1
|
Li G, Zhao X, Zhang J, Liu X, Sun B, Xu F. Nickel-catalyzed oxidative thiolation of α-amino carbonyl compounds with thiols. Org Biomol Chem 2024; 22:2003-2006. [PMID: 38376800 DOI: 10.1039/d3ob01825c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
An efficient oxidative thiolation of α-amino carbonyl compounds with thiols by the catalysis of an Earth-abundant nickel salt is disclosed for the first time. A variety of alkyl thiols and (hetero)aryl thiols underwent the reaction well with α-amino ketones and an α-amino ester to produce the desired α,α-aminothiocarbonyl compounds in good to excellent yields under ligand- and base-free conditions.
Collapse
Affiliation(s)
- Gaoqiang Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China.
| | - Xiaoqian Zhao
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China.
| | - Jiarui Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China.
| | - Xue Liu
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China.
| | - Bangguo Sun
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China.
| | - Feng Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China.
| |
Collapse
|
2
|
Wu Y, Zhang W, Ma S, Song C, Chang J. Copper-Catalyzed Synthesis of N-Fused Quinolines via C(sp 3)-H Activation-Radical Addition-Cyclization Cascade. J Org Chem 2023. [PMID: 38012068 DOI: 10.1021/acs.joc.3c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A novel copper-catalyzed cyclization reaction for the synthesis of pyrazolo[1,5-a]quinoline, triazolo[1,5-a]quinoline, and pyrrolo[1,2-a]quinoline derivatives is described. The process is initiated by di-tert-butyl peroxide-mediated C(sp3)-H activation to generate the α-functionalized radical, which supervenes a cascade radical addition/cyclization sequence to access the N-fused quinolines in good yields with broad functional group tolerance.
Collapse
Affiliation(s)
- Yangang Wu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shiyu Ma
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Chuanjun Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Yu H, Xu F. Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp 3)-H to construct C-C bonds. Beilstein J Org Chem 2023; 19:1259-1288. [PMID: 37701303 PMCID: PMC10494247 DOI: 10.3762/bjoc.19.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
Ether derivatives are widespread as essential building blocks in various drugs, natural products, agrochemicals, and materials. Modern economy requires developing green strategies with improved efficiency and reduction of waste. Due to its atom and step-economy, the cross-dehydrogenative coupling (CDC) reaction has become a major strategy for ether functionalization. This review covers C-H/C-H cross-coupling reactions of ether derivatives with various C-H bond substrates via non-noble metal catalysts (Fe, Cu, Co, Mn, Ni, Zn, Y, Sc, In, Ag). We discuss advances achieved in these CDC reactions and hope to attract interest in developing novel methodologies in this field of organic chemistry.
Collapse
Affiliation(s)
- Hui Yu
- Department of Pharmacy, Shi zhen College of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550200, P. R. China
| | - Feng Xu
- School of Mathematics and Information Science, Guiyang University, Guiyang, Guizhou 550005, P. R. China
| |
Collapse
|
4
|
Lv S, Li Q, Sang JW, Zhang Y, Wang J, Zhang WD. Uranyl nitrate as a recyclable homogeneous photocatalyst for selective cross-coupling of N-substituted amines and indoles. RSC Adv 2023; 13:11929-11937. [PMID: 37077263 PMCID: PMC10108382 DOI: 10.1039/d3ra01037f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/05/2023] [Indexed: 04/21/2023] Open
Abstract
A homogeneous photocatalytic recyclable system for the selective radical-radical cross-coupling of N-substituted amines and indoles has been established. This system could conduct in water or acetonitrile, featuring the reuse of uranyl nitrate as the recyclable photocatalyst via a simple extraction. With this mild strategy in hand, good to excellent yields of cross-coupling products could be achieved even under the irradiation of sunlight, including 26 natural product derivatives and 16 natural product inspired re-engineered compounds. A radical-radical cross-coupling mechanism was newly proposed based on experimental evidence and reported literature. This strategy has been also applied to a gram scale synthesis to demonstrate its practical utility.
