1
|
Yi J, Goh NJJ, Li Z. Green and Enantioselective Synthesis via Cascade Biotransformations: From Simple Racemic Substrates to High-Value Chiral Chemicals. Chem Asian J 2024; 19:e202400565. [PMID: 38954385 DOI: 10.1002/asia.202400565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Asymmetric synthesis of chiral chemicals in high enantiomeric excess (ee) is pivotal to the pharmaceutical industry, but classic chemistry usually requires multi-step reactions, harsh conditions, and expensive chiral ligands, and sometimes suffers from unsatisfactory enantioselectivity. Enzymatic catalysis is a much greener and more enantioselective alternative, and cascade biotransformations with multi-step reactions can be performed in one pot to avoid costly intermediate isolation and minimise waste generation. One of the most attractive applications of enzymatic cascade transformations is to convert easily available simple racemic substrates into valuable functionalised chiral chemicals in high yields and ee. Here, we review the three general strategies to build up such cascade biotransformations, including enantioconvergent reaction, dynamic kinetic resolution, and destruction-and-reinstallation of chirality. Examples of cascade transformations using racemic substrates such as racemic epoxides, alcohols, hydroxy acids, etc. to produce the chiral amino alcohols, hydroxy acids, amines, and amino acids are given. The product concentration, ee, and yield, scalability, and substrate scope of these enzymatic cascades are critically reviewed. To further improve the efficiency and practical applicability of the cascades, enzyme engineering to enhance catalytic activities of the key enzymes using the latest microfluidics-based ultrahigh-throughput screening and artificial intelligence-guided directed evolution could be a useful approach.
Collapse
Affiliation(s)
- Jieran Yi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Nicholas Jun Jie Goh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
2
|
Zhu H, Wang J, Lu Y, Soloshonok VA, Lan L, Xu J, Liu H. Cu(II) Complexes with Proline-Derived Schiff Base Ligand: Chemical Resolution of N, C-Unprotected α-Amino Acids and Their Antibacterial Activity. J Org Chem 2022; 87:12900-12908. [PMID: 36153987 DOI: 10.1021/acs.joc.2c01481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An operationally simple and convenient resolution method via Cu(II) complexes was reported, efficiently providing valuable enantiopure N,C-unprotected α-amino acids. This protocol features synthetically attractive yields and a stereochemical outcome, using a recyclable Schiff base ligand and inexpensive easily accessible metal copper salts. These novel Cu(II) complexes can be obtained in an enantiopure state by means of column chromatography or recrystallization. Furthermore, all the Cu(II) complexes were evaluated for their antibacterial activities. Among them, complexes (S,2S)-3a, (S,2S)-3g, and (S,2S)-3o showed significant antibacterial activities against Staphylococcus aureus Mu50. Further biological evaluation indicated that they were effective against most of Gram-positive bacteria. It is the first study on the biological activities of transition metal complexes with this type of proline-derived Schiff base ligand.
