1
|
Purkait A, Pal SVS, Soni K, Bhattacharyya K, Jana CK. Nitroso-azomethine(ene) reaction enabled annulations of nitrosoarenes, azomethines and alkenes. Chem Commun (Camb) 2024; 60:8541-8544. [PMID: 39041230 DOI: 10.1039/d4cc02117g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
An unprecedented example of a nitroso-azomethine(ene) reaction is reported. Nitroso-azomethine(ene) reaction-mediated unprecedented annulation of nitrosoarenes, azomethines, and alkenes to furnish arylquinolines via arene functionalization of nitrosoarene has been developed. DFT studies provided mechanistic insights into the newly developed nitroso-azomethine(ene) reaction.
Collapse
Affiliation(s)
- Anisha Purkait
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Surya Veer Singh Pal
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Kaushik Soni
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | | | - Chandan K Jana
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
2
|
Zhao Y, Ding Y, Peng Y, Wang Y, Han S, Zhu L, Huang SH, Hong R. Total Synthesis of Immunosuppressive Mycestericin E and G Enabled by a Highly Stereoselective Nitroso-Ene Cyclization. Org Lett 2023; 25:3497-3501. [PMID: 37154579 DOI: 10.1021/acs.orglett.3c01082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This report describes a streamlined synthesis of immunosuppressive mycestericin E and G through a highly stereoselective nitroso-ene cyclization in 11-12 steps using readily available materials. The stereochemical outcome in the formation of a Nα-quaternary stereogenic center is rationalized by a trajectory based on the polar diradical intermediate and subsequent hydrogen transfer. Julia olefination offers a facile chain elongation method that presents a viable strategy for structural derivatization in future medicinal applications.
Collapse
Affiliation(s)
- Yao Zhao
- School of Environmental and Chemical Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Yuzhen Ding
- Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Yalan Peng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yang Wang
- School of Environmental and Chemical Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Shiqing Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Lili Zhu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Sha-Hua Huang
- School of Environmental and Chemical Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Ran Hong
- Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| |
Collapse
|
3
|
Jäger C, Gregori BJ, Aho JAS, Hallamaa M, Deska J. Peroxidase-induced C-N bond formation via nitroso ene and Diels-Alder reactions. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:3166-3174. [PMID: 37113763 PMCID: PMC10124104 DOI: 10.1039/d2gc04827b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
The formation of new carbon-nitrogen bonds is indisputably one of the most important tasks in synthetic organic chemistry. Here, nitroso compounds offer a highly interesting reactivity that complements traditional amination strategies, allowing for the introduction of nitrogen functionalities via ene-type reactions or Diels-Alder cycloadditions. In this study, we highlight the potential of horseradish peroxidase as biological mediator for the generation of reactive nitroso species under environmentally benign conditions. Exploiting a non-natural peroxidase reactivity, in combination with glucose oxidase as oxygen-activating biocatalyst, aerobic activation of a broad range of N-hydroxycarbamates and hydroxamic acids is achieved. Thus both intra- and intermolecular nitroso-ene as well as nitroso-Diels-Alder reactions are performed with high efficiency. Relying on a commercial and robust enzyme system, the aqueous catalyst solution can be recycled over numerous reaction cycles without significant loss of activity. Overall, this green and scalable C-N bond-forming strategy enables the production of allylic amides and various N-heterocyclic building blocks utilizing only air and glucose as sacrificial reagents.