Collapse
Affiliation(s)
- Shuaipeng Lv
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Qiannan Li
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Ji-Wei Sang
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Yu Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
| | - Jinxin Wang
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| |
Collapse
|
5
|
Lokolkar MS, Kolekar YA, Jagtap PA, Bhanage BM. Cu-Catalyzed C-C Coupling Reactions. TOP ORGANOMETAL CHEM 2023. [DOI: 10.1007/3418_2022_81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
6
|
Babu MH, Sim J. Radical‐Mediated C‐H Alkylation of Glycine Derivatives: A Straightforward Strategy for Diverse α‐Unnatural Amino Acids. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Madala Hari Babu
- Chungnam National University College of Pharmacy KOREA, REPUBLIC OF
| | - Jaehoon Sim
- Chungnam National University College of Pharmacy College of Pharmacy 99 Daehak-ro, Yuseong-guW6 College of Pharmacy 34134 Daejeon KOREA, REPUBLIC OF
| |
Collapse
|
7
|
San Segundo M, Correa A. Radical C–H Alkylation with Ethers and Unactivated Cycloalkanes toward the Assembly of Tetrasubstituted Amino Acid Derivatives. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Young HA, Proulx C. On-resin Cα-functionalization of N-arylglycinyl peptides with boronic acids. Org Biomol Chem 2022; 20:6245-6249. [PMID: 35616496 DOI: 10.1039/d2ob00524g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A late-stage α-C-H functionalization reaction of resin-bound, electron-rich N-aryl peptides with boronic acid nucleophiles under mild conditions is reported. We explore the impact of the N-arylglycinyl peptide structure on reactivity, and present a scope of the optimized reaction where both the peptide sequence and nature of boronic acid derivatives are varied.
Collapse
Affiliation(s)
- Hailey A Young
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Caroline Proulx
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| |
Collapse
|
9
|
Duan P, Zhao H, Yang J, Cao L, Jiang H, Zhang M. Construction of Fluorinated Amino Acid Derivatives via Cobalt-Catalyzed Oxidative Difunctionalization of Cyclic Ethers. Org Lett 2022; 24:608-612. [PMID: 34989577 DOI: 10.1021/acs.orglett.1c04048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Via difunctionalization of the α- and β-sites of cyclic ethers, we herein demonstrate a new synthetic method for the efficient construction of novel fluorinated γ-amino acid esters by employing a CoBr2/m-CPBA catalyst system. Several cyclic ethers were transformed in combination with a vast range of amines and ethyl trifluoropyruvate into the desired products under mild conditions, making this method a practical platform to enrich the library of fluorinated amino acid derivatives from cost-effective and readily available feedstocks.
Collapse
Affiliation(s)
- Peng Duan
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - Jian Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - Liang Cao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| |
Collapse
|
10
|
Zhao J, Hua HL, Wang GP, Cheng JL, Liang YM. H2O2‐Promoted Alkoxyalkylation of Terminal Alkynes Employing Two Strategies with Transition‐Metal‐Free. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Jinhao Zhao
- Zhejiang University Yuhangtang Road 866 Hangzhou CHINA
| | | | | | - Jing-Li Cheng
- Zhejiang University College of Civil Engineering and Architecture CHINA
| | - Yong-Min Liang
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
11
|
Zhou SY, Zhang D, Liu XJ, Qin JH, Fu ZL, Li SL, Cai FJ, Li Y, Li JH. Visible-Light-Driven Photoredox-Catalyzed C(sp3)-C(sp3) Cross-Coupling of N-arylamines with Cycloketone Oxime Esters. Org Chem Front 2022. [DOI: 10.1039/d2qo00128d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel photoredox-catalyzed C(sp3)-C(sp3) cross-coupling between N-arylamines and cycloketone oxime esters under mild conditions has been accomplished. The redox-neutral reaction proceeds good functional group tolerance and excellent regioselectivity without any...