Collapse
Affiliation(s)
- Huajian Zhu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China.,Lingang Laboratory, Shanghai 200031, P. R. China
| | - Yunfu Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, San Sebastian 20018, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Hong Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China
| |
Collapse
|
3
|
Engineering Novel ( R)-Selective Transaminase for Efficient Symmetric Synthesis of d-Alanine. Appl Environ Microbiol 2022; 88:e0006222. [PMID: 35465694 DOI: 10.1128/aem.00062-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
d-Alanine belongs to nonessential amino acids that have diverse applications in the fields of food and health care. (R)-transaminase [(R)-TA]-catalyzed asymmetric amination of pyruvate is a feasible alternative for the synthesis of d-alanine, but low catalytic efficiency and thermostability limit enzymatic utilization. In this work, several potential (R)-TAs were discovered using NCBI database mining synchronously with enzymatic structure-function analysis, among which Capronia epimyces TA (CeTA) showed the highest activity for amination of pyruvate using (R)-α-methylbenzylamine as the donor. Furthermore, enzymatic residues surrounding a large catalysis pocket were subjected to saturation and combinatorial mutagenesis, and positive mutant F113T showed dramatic improvement in activity and thermostability. Molecular modeling indicated that the substitution of phenylalanine with threonine afforded alleviation of steric hindrance in the pocket and induced formation of additional hydrogen bonds with neighboring residues. Finally, using recombinant cells containing F113T as a biocatalyst, the conversion yield of amination of 100 mM pyruvate to d-alanine achieved up to 95.2%, which seemed to be the highest level in the literature regarding synthesis of d-alanine using TAs. The inherent characteristics rendered CeTA F113T a promising platform for efficient preparation of d-alanine operating with high productivity. IMPORTANCE d-Alanine is an important compound with many valuable applications. Its asymmetric synthesis employing (R)-ω-TA is considered an attractive choice. According to the stereoselectivity, ω-TAs have either (R)- or (S)-enantiopreference. There has been a variety of literature regarding screening, characterizing, and molecular modification of (S)-ω-TAs; in contrast, the research about (R)-ω-TA has lagged behind. In this work, we identify several (R)-ω-TAs and succeeded in creating mutant F113T, which showed not only better efficiency toward pyruvate but also higher thermostability compared with the original enzyme. The obtained original enzymes and positive mutants displayed important application value for pushing symmetric synthesis of d-alanine to a higher level.
Collapse
|
4
|
Legnani L, Darù A, Jones AX, Blackmond DG. Mechanistic Insight into the Origin of Stereoselectivity in the Ribose-Mediated Strecker Synthesis of Alanine. J Am Chem Soc 2021; 143:7852-7858. [PMID: 33979125 DOI: 10.1021/jacs.1c03552] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enantioenriched amino acids are produced in a hydrolytic kinetic resolution of racemic aminonitriles mediated by chiral pentose sugars. Experimental kinetic and spectroscopic results combined with DFT computational studies and microkinetic modeling help to identify the nature of the intermediate species and provide insight into the stereoselectivity of their hydrolysis in the prebiotically relevant ribose-alanine system. These studies support a synergistic role for sugars and amino acids in the emergence of homochirality in biological molecules.
Collapse
Affiliation(s)
- Luca Legnani
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Andrea Darù
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Alexander X Jones
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Donna G Blackmond
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
5
|
Lauder K, Anselmi S, Finnigan JD, Qi Y, Charnock SJ, Castagnolo D. Enantioselective Synthesis of α-Thiocarboxylic Acids by Nitrilase Biocatalysed Dynamic Kinetic Resolution of α-Thionitriles. Chemistry 2020; 26:10422-10426. [PMID: 32239730 PMCID: PMC7496879 DOI: 10.1002/chem.202001108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/01/2020] [Indexed: 11/14/2022]
Abstract
The enantioselective synthesis of α-thiocarboxylic acids by biocatalytic dynamic kinetic resolution (DKR) of nitrile precursors exploiting nitrilase enzymes is described. A panel of 35 nitrilase biocatalysts were screened and enzymes Nit27 and Nit34 were found to catalyse the DKR of racemic α-thionitriles under mild conditions, affording the corresponding carboxylic acids with high conversions and good-to-excellent ee. The ammonia produced in situ during the biocatalytic transformation favours the racemization of the nitrile enantiomers and, in turn, the DKR without the need of any external additive base.