Collapse
Affiliation(s)
- Christina Jäger
- Department of Chemistry, University of Helsinki A.I. Virtasen aukio 1 00560 Helsinki Finland https://www.deskalab.com
| | - Bernhard J Gregori
- Department of Chemistry, University of Helsinki A.I. Virtasen aukio 1 00560 Helsinki Finland https://www.deskalab.com
- Institut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 20146 Hamburg Germany
| | - Juhana A S Aho
- Department of Chemistry, University of Helsinki A.I. Virtasen aukio 1 00560 Helsinki Finland https://www.deskalab.com
| | - Marleen Hallamaa
- Department of Chemistry, University of Helsinki A.I. Virtasen aukio 1 00560 Helsinki Finland https://www.deskalab.com
| | - Jan Deska
- Department of Chemistry, University of Helsinki A.I. Virtasen aukio 1 00560 Helsinki Finland https://www.deskalab.com
| |
Collapse
|
4
|
Jäger C, Haase M, Koschorreck K, Urlacher VB, Deska J. Aerobic C-N Bond Formation through Enzymatic Nitroso-Ene-Type Reactions. Angew Chem Int Ed Engl 2023; 62:e202213671. [PMID: 36468873 PMCID: PMC10107922 DOI: 10.1002/anie.202213671] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The biocatalytic oxidation of acylated hydroxylamines enables the direct and selective introduction of nitrogen functionalities by activation of allylic C-H bonds. Utilizing either laccases or an oxidase/peroxidase couple for the formal dehydrogenation of N-hydroxycarbamates and hydroxamic acids with air as the terminal oxidant, acylnitroso species are generated under particularly mild aqueous conditions. The reactive intermediates undergo C-N bond formation through an ene-type mechanism and provide high yields both in intramolecular and intermolecular enzymatic aminations. Investigations on different pathways of the two biocatalytic systems and labelling studies provide more insight into this unprecedented promiscuity of classical oxidoreductases as catalysts for nitroso-based transformations.
Collapse
Affiliation(s)
- Christina Jäger
- University of HelsinkiDepartment of ChemistryA.I. Virtasen aukio 100560HelsinkiFinland
- Aalto UniversityDepartment of ChemistryKemistintie 102150EspooFinland
| | - Mona Haase
- Aalto UniversityDepartment of ChemistryKemistintie 102150EspooFinland
- Heinrich-Heine-Universität DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Katja Koschorreck
- Heinrich-Heine-Universität DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Vlada B. Urlacher
- Heinrich-Heine-Universität DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Jan Deska
- University of HelsinkiDepartment of ChemistryA.I. Virtasen aukio 100560HelsinkiFinland
- Aalto UniversityDepartment of ChemistryKemistintie 102150EspooFinland
| |
Collapse
|
5
|
Affiliation(s)
- Junsu Kim
- Department of Chemistry, and Research Institute of Basic Sciences Incheon National University 119 Academy-ro, Yeonsu-gu Incheon 22012 Republic of Korea
| | - Da Hye Lee
- Department of Chemistry, and Research Institute of Basic Sciences Incheon National University 119 Academy-ro, Yeonsu-gu Incheon 22012 Republic of Korea
| | - Jinho Kim
- Department of Chemistry, and Research Institute of Basic Sciences Incheon National University 119 Academy-ro, Yeonsu-gu Incheon 22012 Republic of Korea
| |
Collapse
|
6
|
Mallik S, Bhajammanavar V, Baidya M. Regioselective Nitrosocarbonyl Aldol Reaction of Deconjugated Butyrolactams: Synthesis of γ‐Heterosubstituted α,β‐Unsaturated γ‐Lactams. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sumitava Mallik
- Department of Chemistry Indian Institute of Technology Madras Chennai 6000036 Tamil Nadu India
| | - Vinod Bhajammanavar
- Department of Chemistry Indian Institute of Technology Madras Chennai 6000036 Tamil Nadu India
| | - Mahiuddin Baidya
- Department of Chemistry Indian Institute of Technology Madras Chennai 6000036 Tamil Nadu India
| |
Collapse
|
7
|
Wang Q, Tang X, Dai P, Wang C, Zhang W, Chen G, Hong K, Hu D, Gao H, Yao X. A four-protein metabolon assembled by a small peptide protein creates the pentacyclic carbonate ring of aldgamycins. Acta Pharm Sin B 2021; 11:588-597. [PMID: 33643833 PMCID: PMC7893128 DOI: 10.1016/j.apsb.2020.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 10/28/2022] Open
Abstract
Organic carbonates (OCs) are a class of compounds featured by a carbonyl flanked by two alkoxy/aryloxy groups. They exist in either linear or cyclic forms, of which the majority encountered in nature adopt a pentacyclic structure. However, the enzymatic basis for pentacyclic carbonate ring formation remains elusive. Here, we reported that a four-protein metabolon (AlmUII-UV) assembled by a small peptide protein (AlmUV) appends a reactive N-hydroxylcarbamoyl moiety to the decarboxylated aldgamycins followed by a non-enzymatic condensation to give the pentacyclic carbonate ring. Our results have documented an unprecedent mechanism for carbonate formation.