Collapse
|
12
|
Zhao Y, Wang JL, Zhang Z, Li XS, Niu ZJ, Liu XY. Copper-Catalyzed Direct Allenylation of Inactive Cyclic Ethers. J Org Chem 2021; 86:18056-18066. [PMID: 34842425 DOI: 10.1021/acs.joc.1c02339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report here a direct allenylation reaction of inactive cyclic ethers. The reaction proceeds through a copper-catalyzed 1,4-difunctionalization of 1,3-enynes, with cyano group installed at the allenes simultaneously. This methodology shows a broad functional group compatibility to 1,3-enynes. Diversified allene-modified cyclic ether derivatives were synthesized with high regioselectivity under mild conditions.
Collapse
Affiliation(s)
- Yichuan Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jin-Lin Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhi-Jie Niu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
13
|
Zhang Y, Jiang W, Bao X, Qiu Y, Yuan Y, Yang C, Huo C. Photocatalyzed Reverse Polarity Oxidative Povarov Reaction of Glycine Derivatives with Maleimides. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yongxin Zhang
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Wei Jiang
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Xiazhen Bao
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Yifeng Qiu
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Yong Yuan
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Caixia Yang
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| |
Collapse
|
14
|
Song Y, Zhang H, Guo J, Shao Y, Ding Y, Zhu L, Yao X. Visible‐Light‐Induced Oxidative α‐Alkylation of Glycine Derivatives with Ethers under Metal‐Free Conditions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yang Song
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Hao Zhang
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Jiabao Guo
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Yifei Shao
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Yuzhou Ding
- Department of Chemistry School of Pharmacy Nanjing Medical University Nanjing 211166 PR China
| | - Li Zhu
- Department of Chemistry School of Pharmacy Nanjing Medical University Nanjing 211166 PR China
| | - Xiaoquan Yao
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| |
Collapse
|
15
|
Copper catalyzed decarboxylative coupling between coumarin 3-carboxylic acid and 4-thiazolidinones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Liang J, Fu Y, Bao X, Ou L, Sang T, Yuan Y, Huo C. Cyanation of glycine derivatives. Chem Commun (Camb) 2021; 57:3014-3017. [PMID: 33623936 DOI: 10.1039/d0cc08126d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report a catalytic oxidative C-H cyanation of glycine derivatives using a simple copper(i) catalyst with NFSI as an oxidant via a radical process to furnish α-cyano glycine derivatives, which are useful intermediates for organic synthesis. CuCl acted as both a one-electron reductant and a transition-metal catalyst in this transformation. NFSI served as a one-electron oxidant and generated a N-centered radical as a H-abstractor. The reaction displayed broad substrate scope and mild reaction conditions.
Collapse
Affiliation(s)
- Jia Liang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Wang J, Su Y, Quan Z, Li J, Yang J, Yuan Y, Huo C. Visible-light promoted α-alkylation of glycine derivatives with alkyl boronic acids. Chem Commun (Camb) 2021; 57:1959-1962. [DOI: 10.1039/d0cc07688k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A visible-light-mediated aerobic α-alkylation reaction of glycine derivatives with alkyl boronic acids has been established in the presence of a Ru/Cu catalyst system, giving the desired radical coupling products efficiently.
Collapse
Affiliation(s)
- Jiayuan Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Yingpeng Su
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Zhengjun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Jun Li
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Jie Yang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Yong Yuan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| |
Collapse
|
18
|
Chen Z, Zhou Q, Chen QN, Chen P, Xiong BQ, Liang Y, Tang KW, Xie J, Liu Y. Copper-promoted cyanoalkylation/ring-expansion of vinylcyclopropanes with α-C-H bonds in alkylnitriles toward 3,4-dihydronaphthalenes. Org Biomol Chem 2020; 18:8677-8685. [PMID: 33078807 DOI: 10.1039/d0ob01864c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A copper-promoted oxidative cyanomethylation/ring-expansion of vinylcyclopropanes with α-C(sp3)-H bonds in alkyl nitriles is established for the generation of 1-cyanoethylated 3,4-dihydronaphthalenes. This cyanomethylation/ring-expansion involves a radical pathway and proceeds via cyanomethyl radical formation, radical addition and ring-expansion. This ring-expansion strategy offers a highly atom-economical route for the construction of nitrile-containing 3,4-dihydronaphthalenes, which can be transformed into other useful products under simple conditions.
