1
|
Zhao YX, Li HP, Cheng LH, Li CX, Pan J, Xu JH. A High-Throughput Visual Screen for the Directed Evolution of Cβ-stereoselectivity of L-threonine Aldolase. Chembiochem 2024:e202400637. [PMID: 39292512 DOI: 10.1002/cbic.202400637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/20/2024]
Abstract
L-Threonine aldolase (L-TA) is a pyridoxal phosphate-dependent enzyme that catalyzes the reversible condensation of glycine and aldehydes to form β-hydroxy-α-amino acids. The combination of directed evolution and efficient high-throughput screening methods is an effective strategy for enhancing the enzyme's catalytic performance. However, few feasible high-throughput methods exist for engineering the Cβ-stereoselectivity of L-TAs. Here, we present a novel method of screening for variants with improved Cβ-stereoselectivity; this method couples an L-threo-phenylserine dehydrogenase, which catalyzes the specific oxidation of L-threo-4-methylsulfonylphenylserine (L-threo-MTPS), with the concurrent synthesis of NADPH, which is easily detectable via 340-nm UV absorption. This enables the visual detection of L-threo-MTPS produced by L-TA through the measurement of generated NADPH. Using this method, we discover an L-TA variant with significantly higher diastereoselectivity, increasing from 0.98 % de (for the wild-type) to 71.9 % de.
Collapse
Affiliation(s)
- You-Xue Zhao
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Hai-Peng Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Li-Hang Cheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| |
Collapse
|
2
|
Hebert H, Sönmez E, Purhonen P, Widersten M. Structure of the iminium reaction intermediate in an engineered aldolase explains the carboligation activity toward arylated ketones and aldehydes. Structure 2024; 32:1322-1326.e4. [PMID: 39013461 DOI: 10.1016/j.str.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/28/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024]
Abstract
Two structures of fructose 6-phosphate aldolase, the wild-type and an engineered variant containing five active-site mutations, have been solved by cryoelectron microscopy (cryo-EM). The engineered variant affords production of aldols from aryl substituted ketones and aldehydes. This structure was solved to a resolution of 3.1 Å and contains the critical iminium reaction intermediate trapped in the active site. This provides new information that rationalizes the acquired substrate scope and aids in formulating hypotheses of the chemical mechanism. A Tyr residue (Y131) is positioned for a role as catalytic acid/base during the aldol reaction and the different structures demonstrate mobility of this amino acid residue. Further engineering of this fructose 6-phosphate aldolase (FSA) variant, guided by this new structure, identified additional FSA variants that display improved carboligation activities with 2-hydroxyacetophenone and phenylacetaldehyde.
Collapse
Affiliation(s)
- Hans Hebert
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 14152 Huddinge, Sweden.
| | - Eda Sönmez
- Department of Chemistry - BMC, Box 576, SE-751 23 Uppsala, Sweden
| | - Pasi Purhonen
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 14152 Huddinge, Sweden
| | - Mikael Widersten
- Department of Chemistry - BMC, Box 576, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
3
|
Zhao H. Recent advances in enzymatic carbon-carbon bond formation. RSC Adv 2024; 14:25932-25974. [PMID: 39161440 PMCID: PMC11331486 DOI: 10.1039/d4ra03885a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
Enzymatic carbon-carbon (C-C) bond formation reactions have become an effective and invaluable tool for designing new biological and medicinal molecules, often with asymmetric features. This review provides a systematic overview of key C-C bond formation reactions and enzymes, with the focus of reaction mechanisms and recent advances. These reactions include the aldol reaction, Henry reaction, Knoevenagel condensation, Michael addition, Friedel-Crafts alkylation and acylation, Mannich reaction, Morita-Baylis-Hillman (MBH) reaction, Diels-Alder reaction, acyloin condensations via Thiamine Diphosphate (ThDP)-dependent enzymes, oxidative and reductive C-C bond formation, C-C bond formation through C1 resource utilization, radical enzymes for C-C bond formation, and other C-C bond formation reactions.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Bioproducts and Biosystems Engineering, University of Minnesota St. Paul MN 55108 USA
| |
Collapse
|
4
|
Zhu Z, Hu Q, Fu Y, Tong Y, Zhou Z. Design and Evolution of an Enzyme for the Asymmetric Michael Addition of Cyclic Ketones to Nitroolefins by Enamine Catalysis. Angew Chem Int Ed Engl 2024; 63:e202404312. [PMID: 38783596 DOI: 10.1002/anie.202404312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/01/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Consistent introduction of novel enzymes is required for developing efficient biocatalysts for challenging biotransformations. Absorbing catalytic modes from organocatalysis may be fruitful for designing new-to-nature enzymes with novel functions. Herein we report a newly designed artificial enzyme harboring a catalytic pyrrolidine residue that catalyzes the asymmetric Michael addition of cyclic ketones to nitroolefins through enamine activation with high efficiency. Diverse chiral γ-nitro cyclic ketones with two stereocenters were efficiently prepared with excellent stereoselectivity (up to 97 % e.e., >20 : 1 d.r.) and good yield (up to 86 %). This work provides an efficient biocatalytic strategy for cyclic ketone functionalization, and highlights the usefulness of artificial enzymes for extending biocatalysis to further non-natural reactions.
Collapse
Affiliation(s)
- Zhixi Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Qinru Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yi Fu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yingjia Tong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhi Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
5
|
Nigro M, Sánchez-Moreno I, Benito-Arenas R, Valino AL, Iribarren AM, Veiga N, García-Junceda E, Lewkowicz ES. Synthesis of Chiral Acyclic Pyrimidine Nucleoside Analogues from DHAP-Dependent Aldolases. Biomolecules 2024; 14:750. [PMID: 39062466 PMCID: PMC11274987 DOI: 10.3390/biom14070750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Dihydroxyacetone phosphate (DHAP)-dependent aldolases catalyze the aldol addition of DHAP to a variety of aldehydes and generate compounds with two stereocenters. This reaction is useful to synthesize chiral acyclic nucleosides, which constitute a well-known class of antiviral drugs currently used. In such compounds, the chirality of the aliphatic chain, which mimics the open pentose residue, is crucial for activity. In this work, three DHAP-dependent aldolases: fructose-1,6-biphosphate aldolase from rabbit muscle, rhanmulose-1-phosphate aldolase from Thermotoga maritima, and fuculose-1-phosphate aldolase from Escherichia coli, were used as biocatalysts. Aldehyde derivatives of thymine and cytosine were used as acceptor substrates, generating new acyclic nucleoside analogues containing two new stereocenters with conversion yields between 70% and 90%. Moreover, structural analyses by molecular docking were carried out to gain insights into the diasteromeric excess observed.
Collapse
Affiliation(s)
- Mariano Nigro
- Laboratorio de Biotransformaciones y Química de Ácidos Nucleicos, Universidad Nacional de Quilmes, Bernal 1876, Argentina; (M.N.); (A.L.V.); (A.M.I.)
| | - Israél Sánchez-Moreno
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain; (I.S.-M.); (R.B.-A.)
| | - Raúl Benito-Arenas
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain; (I.S.-M.); (R.B.-A.)
| | - Ana L. Valino
- Laboratorio de Biotransformaciones y Química de Ácidos Nucleicos, Universidad Nacional de Quilmes, Bernal 1876, Argentina; (M.N.); (A.L.V.); (A.M.I.)
| | - Adolfo M. Iribarren
- Laboratorio de Biotransformaciones y Química de Ácidos Nucleicos, Universidad Nacional de Quilmes, Bernal 1876, Argentina; (M.N.); (A.L.V.); (A.M.I.)
| | - Nicolás Veiga
- Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República (UdelaR), Av. Gral. Flores 2124, Montevideo 11800, Uruguay;
| | - Eduardo García-Junceda
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain; (I.S.-M.); (R.B.-A.)
| | - Elizabeth S. Lewkowicz
- Laboratorio de Biotransformaciones y Química de Ácidos Nucleicos, Universidad Nacional de Quilmes, Bernal 1876, Argentina; (M.N.); (A.L.V.); (A.M.I.)
| |
Collapse
|
6
|
Bourgery C, Mendoza DJ, Garnier G, Mouterde LMM, Allais F. Immobilization of Adenosine Derivatives onto Cellulose Nanocrystals via Click Chemistry for Biocatalysis Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11315-11323. [PMID: 38394235 DOI: 10.1021/acsami.3c19025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Adenosine triphosphate (ATP) is a central molecule of organisms and is involved in many biological processes. It is also widely used in biocatalytic processes, especially as a substrate and precursor of many cofactors─such as nicotinamide adenine dinucleotide phosphate (NADP(H)), coenzyme A (CoA), and S-adenosylmethionine (SAM). Despite its great scientific interest and pivotal role, its use in industrial processes is impeded by its prohibitory cost. To overcome this limitation, we developed a greener synthesis of adenosine derivatives and efficiently selectively grafted them onto organic nanoparticles. In this study, cellulose nanocrystals were used as a model combined with click chemistry via a copper-catalyzed azide/alkyne cycloaddition reaction (CuAAC). The grafted adenosine triphosphate derivative fully retains its biocatalytic capability, enabling heterobiocatalysis for modern biochemical processes.