Collapse
|
8
|
Purkait A, Saha S, Ghosh S, Jana CK. Lewis acid catalyzed reactivity switch: pseudo three-component annulation of nitrosoarenes and (epoxy)styrenes. Chem Commun (Camb) 2020; 56:15032-15035. [PMID: 33188668 DOI: 10.1039/d0cc02650f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Lewis acid catalyzed annulation reaction via arene functionalization of nitrosoarenes and C-C cleavage of (epoxy)styrene to provide arylquinolines is reported. The Lewis acid catalyst altered the annulation pattern providing arylquinolines instead of oxazolidines. The reaction with styrene resulted in a mixture of 2,4-diarylquinoline and 4-arylquinoline, while only 3-arylquinoline was formed from the reaction of epoxystyrene.
Collapse
Affiliation(s)
- Anisha Purkait
- Department of Chemistry, Indian Institute of Technology, Guwahati, 781039, India.
| | | | | | | |
Collapse
|
9
|
Abstract
This communication discloses the first examples of aza-Wacker cyclizations of sulfamate esters. Within the realm of related cyclization reactions, this protocol is differential in that it forms six-membered rings in good yield and uses catalytic amounts of palladium(0) rather than palladium(II) salts. These reactions scale well, and their products are demonstrated to be valuable synthetic intermediates.
Collapse
Affiliation(s)
- Anand H. Shinde
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Shyam Sathyamoorthi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
10
|
Mallik S, Bhajammanavar V, Mukherjee AP, Baidya M. Catalytic Regiodivergent Dearomatization Reaction of Nitrosocarbonyl Intermediates with β-Naphthols. Org Lett 2019; 21:2352-2355. [DOI: 10.1021/acs.orglett.9b00628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sumitava Mallik
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Vinod Bhajammanavar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Arka Probha Mukherjee
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
11
|
|
12
|
Mallik S, Bhajammanavar V, Ramakrishna I, Baidya M. Cross-Aldol Reaction of Activated Carbonyls with Nitrosocarbonyl Intermediates: Stereoselective Synthesis toward α-Hydroxy-β-amino Esters and Amides. Org Lett 2017; 19:3843-3846. [PMID: 28700246 DOI: 10.1021/acs.orglett.7b01721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A practical and flexible strategy toward α-hydroxy-β-amino esters and amides, which are important biological motifs, based on an organocatalytic cross-aldol reaction of in situ-generated nitrosocarbonyl intermediates followed by hydrogenation is presented. The protocol features operational simplicity, high yields, a wide substrate scope, and high regio- and diastereoselectivity profiles. The utility of this method was showcased through the synthesis of bestatin analogues and indole formation.