Collapse
Affiliation(s)
- Zan Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Quan Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Qing-Nan Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Pu Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yun Liang
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jun Xie
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China. and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
19
|
Andrade-Sampedro P, Correa A, Matxain JM. On the Mechanism of Cross-Dehydrogenative Couplings between N-aryl Glycinates and Indoles: A Computational Study. J Org Chem 2020; 85:13133-13140. [PMID: 32940464 DOI: 10.1021/acs.joc.0c01816] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Despite the widespread use of cross-dehydrogenative couplings in modern organic synthesis, mechanistic studies are still rare in the literature and those applied to α-amino carbonyl compounds remain virtually unexplored. Herein, the mechanism of Co-catalyzed cross-dehydrogenative couplings of N-aryl glycinates with indoles is described. Density functional theory studies supported the formation of an imine-type intermediate as the more plausible transient electrophilic species. Likewise, key information regarding the role of the N-aryl group and free NH motif within the reaction outcome has been gained, which may set the stage for further developments in this field of expertise.
Collapse
Affiliation(s)
- Paula Andrade-Sampedro
- Department of Organic Chemistry I, Joxe Mari Korta R&D Center, University of the Basque Country (UPV/EHU), Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain.,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Arkaitz Correa
- Department of Organic Chemistry I, Joxe Mari Korta R&D Center, University of the Basque Country (UPV/EHU), Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Jon M Matxain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
20
|
He X, Wu Y, Zhou T, Zuo Y, Xie M, Li R, Duan J, Shang Y. Rh-catalyzed C–N coupling of N-sulfonyl-1,2,3-trizales with secondary amines for regioselective synthesis of phenylvinyl-1,2-diamines. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1781185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Yuhao Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Tongtong Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Youpeng Zuo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Jiahui Duan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| |
Collapse
|
21
|
Cu(OAc)2 and acids promoted the oxidative cleavage of α-aminocarbonyl compounds with amines: efficient and selective synthesis of 2-t-amino-2-imino-carbonyl and 2-amino-2-oxocarbonyl. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Chiou MF, Xiong H, Li Y, Bao H, Zhang X. Revealing the Iron-Catalyzed β-Methyl Scission of tert-Butoxyl Radicals via the Mechanistic Studies of Carboazidation of Alkenes. Molecules 2020; 25:molecules25051224. [PMID: 32182775 PMCID: PMC7179474 DOI: 10.3390/molecules25051224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/01/2022] Open
Abstract
We describe here a mechanistic study of the iron-catalyzed carboazidation of alkenes involving an intriguing metal-assisted β-methyl scission process. Although t-BuO radical has frequently been observed in experiments, the β-methyl scission from a t-BuO radical into a methyl radical and acetone is still broadly believed to be thermodynamically spontaneous and difficult to control. An iron-catalyzed β-methyl scission of t-BuO is investigated in this work. Compared to a free t-BuO radical, the coordination at the iron atom reduces the activation energy for the scission from 9.3 to 3.9 ~ 5.2 kcal/mol. The low activation energy makes the iron-catalyzed β-methyl scission of t-BuO radicals almost an incomparably facile process and explains the selective formation of methyl radicals at low temperature in the presence of some iron catalysts. In addition, a radical relay process and an outer-sphere radical azidation process in the iron-catalyzed carboazidation of alkenes are suggested by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Mong-Feng Chiou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, Fujian, China; (M.-F.C.); (H.X.); (Y.L.)
| | - Haigen Xiong
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, Fujian, China; (M.-F.C.); (H.X.); (Y.L.)