Collapse
Affiliation(s)
- Célestin Bourgery
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France
| | - David Joram Mendoza
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Gil Garnier
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Louis M M Mouterde
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
7
|
Royer SF, Gao X, Groleau RR, van der Kamp MW, Bull SD, Danson MJ, Crennell SJ. Structurally Informed Mutagenesis of a Stereochemically Promiscuous Aldolase Produces Mutants That Catalyze the Diastereoselective Syntheses of All Four Stereoisomers of 3-Deoxy-hexulosonic Acid. ACS Catal 2022; 12:11444-11455. [PMID: 36158901 PMCID: PMC9486944 DOI: 10.1021/acscatal.2c03285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Indexed: 11/29/2022]
Abstract
A 2-keto-3-deoxygluconate aldolase from the hyperthermophile Sulfolobus solfataricus catalyzes the nonstereoselective aldol reaction of pyruvate and d-glyceraldehyde to produce 2-keto-3-deoxygluconate (d-KDGlc) and 2-keto-3-deoxy-d-galactonate (d-KDGal). Previous investigations into curing the stereochemical promiscuity of this hyperstable aldolase used high-resolution structures of the aldolase bound to d-KDGlc or d-KDGal to identify critical amino acids involved in substrate binding for mutation. This structure-guided approach enabled mutant variants to be created that could stereoselectively catalyze the aldol reaction of pyruvate and natural d-glyceraldehyde to selectively afford d-KDGlc or d-KDGal. Here we describe the creation of two further mutants of this Sulfolobus aldolase that can be used to catalyze aldol reactions between pyruvate and non-natural l-glyceraldehyde to enable the diastereoselective synthesis of l-KDGlc and l-KDGal. High-resolution crystal structures of all four variant aldolases have been determined (both unliganded and liganded), including Variant 1 with d-KDGlc, Variant 2 with pyruvate, Variant 3 with l-KDGlc, and Variant 4 with l-KDGal. These structures have enabled us to rationalize the observed changes in diastereoselectivities in these variant-catalyzed aldol reactions at a molecular level. Interestingly, the active site of Variant 4 was found to be sufficiently flexible to enable catalytically important amino acids to be replaced while still retaining sufficient enzymic activity to enable production of l-KDGal.
Collapse
Affiliation(s)
- Sylvain F Royer
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| | - Xuan Gao
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Robin R Groleau
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Marc W van der Kamp
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Steven D Bull
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Michael J Danson
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| | - Susan J Crennell
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| |
Collapse
|
8
|
Hélaine V, Gastaldi C, Lemaire M, Clapés P, Guérard-Hélaine C. Recent Advances in the Substrate Selectivity of Aldolases. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Virgil Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Cédric Gastaldi
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Marielle Lemaire
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Pere Clapés
- Biological Chemistry Department, Institute for Advanced Chemistry of Catalonia, IQAC−CSIC, 08034 Barcelona, Spain
| | - Christine Guérard-Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| |
Collapse
|
9
|
Kunzendorf A, Xu G, van der Velde JJH, Rozeboom H, Thunnissen AMWH, Poelarends GJ. Unlocking Asymmetric Michael Additions in an Archetypical Class I Aldolase by Directed Evolution. ACS Catal 2021; 11:13236-13243. [PMID: 34765282 PMCID: PMC8576802 DOI: 10.1021/acscatal.1c03911] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/02/2021] [Indexed: 01/06/2023]
Abstract
Class I aldolases catalyze asymmetric aldol addition reactions and have found extensive application in the biocatalytic synthesis of chiral β-hydroxy-carbonyl compounds. However, the usefulness of these powerful enzymes for application in other C-C bond-forming reactions remains thus far unexplored. The redesign of class I aldolases to expand their catalytic repertoire to include non-native carboligation reactions therefore continues to be a major challenge. Here, we report the successful redesign of 2-deoxy-d-ribose-5-phosphate aldolase (DERA) from Escherichia coli, an archetypical class I aldolase, to proficiently catalyze enantioselective Michael additions of nitromethane to α,β-unsaturated aldehydes to yield various pharmaceutically relevant chiral synthons. After 11 rounds of directed evolution, the redesigned DERA enzyme (DERA-MA) carried 12 amino-acid substitutions and had an impressive 190-fold enhancement in catalytic activity compared to the wildtype enzyme. The high catalytic efficiency of DERA-MA for this abiological reaction makes it a proficient "Michaelase" with potential for biocatalytic application. Crystallographic analysis provides a structural context for the evolved activity. Whereas an aldolase acts naturally by activating the enzyme-bound substrate as a nucleophile (enamine-based mechanism), DERA-MA instead acts by activating the enzyme-bound substrate as an electrophile (iminium-based mechanism). This work demonstrates the power of directed evolution to expand the reaction scope of natural aldolases to include asymmetric Michael addition reactions and presents opportunities to explore iminium catalysis with DERA-derived catalysts inspired by developments in the organocatalysis field.
Collapse
Affiliation(s)
- Andreas Kunzendorf
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Guangcai Xu
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Jesse J. H. van der Velde
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henriëtte
J. Rozeboom
- Molecular
Enzymology Group, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Andy-Mark W. H. Thunnissen
- Molecular
Enzymology Group, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gerrit J. Poelarends
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
10
|
Catalytic and structural insights into a stereospecific and thermostable Class II aldolase HpaI from Acinetobacter baumannii. J Biol Chem 2021; 297:101280. [PMID: 34624314 PMCID: PMC8560999 DOI: 10.1016/j.jbc.2021.101280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 11/21/2022] Open
Abstract
Aldolases catalyze the reversible reactions of aldol condensation and cleavage and have strong potential for the synthesis of chiral compounds, widely used in pharmaceuticals. Here, we investigated a new Class II metal aldolase from the p-hydroxyphenylacetate degradation pathway in Acinetobacter baumannii, 4-hydroxy-2-keto-heptane-1,7-dioate aldolase (AbHpaI), which has various properties suitable for biocatalysis, including stereoselectivity/stereospecificity, broad aldehyde utilization, thermostability, and solvent tolerance. Notably, the use of Zn2+ by AbHpaI as a native cofactor is distinct from other enzymes in this class. AbHpaI can also use other metal ion (M2+) cofactors, except Ca2+, for catalysis. We found that Zn2+ yielded the highest enzyme complex thermostability (Tm of 87 °C) and solvent tolerance. All AbHpaI•M2+ complexes demonstrated preferential cleavage of (4R)-2-keto-3-deoxy-D-galactonate ((4R)-KDGal) over (4S)-2-keto-3-deoxy-D-gluconate ((4S)-KDGlu), with AbHpaI•Zn2+ displaying the highest R/S stereoselectivity ratio (sixfold higher than other M2+ cofactors). For the aldol condensation reaction, AbHpaI•M2+ only specifically forms (4R)-KDGal and not (4S)-KDGlu and preferentially catalyzes condensation rather than cleavage by ∼40-fold. Based on 11 X-ray structures of AbHpaI complexed with M2+ and ligands at 1.85 to 2.0 Å resolution, the data clearly indicate that the M2+ cofactors form an octahedral geometry with Glu151 and Asp177, pyruvate, and water molecules. Moreover, Arg72 in the Zn2+-bound form governs the stereoselectivity/stereospecificity of AbHpaI. X-ray structures also show that Ca2+ binds at the trimer interface via interaction with Asp51. Hence, we conclude that AbHpaI•Zn2+ is distinctive from its homologues in substrate stereospecificity, preference for aldol formation over cleavage, and protein robustness, and is attractive for biocatalytic applications.