Collapse
Affiliation(s)
- Kate Lauder
- School of Cancer and Pharmaceutical SciencesKing's College London150 Stamford StreetSE1 9NHLondonUK
| | - Silvia Anselmi
- School of Cancer and Pharmaceutical SciencesKing's College London150 Stamford StreetSE1 9NHLondonUK
| | - James D. Finnigan
- Prozomix LimitedWest End Industrial Estate, HaltwhistleNorthumberlandNE49 9HAUK
| | - Yuyin Qi
- Prozomix LimitedWest End Industrial Estate, HaltwhistleNorthumberlandNE49 9HAUK
| | - Simon J. Charnock
- Prozomix LimitedWest End Industrial Estate, HaltwhistleNorthumberlandNE49 9HAUK
| | - Daniele Castagnolo
- School of Cancer and Pharmaceutical SciencesKing's College London150 Stamford StreetSE1 9NHLondonUK
| |
Collapse
|
6
|
Martínez-Rodríguez S, Torres JM, Sánchez P, Ortega E. Overview on Multienzymatic Cascades for the Production of Non-canonical α-Amino Acids. Front Bioeng Biotechnol 2020; 8:887. [PMID: 32850740 PMCID: PMC7431475 DOI: 10.3389/fbioe.2020.00887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
The 22 genetically encoded amino acids (AAs) present in proteins (the 20 standard AAs together with selenocysteine and pyrrolysine), are commonly referred as proteinogenic AAs in the literature due to their appearance in ribosome-synthetized polypeptides. Beyond the borders of this key set of compounds, the rest of AAs are generally named imprecisely as non-proteinogenic AAs, even when they can also appear in polypeptide chains as a result of post-transductional machinery. Besides their importance as metabolites in life, many of D-α- and L-α-"non-canonical" amino acids (NcAAs) are of interest in the biotechnological and biomedical fields. They have found numerous applications in the discovery of new medicines and antibiotics, drug synthesis, cosmetic, and nutritional compounds, or in the improvement of protein and peptide pharmaceuticals. In addition to the numerous studies dealing with the asymmetric synthesis of NcAAs, many different enzymatic pathways have been reported in the literature allowing for the biosynthesis of NcAAs. Due to the huge heterogeneity of this group of molecules, this review is devoted to provide an overview on different established multienzymatic cascades for the production of non-canonical D-α- and L-α-AAs, supplying neophyte and experienced professionals in this field with different illustrative examples in the literature. Whereas the discovery of new or newly designed enzymes is of great interest, dusting off previous enzymatic methodologies by a "back and to the future" strategy might accelerate the implementation of new or improved multienzymatic cascades.
Collapse
|
7
|
Meghwanshi GK, Kaur N, Verma S, Dabi NK, Vashishtha A, Charan PD, Purohit P, Bhandari HS, Bhojak N, Kumar R. Enzymes for pharmaceutical and therapeutic applications. Biotechnol Appl Biochem 2020; 67:586-601. [PMID: 32248597 DOI: 10.1002/bab.1919] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Indexed: 01/03/2023]
Abstract
Enzymes are highly efficient and selective biocatalysts, present in the living beings. They exist in enormous varieties in terms of the types of reactions catalyzed by them for instance oxidation-reduction, group transfers within the molecules or between the molecules, hydrolysis, isomerization, ligation, bond cleavage, and bond formation. Besides, enzyme based catalyses are performed with much higher fidelity, under mild reaction conditions and are highly efficient in terms of number of steps, giving them an edge over their chemical counter parts. The unique characteristics of enzymes makes them highly applicable fora number of chemical transformation reactions in pharmaceutical industries, such as group protection and deprotection, selective acylation and deacylation, selective hydrolysis, deracemization, kinetic resolution of racemic mixtures, esterification, transesterification, and many others. In this review, an overview of the enzymes, their production and their applications in pharmaceutical syntheses and enzyme therapies are presented with diagrams, reaction schemes and table for easy understanding of the readers.