- School of Chemistry and Chemical Engineering of University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, Fujian, China; (M.-F.C.); (H.X.); (Y.L.)
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, Fujian, China; (M.-F.C.); (H.X.); (Y.L.)
- School of Chemistry and Chemical Engineering of University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (H.B.); (X.Z.); Tel.: +86-0591-63179307 (H.B.); +86-0755-26037219 (X.Z.)
| | - Xinhao Zhang
- Lab of Computational Chemistry and Drug Design, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Correspondence: (H.B.); (X.Z.); Tel.: +86-0591-63179307 (H.B.); +86-0755-26037219 (X.Z.)
| |
Collapse
|
23
|
Guthrie QAE, Young HA, Proulx C. Ketoxime peptide ligations: oxidative couplings of alkoxyamines to N-aryl peptides. Chem Sci 2019; 10:9506-9512. [PMID: 32110307 PMCID: PMC7017874 DOI: 10.1039/c9sc04028e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 08/22/2019] [Indexed: 01/01/2023] Open
Abstract
Chemoselective ligation methods that preserve or introduce side chain diversity are critical for chemical synthesis of peptides and proteins. Starting from ketone substrates instead of aldehydes in oxime ligation reactions would allow substitution at the site of ligation; however, synthetic challenges to readily access ketone derivatives from common amino acid building blocks have precluded the widespread use of ketoxime peptide ligation reactions thus far. Moreover, ketones are typically much slower to react in condensation reactions compared to aldehydes. Here, one-pot catalyst-free oxidative couplings of α-substituted N-aryl peptides with alkoxyamines provide access to oxime linkages with diverse side chains. Electron-rich N-(p-Me2N-phenyl)-amino acids possessing substituents at the α-carbon were found to be uniquely capable of undergoing site-selective α-C-H oxidations in situ under an O2 atmosphere at neutral pH. Comparative studies with N-arylglycinyl peptides revealed that substitution at the α-carbon caused notable changes in reactivity, with greater sensitivity to solvent and buffer salt composition.
Collapse
Affiliation(s)
- Quibria A E Guthrie
- Department of Chemistry , North Carolina State University , Raleigh , NC 27695-8204 , USA .
| | - Hailey A Young
- Department of Chemistry , North Carolina State University , Raleigh , NC 27695-8204 , USA .
| | - Caroline Proulx
- Department of Chemistry , North Carolina State University , Raleigh , NC 27695-8204 , USA .
| |
Collapse
|
24
|
Wang P, Xiong Y, Qin Y, Zhang J, Yi N, Xiang J, Deng W. Synthesis of 2-oxo-acetamidines via copper-catalyzed oxidative cross-coupling of α-amino ketone compounds with amines. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.105766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
25
|
Wu YH, Wang NX, Zhang T, Zhang LY, Gao XW, Xu BC, Xing Y, Chi JY. Rare-Earth Y(OTf)3 Catalyzed Coupling Reaction of Ethers with Azaarenes. Org Lett 2019; 21:7450-7454. [DOI: 10.1021/acs.orglett.9b02763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yue-Hua Wu
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Nai-Xing Wang
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tong Zhang
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei-Yang Zhang
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xue-Wang Gao
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bao-Cai Xu
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yalan Xing
- Department of Chemistry, William Paterson University of New Jersey, Wayne, New Jersey 07470, United States
| | - Jian-Yi Chi
- Baotou Rare Earth Research and Development Center, Chinese Academy of Sciences, Baotou, 014010, China
| |
Collapse
|
26
|
Gao LH, Zhang JY, Song SZ, Cao TT, Ge GP, Li Q, Wei WT. Base-promoted domino radical cyclization of 1,6-enynes. Org Biomol Chem 2019; 17:7674-7678. [PMID: 31384880 DOI: 10.1039/c9ob01550g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A good regioselective, high atom-economical and transition-metal-free method for the synthesis of α-functionalized ether derivatives via the domino radical cyclization of 1,6-enynes is described. A series of α-functionalized ether derivatives could be easily obtained in good yields with wide functional group tolerance by using less toxic and inexpensive Cs2CO3 as the base. The control experiment results show that the reaction involves a radical process. This strategy provides a regioselective way toward the formation of dual C-C bonds in one step.
