ultrasonic irradiation, which can react with the substrates in a sonocatalytic-driven redox reaction. Aiming to further improve the catalytic activity of BTO, modification of surface oxygen vacancies and treatment of corona polarization are envisioned in this study. Notably, modification of the surface oxygen vacancies reduces its bandgap and inhibits electron-hole recombination. Additionally, the corona polarization treatment immobilized the built-in electric field on BTO, further promoting the separation of electrons and holes. Consequently, these modifications greatly improve the sonocatalytic efficiency for in situ generation of cytotoxic ROS and CO, effectively eradicating the tumor.
Collapse
Affiliation(s)
- Jie Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhuang Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhizi Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jiashi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ziyao Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ziyong Cheng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Liu D, Sun S, Qiao H, Xin Q, Zhou S, Li L, Song N, Zhang L, Chen Q, Tian F, Mu X, Zhang S, Zhang J, Guo M, Wang H, Zhang XD, Zhang R. Ce 12V 6 Clusters with Multi-Enzymatic Activities for Sepsis Treatment. Adv Healthc Mater 2024:e2401581. [PMID: 39129228 DOI: 10.1002/adhm.202401581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Artificial enzymes, especially nanozymes, have attracted wide attention due to their controlled catalytic activity, selectivity, and stability. The rising Cerium-based nanozymes exhibit unique SOD-like activity, and Vanadium-based nanozymes always hold excellent GPx-like activity. However, most inflammatory diseases involve polymerase biocatalytic processes that require multi-enzyme activities. The nanocomposite can fulfill multi-enzymatic activity simultaneously, but large nanoparticles (>10 nm) cannot be excreted rapidly, leading to biosafety challenges. Herein, atomically precise Ce12V6 clusters with a size of 2.19 nm are constructed. The Ce12V6 clusters show excellent glutathione peroxidase (GPx) -like activity with a significantly lower Michaelis-Menten constant (Km, 0.0125 mM versus 0.03 mM of natural counterpart) and good activities mimic superoxide dismutase (SOD) and peroxidase (POD). The Ce12V6 clusters exhibit the ability to scavenge the ROS including O2 ·- and H2O2 via the cascade reactions of multi-enzymatic activities. Further, the Ce12V6 clusters modulate the proinflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) and consequently rescue the multi-organ failure in the lipopolysaccharide (LPS)-induced sepsis mouse model. With excellent biocompatibility, the Ce12V6 clusters show promise in the treatment of sepsis.
Collapse
Affiliation(s)
- Di Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Si Sun
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Huanhuan Qiao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Sufei Zhou
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Lingxia Li
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin, 300384, 18, China
| | - Lijie Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qi Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jing Zhang
- Department of Cardiology Tianjin Chest Hospital, Tianjin University, Tianjin, 300222, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin, 300384, 18, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Ruiping Zhang
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
10
|
Du Y, Zhao X, He F, Gong H, Yang J, Wu L, Cui X, Gai S, Yang P, Lin J. A Vacancy-Engineering Ferroelectric Nanomedicine for Cuproptosis/Apoptosis Co-Activated Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403253. [PMID: 38703184 DOI: 10.1002/adma.202403253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/14/2024] [Indexed: 05/06/2024]
Abstract
Low efficacy of immunotherapy due to the poor immunogenicity of most tumors and their insufficient infiltration by immune cells highlights the importance of inducing immunogenic cell death and activating immune system for achieving better treatment outcomes. Herein, ferroelectric Bi2CuO4 nanoparticles with rich copper vacancies (named BCO-VCu) are rationally designed and engineered for ferroelectricity-enhanced apoptosis, cuproptosis, and the subsequently evoked immunotherapy. In this structure, the suppressed recombination of the electron-hole pairs by the vacancies and the band bending by the ferroelectric polarization lead to high catalytic activity, triggering reactive oxygen species bursts and inducing apoptosis. The cell fragments produced by apoptosis serve as antigens to activate T cells. Moreover, due to the generated charge by the ferroelectric catalysis, this nanomedicine can act as "a smart switch" to open the cell membrane, promote nanomaterial endocytosis, and shut down the Cu+ outflow pathway to evoke cuproptosis, and thus a strong immune response is triggered by the reduced content of adenosine triphosphate. Ribonucleic acid transcription tests reveal the pathways related to immune response activation. Thus, this study firstly demonstrates a feasible strategy for enhancing the efficacy of immunotherapy using single ferroelectric semiconductor-induced apoptosis and cuproptosis.