Collapse
|
11
|
Gastaldi C, Ngahan Tagne R, Laurent V, Hélaine V, Petit J, Traïkia M, Berardinis V, Lemaire M, Guérard‐Hélaine C. One Step Forward in Exploration of Class II Pyruvate Aldolases Nucleophile and Electrophile Substrate Specificity. ChemCatChem 2021. [DOI: 10.1002/cctc.202100932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Cédric Gastaldi
- Institut de Chimie de Clermont-Ferrand Université Clermont Auvergne CNRS SIGMA Clermont 63000 Clermont-Ferrand France
| | - Rolande Ngahan Tagne
- Institut de Chimie de Clermont-Ferrand Université Clermont Auvergne CNRS SIGMA Clermont 63000 Clermont-Ferrand France
| | - Victor Laurent
- Institut de Chimie de Clermont-Ferrand Université Clermont Auvergne CNRS SIGMA Clermont 63000 Clermont-Ferrand France
| | - Virgil Hélaine
- Institut de Chimie de Clermont-Ferrand Université Clermont Auvergne CNRS SIGMA Clermont 63000 Clermont-Ferrand France
| | - Jean‐Louis Petit
- Génomique Métabolique Génoscope Institut François Jacob CEA CNRS Université Paris-Saclay Évry-Courcouronnes 91057 Evry France
| | - Mounir Traïkia
- Institut de Chimie de Clermont-Ferrand Université Clermont Auvergne CNRS SIGMA Clermont 63000 Clermont-Ferrand France
| | - Véronique Berardinis
- Génomique Métabolique Génoscope Institut François Jacob CEA CNRS Université Paris-Saclay Évry-Courcouronnes 91057 Evry France
| | - Marielle Lemaire
- Institut de Chimie de Clermont-Ferrand Université Clermont Auvergne CNRS SIGMA Clermont 63000 Clermont-Ferrand France
| | - Christine Guérard‐Hélaine
- Institut de Chimie de Clermont-Ferrand Université Clermont Auvergne CNRS SIGMA Clermont 63000 Clermont-Ferrand France
| |
Collapse
|
12
|
Hall M. Enzymatic strategies for asymmetric synthesis. RSC Chem Biol 2021; 2:958-989. [PMID: 34458820 PMCID: PMC8341948 DOI: 10.1039/d1cb00080b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Enzymes, at the turn of the 21st century, are gaining a momentum. Especially in the field of synthetic organic chemistry, a broad variety of biocatalysts are being applied in an increasing number of processes running at up to industrial scale. In addition to the advantages of employing enzymes under environmentally friendly reaction conditions, synthetic chemists are recognizing the value of enzymes connected to the exquisite selectivity of these natural (or engineered) catalysts. The use of hydrolases in enantioselective protocols paved the way to the application of enzymes in asymmetric synthesis, in particular in the context of biocatalytic (dynamic) kinetic resolutions. After two decades of impressive development, the field is now mature to propose a panel of catalytically diverse enzymes for (i) stereoselective reactions with prochiral compounds, such as double bond reduction and bond forming reactions, (ii) formal enantioselective replacement of one of two enantiotopic groups of prochiral substrates, as well as (iii) atroposelective reactions with noncentrally chiral compounds. In this review, the major enzymatic strategies broadly applicable in the asymmetric synthesis of optically pure chiral compounds are presented, with a focus on the reactions developed within the past decade.
Collapse
Affiliation(s)
- Mélanie Hall
- Institute of Chemistry, University of Graz Heinrichstrasse 28 8010 Graz Austria
- Field of Excellence BioHealth - University of Graz Austria
| |
Collapse
|
13
|
Liu M, Wei D, Wen Z, Wang JB. Progress in Stereoselective Construction of C-C Bonds Enabled by Aldolases and Hydroxynitrile Lyases. Front Bioeng Biotechnol 2021; 9:653682. [PMID: 33968915 PMCID: PMC8097096 DOI: 10.3389/fbioe.2021.653682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
The creation of C-C bonds is an effective strategy for constructing complex compounds from simple synthetic blocks. Although many methods have been developed for C-C bond construction, the stereoselective creation of new C-C bonds remains a challenge. The selectivities (enantioselectivity, regioselectivity, and chemoselectivity) of biocatalysts are higher than those of chemical catalysts, therefore biocatalysts are excellent candidates for use in stereoselective C-C bond formation. Here, we summarize progress made in the past 10 years in stereoselective C-C bond formation enabled by two classic types of enzyme, aldolases and hydroxynitrile lyases. The information in this review will enable the development of new routes to the stereoselective construction of C-C bonds.
Collapse
Affiliation(s)
- Mi Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, China.,Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, China
| | - Dan Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, China.,Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, China
| | - Zexing Wen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, China.,Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, China
| | - Jian-Bo Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, China.,Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, China
| |
Collapse
|
14
|
Moreno CJ, Hernández K, Charnok SJ, Gittings S, Bolte M, Joglar J, Bujons J, Parella T, Clapés P. Synthesis of γ-Hydroxy-α-amino Acid Derivatives by Enzymatic Tandem Aldol Addition-Transamination Reactions. ACS Catal 2021; 11:4660-4669. [PMID: 34603828 PMCID: PMC8482765 DOI: 10.1021/acscatal.1c00210] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/20/2021] [Indexed: 12/26/2022]
Abstract
![]()
Three
enzymatic routes toward γ-hydroxy-α-amino acids
by tandem aldol addition–transamination one-pot two-step reactions
are reported. The approaches feature an enantioselective aldol addition
of pyruvate to various nonaromatic aldehydes catalyzed by trans-o-hydroxybenzylidene pyruvate hydratase-aldolase
(HBPA) from Pseudomonas putida. This
affords chiral 4-hydroxy-2-oxo acids, which were subsequently enantioselectively
aminated using S-selective transaminases. Three transamination
processes were investigated involving different amine donors and transaminases:
(i) l-Ala as an amine donor with pyruvate recycling, (ii)
a benzylamine donor using benzaldehyde lyase from Pseudomonas
fluorescens Biovar I (BAL) to transform the benzaldehyde
formed into benzoin, minimizing equilibrium limitations, and (iii) l-Glu as an amine donor with a double cascade comprising branched-chain
α-amino acid aminotransferase (BCAT) and aspartate amino transferase
(AspAT), both from E. coli, using l-Asp as a substrate to regenerate l-Glu. The γ-hydroxy-α-amino
acids thus obtained were transformed into chiral α-amino-γ-butyrolactones,
structural motifs found in many biologically active compounds and
valuable intermediates for the synthesis of pharmaceutical agents.