Collapse
Affiliation(s)
- Sumitava Mallik
- Department of Chemistry, Indian Institute of Technology Madras , Chennai 600 036, Tamil Nadu, India
| | - Vinod Bhajammanavar
- Department of Chemistry, Indian Institute of Technology Madras , Chennai 600 036, Tamil Nadu, India
| | - Isai Ramakrishna
- Department of Chemistry, Indian Institute of Technology Madras , Chennai 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras , Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
13
|
Reddy MK, Mallik S, Ramakrishna I, Baidya M. Nitrosocarbonyl–Henry and Denitration Cascade: Synthesis of α-Ketoamides and α-Keto Oximes. Org Lett 2017; 19:1694-1697. [DOI: 10.1021/acs.orglett.7b00482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mallu Kesava Reddy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Sumitava Mallik
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Isai Ramakrishna
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
14
|
Abstract
The nitrosocarbonyls (R-CONO) are highly reactive species and remarkable intermediates toward different synthetic targets. This review will cover a research area whose impact in current organic synthesis is constantly increasing in the chemical community. This review represents the first and comprehensive picture on the generation and trapping of nitrosocarbonyls and is solidly built on more than 380 papers. Six different classes of key starting materials such as hydroxamic acids, N-hydroxy carbamates, N-hydroxyureas, nitrile oxides, and 1,2,4-oxadiazole-4-oxides were highlighted. The content of the review surveys all the methods to generate the nitrosocarbonyls through different approaches (oxidative, thermal, photochemical, catalytic, aerobic, and the less common ones) in the light of efficiency, yields, and mildness. The most successful trapping agents employed to catch these fleeting intermediates are reviewed, exploiting their superior dienophilic, enophilic, and electrophilic power. The work is completed by paragraphs dedicated to the detection of the intermediates, theoretical studies, and insights about the challenges and future directions for the field.
Collapse
Affiliation(s)
- Misal Giuseppe Memeo
- Dipartimento di Chimica, Università degli Studi di Pavia , Viale Taramelli 12, 27100 Pavia, Italy
| | - Paolo Quadrelli
- Dipartimento di Chimica, Università degli Studi di Pavia , Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
15
|
Orcel U, Waser J. In situ tether formation from amines and alcohols enabling highly selective Tsuji-Trost allylation and olefin functionalization. Chem Sci 2017; 8:32-39. [PMID: 28451147 PMCID: PMC5304619 DOI: 10.1039/c6sc04366f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/02/2016] [Indexed: 01/01/2023] Open
Abstract
The use of tethers allows to overcome reactivity and selectivity issues often encountered with intermolecular reactions. Although tethers have been successfully applied for decades, their installation and removal usually requires additional steps. This minireview highlights the recent development of tethers that can be installed in situ on (homo)-allyl amines or alcohols for Tsuji-Trost allylation or double bond functionalization. In particular, the use of (hemi-)acetal tethers for highly regioselective and enantioselective Tsuji-Trost allylation was recently reported. Hydroamination of olefins starting from allylic amines could be achieved via a retro Cope-elimination using catalytic amount of an aldehyde for tether formation. Finally, bifunctionalizations of olefins were developed using either carbon dioxide or carbonyls/imines as tether precursors. These recent breakthroughs greatly enhanced the efficiency of the tethering approach for olefin functionalization, and will make it even more attractive for synthetic chemists in the future.
Collapse
Affiliation(s)
- Ugo Orcel
- Laboratory of Catalysis and Organic Synthesis , Ecole Polytechnique Fédérale de Lausanne , EPFL SB ISIC LCSO , BCH 4306 , 1015 Lausanne , Switzerland .
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis , Ecole Polytechnique Fédérale de Lausanne , EPFL SB ISIC LCSO , BCH 4306 , 1015 Lausanne , Switzerland .
| |
Collapse
|
16
|
Affiliation(s)
- Nolwenn Derrien
- Department
of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, U.K
| | - James S. Sharley
- Department
of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, U.K
| | - Aleksandr E. Rubtsov
- Department
of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, U.K
- Department
of Chemistry, Perm State University, Bukireva 15, Perm 614990, Russia
| | - Andrei V. Malkov
- Department
of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, U.K
- Department
of Organic Chemistry, RUDN, 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| |
Collapse
|
17
|
Sharma P, Liu RS. Skeletal Rearrangement in the ZnII-Catalyzed [4+2]-Annulation of DisubstitutedN-Hydroxy Allenylamines with Nitrosoarenes to Yield Substituted 1,2-Oxazinan-3-one Derivatives. Chemistry 2016; 22:15881-15887. [DOI: 10.1002/chem.201602579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Pankaj Sharma
- Department of Chemistry; National Tsing-Hua University, 101, Sec. 2; Kuang-Fu Rd. Hsinchu 3003, Taiwan Republic of China
| | - Rai-Shung Liu
- Department of Chemistry; National Tsing-Hua University, 101, Sec. 2; Kuang-Fu Rd. Hsinchu 3003, Taiwan Republic of China
| |
Collapse
|
18
|
Nakashima E, Yamamoto H. Continuous flow of nitroso Diels-Alder reaction. Chem Commun (Camb) 2016; 51:12309-12. [PMID: 26138229 DOI: 10.1039/c5cc03458b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Our flow reaction systems have provided quantitative yields of nitroso Diels-Alder products with no byproducts in cases of cyclic dienes without temperature and pressure controls. Additionally, the reaction times were significantly shortened by using homogeneous catalyst (CuCl) or heterogeneous reagent (MnO2) in comparison with batch reaction.