Collapse
Affiliation(s)
| | - Navpreet Kaur
- Department of Microbiology, M.G.S. University, Bikaner, India
| | - Swati Verma
- Department of Microbiology, M.G.S. University, Bikaner, India
| | | | | | - P D Charan
- Department of Environmental Science, M.G.S. University, Bikaner, India
| | - Praveen Purohit
- Department of Chemistry, Engineering College, Bikaner, India
| | - H S Bhandari
- Department of Chemistry, GCRC Govt. Dungar College, Bikaner, India
| | - N Bhojak
- Department of Chemistry, GCRC Govt. Dungar College, Bikaner, India
| | - Rajender Kumar
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Gröger H, Asano Y. Cyanide-Free Enantioselective Catalytic Strategies for the Synthesis of Chiral Nitriles. J Org Chem 2020; 85:6243-6251. [PMID: 32250626 DOI: 10.1021/acs.joc.9b02773] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The development of enantioselective syntheses of nitriles gained increasing interest due to, e.g., an increasing demand for chiral nitriles for drug synthesis. Complementing existing routes, recently catalytic processes enabling an enantioselective formation of the chiral nitrile moiety without the need to utilize cyanide were accomplished. It is noteworthy that these processes are complementary to each other as they are based on different types of substrates, catalytic methods (utilizing chemo- and biocatalysts), and stereochemical reaction concepts (asymmetric synthesis versus resolution).
Collapse
Affiliation(s)
- Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.,Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
9
|
Fu R, So SM, Lough AJ, Chin J. Hydrogen Bond Assisted
l
to
d
Conversion of α‐Amino Acids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rui Fu
- Department of ChemistryUniversity of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Soon Mog So
- Department of ChemistryUniversity of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Alan J. Lough
- Department of ChemistryUniversity of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Jik Chin
- Department of ChemistryUniversity of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
10
|
Fu R, So SM, Lough AJ, Chin J. Hydrogen Bond Assisted l to d Conversion of α-Amino Acids. Angew Chem Int Ed Engl 2020; 59:4335-4339. [PMID: 31903655 DOI: 10.1002/anie.201914797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Indexed: 12/15/2022]
Abstract
l to d conversion of unactivated α-amino acids was achieved by solubility-induced diastereomer transformation (SIDT). Ternary complexes of an α-amino acid with 3,5-dichlorosalicylaldehyde and a chiral guanidine (derived from corresponding chiral vicinal diamine) were obtained in good yield as diastereomerically pure imino acid salt complexes and were hydrolysed to obtain enantiopure α-amino acids. A combination of DFT computation, NMR spectroscopy, and crystal structure provide detailed insight into how two types of strong hydrogen bonds assist in rapid epimerization of the complexes that is essential for SIDT.
Collapse
Affiliation(s)
- Rui Fu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Soon Mog So
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Alan J Lough
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Jik Chin
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
11
|
Musa MM. Enzymatic racemization of alcohols and amines: An approach for bi‐enzymatic dynamic kinetic resolution. Chirality 2019; 32:147-157. [DOI: 10.1002/chir.23138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Musa M. Musa
- Chemistry DepartmentKing Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
| |
Collapse
|
12
|
Busch H, Hagedoorn PL, Hanefeld U. Rhodococcus as A Versatile Biocatalyst in Organic Synthesis. Int J Mol Sci 2019; 20:E4787. [PMID: 31561555 PMCID: PMC6801914 DOI: 10.3390/ijms20194787] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
The application of purified enzymes as well as whole-cell biocatalysts in synthetic organic chemistry is becoming more and more popular, and both academia and industry are keen on finding and developing novel enzymes capable of performing otherwise impossible or challenging reactions. The diverse genus Rhodococcus offers a multitude of promising enzymes, which therefore makes it one of the key bacterial hosts in many areas of research. This review focused on the broad utilization potential of the genus Rhodococcus in organic chemistry, thereby particularly highlighting the specific enzyme classes exploited and the reactions they catalyze. Additionally, close attention was paid to the substrate scope that each enzyme class covers. Overall, a comprehensive overview of the applicability of the genus Rhodococcus is provided, which puts this versatile microorganism in the spotlight of further research.