Collapse
Affiliation(s)
- Carlos J. Moreno
- Institute for Advanced Chemistry of Catalonia, Department of Biological Chemistry, IQAC-CSIC, Jordi Girona 18-24, Barcelona 08034, Spain
| | - Karel Hernández
- Institute for Advanced Chemistry of Catalonia, Department of Biological Chemistry, IQAC-CSIC, Jordi Girona 18-24, Barcelona 08034, Spain
| | - Simon J. Charnok
- Prozomix Ltd. West End Industrial Estate, Haltwhistle, Northumberland NE49 9HA, U.K
| | - Samantha Gittings
- Prozomix Ltd. West End Industrial Estate, Haltwhistle, Northumberland NE49 9HA, U.K
| | - Michael Bolte
- Institut für Anorganische Chemie, J.-W.-Goethe-Universität, Frankfurt/Main, Germany
| | - Jesús Joglar
- Institute for Advanced Chemistry of Catalonia, Department of Biological Chemistry, IQAC-CSIC, Jordi Girona 18-24, Barcelona 08034, Spain
| | - Jordi Bujons
- Institute for Advanced Chemistry of Catalonia, Department of Biological Chemistry, IQAC-CSIC, Jordi Girona 18-24, Barcelona 08034, Spain
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Pere Clapés
- Institute for Advanced Chemistry of Catalonia, Department of Biological Chemistry, IQAC-CSIC, Jordi Girona 18-24, Barcelona 08034, Spain
| |
Collapse
|
15
|
He FF, Xin YY, Ma YX, Yang S, Fei H. Rational design to enhance the catalytic activity of 2-deoxy-D-ribose-5-phosphate aldolase from Pseudomonas syringae pv. syringae B728a. Protein Expr Purif 2021; 183:105863. [PMID: 33677085 DOI: 10.1016/j.pep.2021.105863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 11/24/2022]
Abstract
The 2-Deoxy-d-ribose-5-phosphate aldolase (DERA) enzyme in psychrophilic bacteria has gradually attracted the attention of researchers. A novel gene, deoC (681 bp), encoding DERAPsy, was identified in Pseudomonas syringae pv. syringae B728a, recombinantly expressed in E. coli BL21 and purified via affinity chromatography, which yielded a homodimeric enzyme of 23 kDa. The specific activity of DERAPsy toward 2-deoxy-d-ribose-5-phosphate (DR5P) was 7.37 ± 0.03 U/mg, and 61.32% of its initial activity remained after incubation in 300 mM acetaldehyde at 25 °C for 2 h. Based on the calculation results (dock binding free energy) with the ligand chloroacetaldehyde (CAH), five target substitutions (T16L, F69R, V66K, S188V, and G189R) were identified, in which the DERAPsy mutant (G189R) exhibited higher catalytic activity toward DR5P than DERAPsy. Only the DERAPsy mutant (V66K) exhibited 12% higher activity toward chloroacetaldehyde and acetaldehyde condensation reactions than DERAPsy. Fortunately, the aldehyde tolerance of these mutants exhibited no significant decline compared with the wild type. These results indicate an effective strategy for enhancing DERA activity.
Collapse
Affiliation(s)
- Fei-Fan He
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yi-Yao Xin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Yuan-Xin Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China.
| | - Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
16
|
Zhong X, Zhong Z, Wu Z, Ye Z, Feng Y, Dong S, Liu X, Peng Q, Feng X. Chiral Lewis acid-bonded picolinaldehyde enables enantiodivergent carbonyl catalysis in the Mannich/condensation reaction of glycine ester. Chem Sci 2021; 12:4353-4360. [PMID: 34163698 PMCID: PMC8179594 DOI: 10.1039/d0sc07052a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/22/2021] [Indexed: 01/18/2023] Open
Abstract
A new strategy of asymmetric carbonyl catalysis via a chiral Lewis acid-bonded aldehyde has been developed for the direct Mannich/condensation cascade reaction of glycine ester with aromatic aldimines. The co-catalytic system of 2-picolinaldehyde and chiral YbIII-N,N'-dioxides was identified to be efficient under mild conditions, providing a series of trisubstituted imidazolidines in moderate to good yields with high diastereo- and enantioselectivities. Enantiodivergent synthesis was achieved via changing the sub-structures of the chiral ligands. The reaction could be carried out in a three-component version involving glycine ester, aldehydes, and anilines with equally good results. Based on control experiments, the X-ray crystal structure study and theoretical calculations, a possible dual-activation mechanism and stereo-control modes were provided to elucidate carbonyl catalysis and enantiodivergence.
Collapse
Affiliation(s)
- Xia Zhong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China http://www.scu.edu.cn/chem_asl/
| | - Ziwei Zhong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China http://www.scu.edu.cn/chem_asl/
| | - Zhikun Wu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China http://www.scu.edu.cn/chem_asl/
| | - Zhen Ye
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University 94 Weijin Road Tianjin 300071 P. R. China
| | - Yuxiang Feng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University 94 Weijin Road Tianjin 300071 P. R. China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China http://www.scu.edu.cn/chem_asl/
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China http://www.scu.edu.cn/chem_asl/
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University 94 Weijin Road Tianjin 300071 P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China http://www.scu.edu.cn/chem_asl/
| |
Collapse
|
17
|
Marín-Valls R, Hernández K, Bolte M, Parella T, Joglar J, Bujons J, Clapés P. Biocatalytic Construction of Quaternary Centers by Aldol Addition of 3,3-Disubstituted 2-Oxoacid Derivatives to Aldehydes. J Am Chem Soc 2020; 142:19754-19762. [PMID: 33147013 DOI: 10.1021/jacs.0c09994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The congested nature of quaternary carbons hinders their preparation, most notably when stereocontrol is required. Here we report a biocatalytic method for the creation of quaternary carbon centers with broad substrate scope, leading to different compound classes bearing this structural feature. The key step comprises the aldol addition of 3,3-disubstituted 2-oxoacids to aldehydes catalyzed by metal dependent 3-methyl-2-oxobutanoate hydroxymethyltransferase from E. coli (KPHMT) and variants thereof. The 3,3,3-trisubstituted 2-oxoacids thus produced were converted into 2-oxolactones and 3-hydroxy acids and directly to ulosonic acid derivatives, all bearing gem-dialkyl, gem-cycloalkyl, and spirocyclic quaternary centers. In addition, some of these reactions use a single enantiomer from racemic nucleophiles to afford stereopure quaternary carbons. The notable substrate tolerance and stereocontrol of these enzymes are indicative of their potential for the synthesis of structurally intricate molecules.
Collapse
Affiliation(s)
- Roser Marín-Valls
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Karel Hernández
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Michael Bolte
- Institut für Anorganische Chemie, J.-W.-Goethe-Universität, Frankfurt/Main, Germany
| | - Teodor Parella
- Servei de Ressonancia Magnetica Nuclear, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jesús Joglar
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Jordi Bujons
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Pere Clapés
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
18
|
Yang Y, Hu J, Fang H, Hou X, Hou Z, Sang L, Yang X. Enantioseparation of lysine derivatives on amylose tris (3, 5-dimethylphenylcarbamate) as chiral stationary phase with high separation factor. J Chromatogr A 2020; 1632:461598. [DOI: 10.1016/j.chroma.2020.461598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 01/10/2023]
|
19
|
Rigual AJ, Cantero J, Risso M, Rodríguez P, Rodríguez S, Paulino M, Gamenara D, Veiga N. New mechanistic insights into the reversible aldol reaction catalysed by Rhamnulose-1-phosphate aldolase from Escherichia coli. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Abstract
Formation of carbon-carbon bonds is central to synthetic chemistry. The aldol reaction provides the chemistry to fuse a nucleophilic enolate with an electrophilic aldehyde to form a new CC bond between two newly formed asymmetric centers. A major challenge in the reaction is steering the stereochemistry of the product. Aldolases are lyases that catalyze aldol reactions as well as the retro-aldol cleavage, and are abundant in cellular metabolism. Due to the often exquisite stereoselectivity in aldolase catalyzed carboligation reactions, these enzymes are gaining increased interest as potentially important tools in asymmetric synthesis of new useful compounds. Fructose 6-phosphate aldolase from Escherichia coli (FSA) is of special interest because of its very unusual independence of phosphorylated reactant substrates. The current text describes the protein engineering of FSA, applying principles of directed evolution, for the generation, production and characterization of new aldolase variants. A range of new enantiopure polyhydroxylated compounds were produced applying isolated FSA variants.
Collapse
Affiliation(s)
- Mikael Widersten
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
21
|
Macdonald DS, Garrabou X, Klaus C, Verez R, Mori T, Hilvert D. Engineered Artificial Carboligases Facilitate Regioselective Preparation of Enantioenriched Aldol Adducts. J Am Chem Soc 2020; 142:10250-10254. [PMID: 32427470 DOI: 10.1021/jacs.0c02351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Controlling regio- and stereoselectivity of aldol additions is generally challenging. Here we show that an artificial aldolase with high specificity for acetone as the aldol donor can be reengineered via single active site mutations to accept linear and cyclic aliphatic ketones with notable efficiency, regioselectivity, and stereocontrol. Biochemical and crystallographic data show how the mutated residues modulate the binding and activation of specific aldol donors, as well as their subsequent reaction with diverse aldehyde acceptors. Broadening the substrate scope of this evolutionarily naïve catalyst proved much easier than previous attempts to redesign natural aldolases, suggesting that such proteins may be excellent starting points for the development of customized biocatalysts for diverse practical applications.