Collapse
Affiliation(s)
- Yaqian Du
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xudong Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
- State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Haijiang Gong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jiani Yang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Linzhi Wu
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xianchang Cui
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
11
|
Fu S, Li Y, Shen L, Chen Y, Lu J, Ran Y, Zhao Y, Tang H, Tan L, Lin Q, Hao Y. Cu 2WS 4-PEG Nanozyme as Multifunctional Sensitizers for Enhancing Immuno-Radiotherapy by Inducing Ferroptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309537. [PMID: 38323716 DOI: 10.1002/smll.202309537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/04/2023] [Indexed: 02/08/2024]
Abstract
Unavoidable damage to normal tissues and tumor microenvironment (TME) resistance make it challenging to eradicate breast carcinoma through radiotherapy. Therefore, it is urgent to develop radiotherapy sensitizers that can effectively reduce radiation doses and reverse the suppressive TME. Here, a novel biomimetic PEGylated Cu2WS4 nanozyme (CWP) with multiple enzymatic activities is synthesized by the sacrificing template method to have physical radiosensitization and biocatalyzer-responsive effects on the TME. Experiment results show that CWP can improve the damage efficiency of radiotherapy on breast cancer cell 4T1 through its large X-ray attenuation coefficient of tungsten and nucleus-penetrating capacity. CWP also exhibit strong Fenton-like reactions that produced abundant ROS and GSH oxidase-like activity decreasing GSH. This destruction of redox balance further promotes the effectiveness of radiotherapy. Transcriptome sequencing reveals that CWP induced ferroptosis by regulating the KEAP1/NRF2/HMOX1/GPX4 molecules. Therefore, owing to its multiple enzymatic activities, high-atomic W elements, nucleus-penetrating, and ferroptosis-inducing capacities, CWP effectively improves the efficiency of radiotherapy for breast carcinoma in vitro and in vivo. Furthermore, CWP-mediated radiosensitization can trigger immunogenic cell death (ICD) to improve the anti-PD-L1 treatments to inhibit the growth of primary and distant tumors effectively. These results indicate that CWP is a multifunctional nano-sensitizers for radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Shiyan Fu
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Yong Li
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Li Shen
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Yonglai Chen
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Jingxuan Lu
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Yonghong Ran
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Yazhen Zhao
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Hong Tang
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Qinyang Lin
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Yuhui Hao
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| |
Collapse
|
12
|
Sheikh A, Kesharwani P, Almalki WH, Almujri SS, Dai L, Chen ZS, Sahebkar A, Gao F. Understanding the Novel Approach of Nanoferroptosis for Cancer Therapy. NANO-MICRO LETTERS 2024; 16:188. [PMID: 38698113 PMCID: PMC11065855 DOI: 10.1007/s40820-024-01399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/16/2024] [Indexed: 05/05/2024]
Abstract
As a new form of regulated cell death, ferroptosis has unraveled the unsolicited theory of intrinsic apoptosis resistance by cancer cells. The molecular mechanism of ferroptosis depends on the induction of oxidative stress through excessive reactive oxygen species accumulation and glutathione depletion to damage the structural integrity of cells. Due to their high loading and structural tunability, nanocarriers can escort the delivery of ferro-therapeutics to the desired site through enhanced permeation or retention effect or by active targeting. This review shed light on the necessity of iron in cancer cell growth and the fascinating features of ferroptosis in regulating the cell cycle and metastasis. Additionally, we discussed the effect of ferroptosis-mediated therapy using nanoplatforms and their chemical basis in overcoming the barriers to cancer therapy.