Collapse
Affiliation(s)
- Hanna Busch
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Ulf Hanefeld
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
13
|
Conversion of phenylglycinonitrile by recombinant Escherichia coli cells synthesizing variants of the arylacetonitrilase from Pseudomonas fluorescens EBC191. Appl Microbiol Biotechnol 2019; 103:6737-6746. [PMID: 31222384 DOI: 10.1007/s00253-019-09957-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/06/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
Abstract
The conversion of phenylglycinonitrile (2-aminophenylacetonitrile) by Escherichia coli strains was studied, which recombinantly expressed the arylacetonitrilase (NitA) from Pseudomonas fluorescens EBC191 and different nitrilase variants with altered reaction specificities. The whole-cell catalysts which formed the wild-type nitrilase converted (R,S)-phenylglycinonitrile preferentially to (S)-phenylglycine with a low degree of enantioselectivity. A recombinant strain which formed a variant of NitA produced mainly (S)-phenylglycine amide from (R,S)-phenylglycinonitrile and a second variant showed an almost complete enantioconversion and produced (R)-phenylglycine and left (S)-phenylglycinonitrile. The microbial-produced (S)-phenylglycinonitrile was used to study the chemical racemisation of (S)-phenylglycinonitrile at alkaline pH values in order to establish a dynamic kinetic resolution of the substrate. Subsequently, the conversion of (R,S)-phenylglycinonitrile by the whole-cell catalysts was studied at a pH of 10.8 which allowed a sufficient racemisation rate of phenylglycinonitrile. Surprisingly, under these conditions, strongly increased amounts of (S)-phenylglycine were formed by the recombinant E. coli cells expressing the amide-forming nitrilase variant. The aminopeptidase PepA from E. coli was identified by the construction of a deletion mutant and subsequent complementation as responsible amidase activity, which converted (S)-phenylglycine amide to (S)-phenylglycine.
Collapse
|
14
|
Kawahara N, Asano Y. Retracted: Chemoenzymatic Method for Enantioselective Synthesis of (R)‐2‐Phenylglycine and (R)‐2‐Phenylglycine Amide from Benzaldehyde and KCN Using Difference of Enzyme Affinity to the Enantiomers. ChemCatChem 2018. [DOI: 10.1002/cctc.201801254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nobuhiro Kawahara
- Biotechnology Research Center and Department of Biotechnology ToyamaPrefectural University Imizu 939-0398 Japan
- Asano Active Enzyme Molucule ProjectERATO JST Imizu 939-0398 Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology ToyamaPrefectural University Imizu 939-0398 Japan
- Asano Active Enzyme Molucule ProjectERATO JST Imizu 939-0398 Japan
| |
Collapse
|
15
|
Zhou S, Wang S, Wang J, Nian Y, Peng P, Soloshonok VA, Liu H. Configurationally Stable (S
)- and (R
)-α-Methylproline-Derived Ligands for the Direct Chemical Resolution of Free Unprotected β3
-Amino Acids. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shengbin Zhou
- University of Chinese Academy of Sciences; No.19A Yuquan Road 100049 Beijing China
- CAS Key Laboratory of Receptor Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zuchongzhi Road 201203 Shanghai China
| | - Shuni Wang
- University of Chinese Academy of Sciences; No.19A Yuquan Road 100049 Beijing China
- CAS Key Laboratory of Receptor Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zuchongzhi Road 201203 Shanghai China
| | - Jiang Wang
- University of Chinese Academy of Sciences; No.19A Yuquan Road 100049 Beijing China
- CAS Key Laboratory of Receptor Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zuchongzhi Road 201203 Shanghai China
| | - Yong Nian
- University of Chinese Academy of Sciences; No.19A Yuquan Road 100049 Beijing China
- CAS Key Laboratory of Receptor Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zuchongzhi Road 201203 Shanghai China
| | - Panfeng Peng
- University of Chinese Academy of Sciences; No.19A Yuquan Road 100049 Beijing China
- CAS Key Laboratory of Receptor Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zuchongzhi Road 201203 Shanghai China
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I; Faculty of Chemistry; University of the Basque Country UPV/EHU; Paseo Manuel Lardizábal 3 20018 San Sebastián Spain