Collapse
Affiliation(s)
| | - Xavier Garrabou
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Cindy Klaus
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Rebecca Verez
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Takahiro Mori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
22
|
Chen Z, Li Z, Li F, Wang N, Gao XD. Characterization of alditol oxidase from Streptomyces coelicolor and its application in the production of rare sugars. Bioorg Med Chem 2020; 28:115464. [DOI: 10.1016/j.bmc.2020.115464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/21/2020] [Accepted: 03/23/2020] [Indexed: 01/06/2023]
|
23
|
Xuan K, Yang G, Wu Z, Xu Y, Zhang R. Efficient synthesis of (3R,5S)-6-chloro-2,4,6-trideoxyhexapyranose by using new 2-deoxy-d-ribose-5-phosphate aldolase from Streptococcus suis with moderate activity and aldehyde tolerance. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Synthesizing Chiral Drug Intermediates by Biocatalysis. Appl Biochem Biotechnol 2020; 192:146-179. [DOI: 10.1007/s12010-020-03272-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/13/2020] [Indexed: 01/16/2023]
|
25
|
Saifuddin M, Guo C, Biewenga L, Saravanan T, Charnock SJ, Poelarends GJ. Enantioselective Aldol Addition of Acetaldehyde to Aromatic Aldehydes Catalyzed by Proline-Based Carboligases. ACS Catal 2020; 10:2522-2527. [PMID: 32117575 PMCID: PMC7045556 DOI: 10.1021/acscatal.0c00039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/27/2020] [Indexed: 01/22/2023]
Abstract
![]()
Aromatic
β-hydroxyaldehydes, 1,3-diols, and α,β-unsaturated
aldehydes are valuable precursors to biologically active natural products
and drug molecules. Herein we report the biocatalytic aldol condensation
of acetaldehyde with various aromatic aldehydes to give a number of
aromatic α,β-unsaturated aldehydes using a previously
engineered variant of 4-oxalocrotonate tautomerase [4-OT(M45T/F50A)]
as carboligase. Moreover, an efficient one-pot two-step chemoenzymatic
route toward chiral aromatic 1,3-diols has been developed. This one-pot
chemoenzymatic strategy successfully combined a highly enantioselective
aldol addition step catalyzed by a proline-based carboligase [4-OT(M45T/F50A)
or TAUT015] with a chemical reduction step to convert enzymatically
prepared aromatic β-hydroxyaldehydes into the corresponding
1,3-diols with high optical purity (e.r. up to >99:1) and in good
isolated yield (51–92%). These developed (chemo)enzymatic methodologies
offer alternative synthetic choices to prepare a variety of important
drug precursors.
Collapse
Affiliation(s)
- Mohammad Saifuddin
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Chao Guo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lieuwe Biewenga
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Thangavelu Saravanan
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Simon J. Charnock
- Prozomix Ltd., Station Court, Haltwhistle, Northumberland NE49 9HN, U.K
| | - Gerrit J. Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
26
|
Biewenga L, Crotti M, Saifuddin M, Poelarends GJ. Selective Colorimetric "Turn-On" Probe for Efficient Engineering of Iminium Biocatalysis. ACS OMEGA 2020; 5:2397-2405. [PMID: 32064400 PMCID: PMC7017405 DOI: 10.1021/acsomega.9b03849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
The efficient engineering of iminium biocatalysis has drawn considerable attention, with many applications in pharmaceutical synthesis. Here, we report a tailor-made iminium-activated colorimetric "turn-on" probe, specifically designed as a prescreening tool to facilitate engineering of iminium biocatalysis. Upon complexation of the probe with the catalytic Pro-1 residue of the model enzyme 4-oxalocrotonate tautomerase (4-OT), a brightly colored merocyanine-dye-type structure is formed. 4-OT mutants that formed this brightly colored species upon incubation with the probe proved to have a substantial activity for the iminium-based Michael-type addition of nitromethane to cinnamaldehyde, whereas mutants that showed no staining by the probe exhibited no or very low-level "Michaelase" activity. This system was exploited in a solid-phase prescreening assay termed as activated iminium colony staining (AICS) to enrich libraries for active mutants. AICS prescreening reduced the screening effort up to 20-fold. After two rounds of directed evolution, two artificial Michaelases were identified with up to 39-fold improvement in the activity for the addition of nitromethane to cinnamaldehyde, yielding the target γ-nitroaldehyde product with excellent isolated yield (up to 95%) and enantiopurity (up to >99% ee). The colorimetric activation of the turn-on probe could be extended to the class I aldolase 2-deoxy-d-ribose 5-phosphate aldolase, implicating a broader application of AICS in engineering iminium biocatalysis.
Collapse
|
27
|
Laurent V, Gourbeyre L, Uzel A, Hélaine V, Nauton L, Traïkia M, de Berardinis V, Salanoubat M, Gefflaut T, Lemaire M, Guérard-Hélaine C. Pyruvate Aldolases Catalyze Cross-Aldol Reactions between Ketones: Highly Selective Access to Multi-Functionalized Tertiary Alcohols. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05512] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Victor Laurent
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Léa Gourbeyre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Alexandre Uzel
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Virgil Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Lionel Nauton
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Mounir Traïkia
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Véronique de Berardinis
- Génomique Métabolique, Génoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Marcel Salanoubat
- Génomique Métabolique, Génoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Thierry Gefflaut
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Marielle Lemaire
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Christine Guérard-Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| |
Collapse
|
28
|
Desmons S, Fauré R, Bontemps S. Formaldehyde as a Promising C1 Source: The Instrumental Role of Biocatalysis for Stereocontrolled Reactions. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03128] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sarah Desmons
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Régis Fauré
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | |
Collapse
|
29
|
Germer P, Gauchenova E, Walter L, Müller M. Thiamine Diphosphate Dependent KdcA‐Catalysed Formyl Elongation of Aldehydes. ChemCatChem 2019. [DOI: 10.1002/cctc.201900712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Philipp Germer
- Institut für Pharmazeutische WissenschaftenAlbert-Ludwigs-Universität Freiburg Albertstrasse 25 Freiburg 79104 Germany
| | - Ekaterina Gauchenova
- Institut für Pharmazeutische WissenschaftenAlbert-Ludwigs-Universität Freiburg Albertstrasse 25 Freiburg 79104 Germany
| | - Lydia Walter
- Institut für Pharmazeutische WissenschaftenAlbert-Ludwigs-Universität Freiburg Albertstrasse 25 Freiburg 79104 Germany
| | - Michael Müller
- Institut für Pharmazeutische WissenschaftenAlbert-Ludwigs-Universität Freiburg Albertstrasse 25 Freiburg 79104 Germany
| |
Collapse
|
30
|
Chambre D, Guérard-Hélaine C, Darii E, Mariage A, Petit JL, Salanoubat M, de Berardinis V, Lemaire M, Hélaine V. 2-Deoxyribose-5-phosphate aldolase, a remarkably tolerant aldolase towards nucleophile substrates. Chem Commun (Camb) 2019; 55:7498-7501. [PMID: 31187106 DOI: 10.1039/c9cc03361k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We explored a collection of 2-deoxyribose-5-phosphate aldolases (DERAs) from biodiversity for their nucleophile substrate promiscuity. The DERAs were screened using as nucleophiles propanone, propanal, cyclobutanone, cyclopentanone, dihydroxyacetone, and glycolaldehyde with l-glyceraldehyde-3-phosphate as an electrophile in aldol addition. A DERA from Arthrobacter chlorophenolicus (DERAArthro) efficiently allowed the synthesis of the corresponding aldol adducts in good yields, displaying complementarity in terms of configuration and substrate specificity with fructose-6-phosphate aldolase, the only previously known aldolase with a large nucleophile tolerance.