Collapse
Affiliation(s)
- Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Asir-Abha, Saudi Arabia
| | - Linxin Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, People's Republic of China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, 11439, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
13
|
Yang J, Du Y, Yao Y, Liao Y, Wang B, Yu X, Yuan K, Zhang Y, He F, Yang P. Employing Piezoelectric Mg 2+-Doped Hydroxyapatite to Target Death Receptor-Mediated Necroptosis: A Strategy for Amplifying Immune Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307130. [PMID: 38251202 PMCID: PMC10987113 DOI: 10.1002/advs.202307130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Although immunogenic cell death (ICD) inducers evidently enhance the effectiveness of immunotherapy, their potential is increasingly restricted by the development of apoptosis resistance in tumor cells, poor immunogenicity, and low T-cell immune responsiveness. In this study, for the first time, piezoelectrically catalyzed Mg2+-doped hydroxyapatite (Mg-HAP) nanoparticles, which are coated with a mesoporous silica layer and loaded with ONC201 as an agonist to specifically target the death receptor DR5 on tumor cells, ultimately developing an Mg-HAP@MS/ONC201 nanoparticle (MHMO NP) system, are engineered. Owing to its excellent piezoelectric properties, MHMO facilitates the release of a significant amount of reactive oxygen species and Ca2+ within tumor cells, effectively promoting the upregulation of DR5 expression and inducing tumor cell necroptosis to ultimately overcome apoptosis resistance. Concurrently, Mg2+ released in the tumor microenvironment promotes CD8+ T receptor activation in response to the antitumor immune reaction induced by ICD. Using RNA-seq analysis, it is elucidated that MHMO can activate the NF-κB pathway under piezoelectric catalysis, thus inducing M1-type macrophage polarization. In summary, a dual-targeting therapy system that targets both tumor cells and the tumor microenvironment under piezoelectric catalysis is designed. This system holds substantial potential for advancements in tumor immunotherapy.
Collapse
Affiliation(s)
- Jiani Yang
- Department of Gastrointestinal Medical OncologyHarbin Medical University Cancer HospitalHarbin150001P. R. China
- Key Laboratory of Tumor Immunology in HeilongjiangHarbin Medical University Cancer HospitalHarbin150080China
| | - Yaqian Du
- Key Laboratory of Superlight Materials and Surface TechnologyMinistry of EducationCollege of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbin150001P. R. China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical OncologyHarbin Medical University Cancer HospitalHarbin150001P. R. China
- Key Laboratory of Tumor Immunology in HeilongjiangHarbin Medical University Cancer HospitalHarbin150080China
| | - Yuanyu Liao
- Department of Gastrointestinal Medical OncologyHarbin Medical University Cancer HospitalHarbin150001P. R. China
- Key Laboratory of Tumor Immunology in HeilongjiangHarbin Medical University Cancer HospitalHarbin150080China
| | - Bojun Wang
- Department of Gastrointestinal Medical OncologyHarbin Medical University Cancer HospitalHarbin150001P. R. China
- Key Laboratory of Tumor Immunology in HeilongjiangHarbin Medical University Cancer HospitalHarbin150080China
| | - Xuefan Yu
- Department of Gastrointestinal Medical OncologyHarbin Medical University Cancer HospitalHarbin150001P. R. China
- Key Laboratory of Tumor Immunology in HeilongjiangHarbin Medical University Cancer HospitalHarbin150080China
| | - Kaikun Yuan
- Department of NeurosurgeryFirst Affiliated Hospital of Harbin Medical UniversityHarbin150001P. R. China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical OncologyHarbin Medical University Cancer HospitalHarbin150001P. R. China
- Key Laboratory of Tumor Immunology in HeilongjiangHarbin Medical University Cancer HospitalHarbin150080China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface TechnologyMinistry of EducationCollege of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbin150001P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface TechnologyMinistry of EducationCollege of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbin150001P. R. China
| |
Collapse
|