- IKERBASQUE - Basque Foundation for Science; Maria Diaz de Haro 3 48013 Bilbao Spain
| | - Hong Liu
- University of Chinese Academy of Sciences; No.19A Yuquan Road 100049 Beijing China
- CAS Key Laboratory of Receptor Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zuchongzhi Road 201203 Shanghai China
| |
Collapse
|
16
|
Li J, Chen X, Cui Y, Liu W, Feng J, Wu Q, Zhu D. Enzymatic synthesis of d-alanine from a renewable starting material by co-immobilized dehydrogenases. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
17
|
Nitrile Metabolizing Enzymes in Biocatalysis and Biotransformation. Appl Biochem Biotechnol 2018; 185:925-946. [DOI: 10.1007/s12010-018-2705-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/19/2018] [Indexed: 11/26/2022]
|
18
|
Tang XL, Lu XF, Wu ZM, Zheng RC, Zheng YG. Biocatalytic production of ( S )-2-aminobutanamide by a novel d -aminopeptidase from Brucella sp. with high activity and enantioselectivity. J Biotechnol 2018; 266:20-26. [DOI: 10.1016/j.jbiotec.2017.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/11/2017] [Accepted: 12/03/2017] [Indexed: 10/18/2022]
|
19
|
Wahl O, Holzgrabe U. Amino acid analysis for pharmacopoeial purposes. Talanta 2016; 154:150-63. [DOI: 10.1016/j.talanta.2016.03.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 11/26/2022]
|
20
|
Wang S, Zhou S, Wang J, Nian Y, Kawashima A, Moriwaki H, Aceña JL, Soloshonok VA, Liu H. Chemical Dynamic Thermodynamic Resolution and S/R Interconversion of Unprotected Unnatural Tailor-made α-Amino Acids. J Org Chem 2015; 80:9817-30. [DOI: 10.1021/acs.joc.5b01292] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuni Wang
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Shengbin Zhou
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jiang Wang
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yong Nian
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Aki Kawashima
- Hamari Chemicals Ltd., 1-4-29
Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Hiroki Moriwaki
- Hamari Chemicals Ltd., 1-4-29
Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - José L. Aceña
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain
| | - Vadim A. Soloshonok
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Spain
| | - Hong Liu
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
21
|
Choi M, Jun MJ, Kim KM. Efficient Synthesis of Chiral Binaphthol Aldehyde with Phenyl Ether Linkage for Enantioselective Extraction of Amino Acids. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Misun Choi
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| | - Moo-Jin Jun
- ReSEAT Program; Korea Institute of Science & Technology Information; Seoul 130-741 Korea
| | - Kwan Mook Kim
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| |
Collapse
|
22
|
Large α-aminonitrilase activity screening of nitrilase superfamily members: Access to conversion and enantiospecificity by LC–MS. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Fuhshuku KI, Takata M, Iwatsubo H, Asano Y. Preparation of d-α-aminolactams by l-enantioselective degradation of α-aminolactam mediated by Mesorhizobium sp. L88. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2014.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
da Silva MR, de Mattos MC, de Oliveira MDCF, de Lemos TLG, Ricardo NMPS, de Gonzalo G, Lavandera I, Gotor-Fernández V, Gotor V. Asymmetric chemoenzymatic synthesis of N-acetyl-α-amino esters based on lipase-catalyzed kinetic resolutions through interesterification reactions. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Rachwalski M, Vermue N, Rutjes FPJT. Recent advances in enzymatic and chemical deracemisation of racemic compounds. Chem Soc Rev 2013; 42:9268-82. [DOI: 10.1039/c3cs60175g] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Yasukawa K, Asano Y. Enzymatic Synthesis of Chiral Phenylalanine Derivatives by a Dynamic Kinetic Resolution of Corresponding Amide and Nitrile Substrates with a Multi-Enzyme System. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201100923] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Wang B, Liu Y, Zhang D, Feng Y, Li J. Efficient kinetic resolution of amino acids catalyzed by lipase AS ‘Amano’ via cleavage of an amide bond. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.tetasy.2012.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|