Collapse
Affiliation(s)
- Domitille Chambre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | - Christine Guérard-Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | - Ekaterina Darii
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Aline Mariage
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Jean-Louis Petit
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Marcel Salanoubat
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Véronique de Berardinis
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Marielle Lemaire
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | - Virgil Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
31
|
Al-Smadi D, Enugala TR, Kessler V, Mhashal AR, Lynn Kamerlin SC, Kihlberg J, Norberg T, Widersten M. Chemical and Biochemical Approaches for the Synthesis of Substituted Dihydroxybutanones and Di- and Tri-Hydroxypentanones. J Org Chem 2019; 84:6982-6991. [PMID: 31066559 DOI: 10.1021/acs.joc.9b00742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyhydroxylated compounds are building blocks for the synthesis of carbohydrates and other natural products. Their synthesis is mainly achieved by different synthetic versions of aldol-coupling reactions, catalyzed either by organocatalysts, enzymes, or metal-organic catalysts. We have investigated the formation of 1,4-substituted 2,3-dihydroxybutan-1-one derivatives from para- and meta-substituted phenylacetaldehydes by three distinctly different strategies. The first involved a direct aldol reaction with hydroxyacetone, dihydroxyacetone, or 2-hydroxyacetophenone, catalyzed by the cinchona derivative cinchonine. The second was reductive cross-coupling with methyl- or phenylglyoxal promoted by SmI2, resulting in either 5-substituted 3,4-dihydroxypentan-2-ones or 1,4 bis-phenyl-substituted butanones, respectively. Finally, in the third case, aldolase catalysis was employed for synthesis of the corresponding 1,3,4-trihydroxylated pentan-2-one derivatives. The organocatalytic route with cinchonine generated distereomerically enriched syn-products (de = 60-99%), with moderate enantiomeric excesses (ee = 43-56%) but did not produce aldols with either hydroxyacetone or dihydroxyacetone as donor ketones. The SmI2-promoted reductive cross-coupling generated product mixtures with diastereomeric and enantiomeric ratios close to unity. This route allowed for the production of both 1-methyl- and 1-phenyl-substituted 2,3-dihydroxybutanones at yields between 40-60%. Finally, the biocatalytic approach resulted in enantiopure syn-(3 R,4 S) 1,3,4-trihydroxypentan-2-ones.
Collapse
Affiliation(s)
- Derar Al-Smadi
- Department of Chemistry-BMC , Uppsala University , Box 576, SE-751 23 Uppsala , Sweden
| | - Thilak Reddy Enugala
- Department of Chemistry-BMC , Uppsala University , Box 576, SE-751 23 Uppsala , Sweden
| | - Vadim Kessler
- Department of Molecular Sciences , Swedish University of Agricultural Sciences , Box 7015, SE-750 07 Uppsala , Sweden
| | - Anil Ranu Mhashal
- Department of Chemistry-BMC , Uppsala University , Box 576, SE-751 23 Uppsala , Sweden
| | | | - Jan Kihlberg
- Department of Chemistry-BMC , Uppsala University , Box 576, SE-751 23 Uppsala , Sweden
| | - Thomas Norberg
- Department of Chemistry-BMC , Uppsala University , Box 576, SE-751 23 Uppsala , Sweden
| | - Mikael Widersten
- Department of Chemistry-BMC , Uppsala University , Box 576, SE-751 23 Uppsala , Sweden
| |
Collapse
|
32
|
Laurent V, Uzel A, Hélaine V, Nauton L, Traïkia M, Gefflaut T, Salanoubat M, de Berardinis V, Lemaire M, Guérard‐Hélaine C. Exploration of Aldol Reactions Catalyzed by Stereoselective Pyruvate Aldolases with 2‐Oxobutyric Acid as Nucleophile. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- V. Laurent
- Université Clermont AuvergneCNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand 63000 Clermont-Ferrand France
| | - A. Uzel
- Université Clermont AuvergneCNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand 63000 Clermont-Ferrand France
| | - V. Hélaine
- Université Clermont AuvergneCNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand 63000 Clermont-Ferrand France
| | - L. Nauton
- Université Clermont AuvergneCNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand 63000 Clermont-Ferrand France
| | - M. Traïkia
- Université Clermont AuvergneCNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand 63000 Clermont-Ferrand France
| | - T. Gefflaut
- Université Clermont AuvergneCNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand 63000 Clermont-Ferrand France
| | - M. Salanoubat
- Génomique Métabolique, Génoscope, Institut François Jacob, CEA, CNRS, Univ. EvryUniversité Paris-Saclay 91057 Evry France
| | - V. de Berardinis
- Génomique Métabolique, Génoscope, Institut François Jacob, CEA, CNRS, Univ. EvryUniversité Paris-Saclay 91057 Evry France
| | - M. Lemaire
- Université Clermont AuvergneCNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand 63000 Clermont-Ferrand France
| | - C. Guérard‐Hélaine
- Université Clermont AuvergneCNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand 63000 Clermont-Ferrand France
| |
Collapse
|
33
|
Heterologous expression and characterization of novel 2-Deoxy-d-ribose-5-phosphate aldolase (DERA) from Pyrobaculum calidifontis and Meiothermus ruber. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Chen L, Luo MJ, Zhu F, Wen W, Guo QX. Combining Chiral Aldehyde Catalysis and Transition-Metal Catalysis for Enantioselective α-Allylic Alkylation of Amino Acid Esters. J Am Chem Soc 2019; 141:5159-5163. [PMID: 30896937 DOI: 10.1021/jacs.9b01910] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A chiral aldehyde is rationally combined with a Lewis acid and a transition metal for the first time to form a triple catalytic system. This cocatalytic system exhibits good catalytic activation and stereoselective-control abilities in the asymmetric α-allylation reaction of N-unprotected amino acid esters and allyl acetates. Optically active α,α-disubstituted α-amino acids (α-AAs) are generated in good yields (up to 87%) and enantioselectivities (up to 96% ee). Preliminary mechanism investigation indicates that the chiral aldehyde 3f acts both as an organocatalyst to activate the amino acid ester via the formation of a Schiff base, and as a ligand to facilitate the nucleophilic attack process by coordinating with π-allyl Pd(II) species.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Ming-Jing Luo
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Fang Zhu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| |
Collapse
|
35
|
Sudar M, Findrik Z, Szekrenyi A, Clapés P, Vasić-Rački Đ. Reactor and microreactor performance and kinetics of the aldol addition of dihydroxyacetone to benzyloxycarbonyl-N-3-aminopropanal catalyzed by D-fructose-6-phosphate aldolase variant A129G. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2018.1538975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Martina Sudar
- Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Zvjezdana Findrik
- Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Anna Szekrenyi
- IQAC-CSIC, Institute of Advanced Chemistry of Catalonia Biotransformation and Bioactive Molecules Group, Barcelona, Spain
| | - Pere Clapés
- IQAC-CSIC, Institute of Advanced Chemistry of Catalonia Biotransformation and Bioactive Molecules Group, Barcelona, Spain
| | - Đurđa Vasić-Rački
- Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
36
|
Chen BS, Ribeiro de Souza FZ. Enzymatic synthesis of enantiopure alcohols: current state and perspectives. RSC Adv 2019; 9:2102-2115. [PMID: 35516160 PMCID: PMC9059855 DOI: 10.1039/c8ra09004a] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
Enantiomerically pure alcohols, as key intermediates, play an essential role in the pharmaceutical, agrochemical and chemical industries. Among the methods used for their production, biotechnological approaches are generally considered a green and effective alternative due to their mild reaction conditions and remarkable enantioselectivity. An increasing number of enzymatic strategies for the synthesis of these compounds has been developed over the years, among which seven primary methodologies can be distinguished as follows: (1) enantioselective water addition to alkenes, (2) enantioselective aldol addition, (3) enantioselective coupling of ketones with hydrogen cyanide, (4) asymmetric reduction of carbonyl compounds, (5) (dynamic) kinetic resolution of racemates, (6) enantioselective hydrolysis of epoxides, and (7) stereoselective hydroxylation of unactivated C-H bonds. Some recent reviews have examined these approaches separately; however, to date, no review has included all the above mentioned strategies. The aim of this mini-review is to provide an overview of all seven enzymatic strategies and draw conclusions on the effect of each approach.