Collapse
Affiliation(s)
- Erika Nakashima
- Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA.
| | | |
Collapse
|
19
|
Logan MW, Lau YA, Zheng Y, Hall EA, Hettinger MA, Marks RP, Hosler ML, Rossi FM, Yuan Y, Uribe-Romo FJ. Heterogeneous photoredox synthesis of N-hydroxy-oxazolidinones catalysed by metal–organic frameworks. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00054a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The photocatalytic conversion ofN-hydroxy-carbamates toN-hydroxy-oxazolidinones using metal–organic frameworks is reported herein.
Collapse
Affiliation(s)
| | - Yuen A. Lau
- Department of Chemistry
- University of Central Florida
- Orlando
- USA
| | - Yongsheng Zheng
- Department of Chemistry
- University of Central Florida
- Orlando
- USA
| | | | | | - Randal P. Marks
- Department of Chemistry
- University of Central Florida
- Orlando
- USA
| | | | | | - Yu Yuan
- Department of Chemistry
- University of Central Florida
- Orlando
- USA
| | | |
Collapse
|
20
|
Porter D, Poon BML, Rutledge PJ. Iron complexes of tetramine ligands catalyse allylic hydroxyamination via a nitroso-ene mechanism. Beilstein J Org Chem 2015; 11:2549-56. [PMID: 26734101 PMCID: PMC4685922 DOI: 10.3762/bjoc.11.275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/24/2015] [Indexed: 12/17/2022] Open
Abstract
Iron(II) complexes of the tetradentate amines tris(2-pyridylmethyl)amine (TPA) and N,N'-bis(2-pyridylmethyl)-N,N'-dimethylethane-1,2-diamine (BPMEN) are established catalysts of C-O bond formation, oxidising hydrocarbon substrates via hydroxylation, epoxidation and dihydroxylation pathways. Herein we report the capacity of these catalysts to promote C-N bond formation, via allylic amination of alkenes. The combination of N-Boc-hydroxylamine with either FeTPA (1 mol %) or FeBPMEN (10 mol %) converts cyclohexene to the allylic hydroxylamine (tert-butyl cyclohex-2-en-1-yl(hydroxy)carbamate) in moderate yields. Spectroscopic studies and trapping experiments suggest the reaction proceeds via a nitroso-ene mechanism, with involvement of a free N-Boc-nitroso intermediate. Asymmetric induction is not observed using the chiral tetramine ligand (+)-(2R,2'R)-1,1'-bis(2-pyridylmethyl)-2,2'-bipyrrolidine ((R,R')-PDP).