Collapse
Affiliation(s)
- Bi-Shuang Chen
- School of Marine Sciences, Sun Yat-Sen University Guangzhou 510275 China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University Guangzhou 510275 China
| | | |
Collapse
|
37
|
Haridas M, Abdelraheem EMM, Hanefeld U. 2-Deoxy-D-ribose-5-phosphate aldolase (DERA): applications and modifications. Appl Microbiol Biotechnol 2018; 102:9959-9971. [PMID: 30284013 PMCID: PMC6244999 DOI: 10.1007/s00253-018-9392-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/25/2022]
Abstract
2-Deoxy-D-ribose-5-phosphate aldolase (DERA) is a class I aldolase that offers access to several building blocks for organic synthesis. It catalyzes the stereoselective C-C bond formation between acetaldehyde and numerous other aldehydes. However, the practical application of DERA as a biocatalyst is limited by its poor tolerance towards industrially relevant concentrations of aldehydes, in particular acetaldehyde. Therefore, the development of proper experimental conditions, including protein engineering and/or immobilization on appropriate supports, is required. The present review is aimed to provide a brief overview of DERA, its history, and progress made in understanding the functioning of the enzyme. Furthermore, the current understanding regarding aldehyde resistance of DERA and the various optimizations carried out to modify this property are discussed.
Collapse
Affiliation(s)
- Meera Haridas
- Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Eman M M Abdelraheem
- Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
- Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Ulf Hanefeld
- Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
38
|
Yang J, Zhu Y, Qu G, Zeng Y, Tian C, Dong C, Men Y, Dai L, Sun Z, Sun Y, Ma Y. Biosynthesis of dendroketose from different carbon sources using in vitro and in vivo metabolic engineering strategies. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:290. [PMID: 30386427 PMCID: PMC6202814 DOI: 10.1186/s13068-018-1293-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Asymmetric aldol-type C-C bond formation with ketones used as electrophilic receptor remains a challenging reaction for aldolases as biocatalysts. To date, only one kind of dihydroxyacetone phosphate (DHAP)-dependent aldolases has been discovered and applied to synthesize branched-chain sugars directly using DHAP and dihydroxyacetone (DHA) as substrate. However, the unstable and high-cost properties of DHAP limit large-scale application. Therefore, biosynthesis of branched-chain sugar from low-cost and abundant carbon sources is essential. RESULTS The detailed catalytic property of l-rhamnulose-1-phosphate aldolase (RhaD) and l-fuculose-1-phosphate aldolase (FucA) from Escherichia coli in catalyzing the aldol reactions with DHA as electrophilic receptors was characterized. Furthermore, we calculated the Bürgi-Dunitz trajectory using molecular dynamics simulations, thereby revealing the original sources of the catalytic efficiency of RhaD and FucA. A multi-enzyme reaction system composed of formolase, DHA kinase, RhaD, fructose-1-phosphatase, and polyphosphate kinase was constructed to in vitro produce dendroketose, a branched-chain sugar, from one-carbon formaldehyde. The conversion rate reached 86% through employing a one-pot, two-stage reaction process. Moreover, we constructed two artificial pathways in Corynebacterium glutamicum to obtain this product in vivo starting from glucose or glycerol. Fermentation with glycerol as feedstock produced 6.4 g/L dendroketose with a yield of 0.45 mol/mol glycerol, representing 90% of the maximum theoretical value. Additionally, the dendroketose production reached 36.3 g/L with a yield of 0.46 mol/mol glucose when glucose served as the sole carbon resource. CONCLUSIONS The detailed enzyme kinetics data of the two DHAP-dependent aldolases with DHA as electrophilic receptors were presented in this study. In addition, insights into this catalytic property were given via in silico simulations. Moreover, the cost-effective synthesis of dendroketose starting from one-, three-, and six-carbon resources was achieved through in vivo and in vitro metabolic engineering strategies. This rare branched-chain ketohexose may serve as precursor to prepare 4-hydroxymethylfurfural and branched-chain alkanes using chemical method.
Collapse
Affiliation(s)
- Jiangang Yang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Yueming Zhu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Ge Qu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Yan Zeng
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Chaoyu Tian
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Caixia Dong
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yan Men
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Longhai Dai
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Zhoutong Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Yanhe Ma
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| |
Collapse
|
39
|
Zecevic D, Germer P, Walter L, Gauchenova E, Müller M. Chemoenzymatic Access to Chiral Tetrols Produced by Thiamine Diphosphate Dependent Benzaldehyde Lyase. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Damir Zecevic
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Philipp Germer
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Lydia Walter
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Ekaterina Gauchenova
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| |
Collapse
|
40
|
Song W, Wang JH, Wu J, Liu J, Chen XL, Liu LM. Asymmetric assembly of high-value α-functionalized organic acids using a biocatalytic chiral-group-resetting process. Nat Commun 2018; 9:3818. [PMID: 30232330 PMCID: PMC6145935 DOI: 10.1038/s41467-018-06241-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/24/2018] [Indexed: 11/21/2022] Open
Abstract
The preparation of α-functionalized organic acids can be greatly simplified by adopting a protocol involving the catalytic assembly of achiral building blocks. However, the enzymatic assembly of small amino acids and aldehydes to form numerous α-functionalized organic acids is highly desired and remains a significant challenge. Herein, we report an artificially designed chiral-group-resetting biocatalytic process, which uses simple achiral glycine and aldehydes to synthesize stereodefined α-functionalized organic acids. This cascade biocatalysis comprises a basic module and three different extender modules and operates in a modular assembly manner. The engineered Escherichia coli catalysts, which contained different module(s), provide access to α-keto acids, α-hydroxy acids, and α-amino acids with excellent conversion and enantioselectivities. Therefore, this biocatalytic process provides an attractive strategy for the conversion of low-cost achiral starting materials to high-value α-functionalized organic acids. Alpha-functionalized organic acids are building blocks of many bioactive compounds. Here, the authors developed a toolbox-like, modular set of enzymes that reset chiral groups, turning achiral glycine and simple aldehydes into stereodefined α-keto acids, α-hydroxy acids, and α-amino acids.
Collapse
Affiliation(s)
- Wei Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jin-Hui Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xiu-Lai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Li-Ming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China. .,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
41
|
Ma H, Engel S, Enugala TR, Al-Smadi D, Gautier C, Widersten M. New Stereoselective Biocatalysts for Carboligation and Retro-Aldol Cleavage Reactions Derived from d-Fructose 6-Phosphate Aldolase. Biochemistry 2018; 57:5877-5885. [DOI: 10.1021/acs.biochem.8b00814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huan Ma
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Sarah Engel
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Thilak Reddy Enugala
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Derar Al-Smadi
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Candice Gautier
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Mikael Widersten
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| |
Collapse
|
42
|
Junker S, Roldan R, Joosten H, Clapés P, Fessner W. Complete Switch of Reaction Specificity of an Aldolase by Directed Evolution In Vitro: Synthesis of Generic Aliphatic Aldol Products. Angew Chem Int Ed Engl 2018; 57:10153-10157. [PMID: 29882622 PMCID: PMC6099348 DOI: 10.1002/anie.201804831] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/31/2018] [Indexed: 01/26/2023]
Abstract
A structure-guided engineering of fructose-6-phosphate aldolase was performed to expand its substrate promiscuity toward aliphatic nucleophiles, that is, unsubstituted alkanones and alkanals. A "smart" combinatorial library was created targeting residues D6, T26, and N28, which form a binding pocket around the nucleophilic carbon atom. Double-selectivity screening was executed by high-performance TLC that allowed simultaneous determination of total activity as well as a preference for acetone versus propanal as competing nucleophiles. D6 turned out to be the key residue that enabled activity with non-hydroxylated nucleophiles. Altogether 25 single- and double-site variants (D6X and D6X/T26X) were discovered that show useful synthetic activity and a varying preference for ketone or aldehyde as the aldol nucleophiles. Remarkably, all of the novel variants had completely lost their native activity for cleavage of fructose 6-phosphate.
Collapse
Affiliation(s)
- Sebastian Junker
- Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| | - Raquel Roldan
- Instituto de Química Avanzada de Cataluña-IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| | | | - Pere Clapés
- Instituto de Química Avanzada de Cataluña-IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| | - Wolf‐Dieter Fessner
- Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| |
Collapse
|
43
|
Extended substrate range of thiamine diphosphate-dependent MenD enzyme by coupling of two C–C-bonding reactions. Appl Microbiol Biotechnol 2018; 102:8359-8372. [DOI: 10.1007/s00253-018-9259-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/29/2023]
|
44
|
Wen W, Chen L, Luo MJ, Zhang Y, Chen YC, Ouyang Q, Guo QX. Chiral Aldehyde Catalysis for the Catalytic Asymmetric Activation of Glycine Esters. J Am Chem Soc 2018; 140:9774-9780. [PMID: 29995401 DOI: 10.1021/jacs.8b06676] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chiral aldehyde catalysis is uniquely suitable for the direct asymmetric α-functionalization of N-unprotected amino acids, because aldehydes can reversibly form imines. However, there have been few successful reports of these transformations. In fact, only chiral aldehyde catalyzed aldol reactions of amino acids and alkylation of 2-amino malonates have been reported with good chiral induction. Here, we report a novel type of chiral aldehyde catalyst based on face control of the enolate intermediates. The resulting chiral aldehyde is the first efficient nonpyridoxal-dependent catalyst that can promote the direct asymmetric α-functionalization of N-unprotected glycine esters. Possible transition states and the proton transfer process were investigated by density functional theory calculations.