Collapse
Affiliation(s)
- David Porter
- School of Chemistry F11, The University of Sydney, NSW 2006, Australia
| | - Belinda M-L Poon
- School of Chemistry F11, The University of Sydney, NSW 2006, Australia
| | - Peter J Rutledge
- School of Chemistry F11, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
21
|
Sandoval D, Samoshin AV, Read de Alaniz J. Asymmetric Electrophilic α-Amination of Silyl Enol Ether Derivatives via the Nitrosocarbonyl Hetero-ene Reaction. Org Lett 2015; 17:4514-7. [PMID: 26317504 DOI: 10.1021/acs.orglett.5b02208] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- David Sandoval
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Andrey V. Samoshin
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
22
|
Accessing nitrosocarbonyl compounds with temporal and spatial control via the photoredox oxidation of N-substituted hydroxylamines. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.01.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Affiliation(s)
- Ingmar Bauer
- Department Chemie, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Hans-Joachim Knölker
- Department Chemie, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| |
Collapse
|
24
|
#Nitrosocarbonyls 1: antiviral activity of N-(4-hydroxycyclohex-2-en-1-yl)quinoline-2-carboxamide against the influenza A virus H1N1. ScientificWorldJournal 2014; 2014:472373. [PMID: 25610906 PMCID: PMC4293787 DOI: 10.1155/2014/472373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 12/05/2014] [Indexed: 11/17/2022] Open
Abstract
Influenza virus flu A H1N1 still remains a target for its inhibition with small molecules. Fleeting nitrosocarbonyl intermediates are at work in a short-cut synthesis of carbocyclic nucleoside analogues. The strategy of the synthetic approaches is presented along with the in vitro antiviral tests. The nucleoside derivatives were tested for their inhibitory activity against a variety of viruses. Promising antiviral activities were found for specific compounds in the case of flu A H1N1.
Collapse
|
25
|
Chavhan SW, McAdam CA, Cook MJ. Silicon-Directed Rhenium-Catalyzed Allylic Substitutions with N-Hydroxycarbamates, N-Hydroxysulfonamides, and Hydroxamic Acids. J Org Chem 2014; 79:11234-40. [DOI: 10.1021/jo501992p] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Sanjay W. Chavhan
- School
of Chemistry and Chemical
Engineering, Queen’s University Belfast, Belfast BT9 5AG, Northern Ireland
| | - Catherine A. McAdam
- School
of Chemistry and Chemical
Engineering, Queen’s University Belfast, Belfast BT9 5AG, Northern Ireland
| | - Matthew J. Cook
- School
of Chemistry and Chemical
Engineering, Queen’s University Belfast, Belfast BT9 5AG, Northern Ireland
| |
Collapse
|
26
|
|
27
|
Malkov AV, Lee DS, Barłóg M, Elsegood MRJ, Kočovský P. Palladium-Catalyzed Stereoselective Intramolecular Oxidative Amidation of Alkenes in the Synthesis of 1,3- and 1,4-Amino Alcohols and 1,3-Diamines. Chemistry 2014; 20:4901-5. [DOI: 10.1002/chem.201400123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Indexed: 11/11/2022]
|
28
|
Kano T, Shirozu F, Maruoka K. Practical Approach for Asymmetric Hydroxyamination of Aldehydes with in Situ Generated Nitrosocarbonyl Compounds: Application to One-Pot Synthesis of Chiral Allylamines. Org Lett 2014; 16:1530-2. [DOI: 10.1021/ol5000742] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Taichi Kano
- Department
of Chemistry,
Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Fumitaka Shirozu
- Department
of Chemistry,
Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Keiji Maruoka
- Department
of Chemistry,
Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
29
|
Kano T, Shirozu F, Maruoka K. Metal-Free Enantioselective Hydroxyamination of Aldehydes with Nitrosocarbonyl Compounds Catalyzed by an Axially Chiral Amine. J Am Chem Soc 2013; 135:18036-9. [DOI: 10.1021/ja4099627] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Taichi Kano
- Department
of Chemistry,
Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Fumitaka Shirozu
- Department
of Chemistry,
Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Keiji Maruoka
- Department
of Chemistry,
Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
30
|
Terent'ev AO, Krylov IB, Timofeev VP, Starikova ZA, Merkulova VM, Ilovaisky AI, Nikishin GI. Oxidative CO Cross-Coupling of 1,3-Dicarbonyl Compounds and Their Heteroanalogues withN-Substituted Hydroxamic Acids andN-Hydroxyimides. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201300341] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
|
32
|
|