Collapse
Affiliation(s)
- Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Lei Chen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Ming-Jing Luo
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Yan Zhang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Ying-Chun Chen
- College of Pharmacy , Third Military Medical University , Chongqing 400038 , China
| | - Qin Ouyang
- College of Pharmacy , Third Military Medical University , Chongqing 400038 , China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| |
Collapse
|
45
|
Junker S, Roldan R, Joosten HJ, Clapés P, Fessner WD. Complete Switch of Reaction Specificity of an Aldolase by Directed Evolution In Vitro: Synthesis of Generic Aliphatic Aldol Products. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sebastian Junker
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| | - Raquel Roldan
- Instituto de Química Avanzada de Cataluña-IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Henk-Jan Joosten
- Bio-Prodict; Nieuwe Marktstraat 54e 6511 AA Nijmegen The Netherlands
| | - Pere Clapés
- Instituto de Química Avanzada de Cataluña-IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| |
Collapse
|
46
|
Zhou T, Vallooran JJ, Assenza S, Szekrenyi A, Clapés P, Mezzenga R. Efficient Asymmetric Synthesis of Carbohydrates by Aldolase Nano-Confined in Lipidic Cubic Mesophases. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01716] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tao Zhou
- Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Jijo J. Vallooran
- Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Salvatore Assenza
- Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Anna Szekrenyi
- Biotransformation and Bioactive Molecules Group, Instituto de Química Avanzada de Cataluña, IQAC−CSIC Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Pere Clapés
- Biotransformation and Bioactive Molecules Group, Instituto de Química Avanzada de Cataluña, IQAC−CSIC Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Raffaele Mezzenga
- Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
47
|
Garrabou X, Macdonald DS, Wicky BIM, Hilvert D. Stereodivergent Evolution of Artificial Enzymes for the Michael Reaction. Angew Chem Int Ed Engl 2018; 57:5288-5291. [DOI: 10.1002/anie.201712554] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/31/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Xavier Garrabou
- Laboratory of Organic Chemistry; ETH Zürich; 8093 Zürich Switzerland
| | | | | | - Donald Hilvert
- Laboratory of Organic Chemistry; ETH Zürich; 8093 Zürich Switzerland
| |
Collapse
|
48
|
Thai YC, Szekrenyi A, Qi Y, Black GW, Charnock SJ, Fessner WD. Fluorogenic kinetic assay for high-throughput discovery of stereoselective ketoreductases relevant to pharmaceutical synthesis. Bioorg Med Chem 2018; 26:1320-1326. [DOI: 10.1016/j.bmc.2017.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/30/2017] [Accepted: 05/11/2017] [Indexed: 12/26/2022]
|
49
|
Laurent V, Darii E, Aujon A, Debacker M, Petit JL, Hélaine V, Liptaj T, Breza M, Mariage A, Nauton L, Traïkia M, Salanoubat M, Lemaire M, Guérard-Hélaine C, de Berardinis V. Synthesis of Branched-Chain Sugars with a DHAP-Dependent Aldolase: Ketones are Electrophile Substrates of Rhamnulose-1-phosphate Aldolases. Angew Chem Int Ed Engl 2018. [PMID: 29542859 DOI: 10.1002/anie.201712851] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dihydroxyacetone phosphate (DHAP)-dependent rhamnulose aldolases display an unprecedented versatility for ketones as electrophile substrates. We selected and characterized a rhamnulose aldolase from Bacteroides thetaiotaomicron (RhuABthet) to provide a proof of concept. DHAP was added as a nucleophile to several α-hydroxylated ketones used as electrophiles. This aldol addition was stereoselective and produced branched-chain monosaccharide adducts with a tertiary alcohol moiety. Several aldols were readily obtained in good to excellent yields (from 76 to 95 %). These results contradict the general view that aldehydes are the only electrophile substrates for DHAP-dependent aldolases and provide a new C-C bond-forming enzyme for stereoselective synthesis of tertiary alcohols.
Collapse
Affiliation(s)
- Victor Laurent
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Ekaterina Darii
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Univ Paris-Saclay, 91057, Evry, France
| | - Angelina Aujon
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Marine Debacker
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Jean-Louis Petit
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Univ Paris-Saclay, 91057, Evry, France
| | - Virgil Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Tibor Liptaj
- Slovak University of Technology, Faculty of Chemical and Food Technology, Radlinského 9, 81237, Bratislava, Slovakia
| | - Martin Breza
- Slovak University of Technology, Faculty of Chemical and Food Technology, Radlinského 9, 81237, Bratislava, Slovakia
| | - Aline Mariage
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Univ Paris-Saclay, 91057, Evry, France
| | - Lionel Nauton
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Mounir Traïkia
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Marcel Salanoubat
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Univ Paris-Saclay, 91057, Evry, France
| | - Marielle Lemaire
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Christine Guérard-Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Véronique de Berardinis
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Univ Paris-Saclay, 91057, Evry, France
| |
Collapse
|
50
|
Laurent V, Darii E, Aujon A, Debacker M, Petit JL, Hélaine V, Liptaj T, Breza M, Mariage A, Nauton L, Traïkia M, Salanoubat M, Lemaire M, Guérard-Hélaine C, de Berardinis V. Synthesis of Branched-Chain Sugars with a DHAP-Dependent Aldolase: Ketones are Electrophile Substrates of Rhamnulose-1-phosphate Aldolases. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Victor Laurent
- Université Clermont Auvergne, CNRS, SIGMA Clermont; Institut de Chimie de Clermont-Ferrand; 63000 Clermont-Ferrand France
| | - Ekaterina Darii
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry; Univ Paris-Saclay; 91057 Evry France
| | - Angelina Aujon
- Université Clermont Auvergne, CNRS, SIGMA Clermont; Institut de Chimie de Clermont-Ferrand; 63000 Clermont-Ferrand France
| | - Marine Debacker
- Université Clermont Auvergne, CNRS, SIGMA Clermont; Institut de Chimie de Clermont-Ferrand; 63000 Clermont-Ferrand France
| | - Jean-Louis Petit
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry; Univ Paris-Saclay; 91057 Evry France
| | - Virgil Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont; Institut de Chimie de Clermont-Ferrand; 63000 Clermont-Ferrand France
| | - Tibor Liptaj
- Slovak University of Technology; Faculty of Chemical and Food Technology; Radlinského 9 81237 Bratislava Slovakia
| | - Martin Breza
- Slovak University of Technology; Faculty of Chemical and Food Technology; Radlinského 9 81237 Bratislava Slovakia
| | - Aline Mariage
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry; Univ Paris-Saclay; 91057 Evry France
| | - Lionel Nauton
- Université Clermont Auvergne, CNRS, SIGMA Clermont; Institut de Chimie de Clermont-Ferrand; 63000 Clermont-Ferrand France
| | - Mounir Traïkia
- Université Clermont Auvergne, CNRS, SIGMA Clermont; Institut de Chimie de Clermont-Ferrand; 63000 Clermont-Ferrand France
| | - Marcel Salanoubat
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry; Univ Paris-Saclay; 91057 Evry France
| | - Marielle Lemaire
- Université Clermont Auvergne, CNRS, SIGMA Clermont; Institut de Chimie de Clermont-Ferrand; 63000 Clermont-Ferrand France
| | - Christine Guérard-Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont; Institut de Chimie de Clermont-Ferrand; 63000 Clermont-Ferrand France
| | - Véronique de Berardinis
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry; Univ Paris-Saclay; 91057 Evry France
| |
Collapse
|