Collapse
Affiliation(s)
- Le-Han Gao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Jun-Yao Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Si-Zhe Song
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Ting-Ting Cao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Guo-Ping Ge
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Qiang Li
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
27
|
Wang Y, Zou J, Wang H, Peng X, Lu Y, Feng Y, Chen C, Shi T, Wang Z. A Facile Approach to α‐Keto Esters via Oxidative Esterification of α‐Amino Carbonyl Compounds. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yong‐qiang Wang
- School of PharmacyLanzhou University West Donggang Road. No. 199 Lanzhou 730000 China
| | - Jiao‐xia Zou
- School of PharmacyLanzhou University West Donggang Road. No. 199 Lanzhou 730000 China
| | - Hui‐hong Wang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 China
| | - Xue Peng
- School of PharmacyLanzhou University West Donggang Road. No. 199 Lanzhou 730000 China
| | - Ying‐mei Lu
- School of PharmacyLanzhou University West Donggang Road. No. 199 Lanzhou 730000 China
| | - Yi‐yue Feng
- School of PharmacyLanzhou University West Donggang Road. No. 199 Lanzhou 730000 China
| | - Chen Chen
- School of PharmacyLanzhou University West Donggang Road. No. 199 Lanzhou 730000 China
| | - Tao Shi
- School of PharmacyLanzhou University West Donggang Road. No. 199 Lanzhou 730000 China
| | - Zhen Wang
- School of PharmacyLanzhou University West Donggang Road. No. 199 Lanzhou 730000 China
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 China
| |
Collapse
|
28
|
Ding R, Lu W, Ci H, Mao Y, Liu L. Copper‐Catalyzed Oxidative Alkylation of Vinylic C
β
‐H of Enamides with Cyclic Ethers. ChemistrySelect 2019. [DOI: 10.1002/slct.201901837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ran Ding
- College of Chemistry and Materials EngineeringAnhui Science and Technology University, Bengbu Anhui 233000 P. R.China
| | - Wang‐Gang Lu
- College of Chemistry and Materials EngineeringAnhui Science and Technology University, Bengbu Anhui 233000 P. R.China
| | - Hao Ci
- College of Chemistry and Materials EngineeringAnhui Science and Technology University, Bengbu Anhui 233000 P. R.China
| | - Yue‐Yuan Mao
- College of Chemistry and Materials EngineeringAnhui Science and Technology University, Bengbu Anhui 233000 P. R.China
| | - Lei Liu
- College of Chemistry and Materials EngineeringAnhui Science and Technology University, Bengbu Anhui 233000 P. R.China
| |
Collapse
|
29
|
Feng G, Sun C, Xin X, Wan R, Liu L. Cross-dehydrogenative coupling of 3,6-dihydro-2H-pyrans with 1,3-dicarbonyls and aryl moieties. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Wu R, Li J, Wang Y, Quan Z, Su Y, Huo C. Copper‐Catalyzed Aerobic Oxidative Dehydrogenative Ring‐Opening Reaction of Glycine Esters with α′‐Angelicalactone: Approach to Construct α‐Amino‐γ‐Ketopimelates. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rui Wu
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou, Gansu 730070 People's Republic of China
| | - Jun Li
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou, Gansu 730070 People's Republic of China
| | - Yajun Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou, Gansu 730070 People's Republic of China
| | - Zhengjun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou, Gansu 730070 People's Republic of China
| | - Yingpeng Su
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou, Gansu 730070 People's Republic of China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou, Gansu 730070 People's Republic of China
| |
Collapse
|
31
|
Jiao Y, Chiou MF, Li Y, Bao H. Copper-Catalyzed Radical Acyl-Cyanation of Alkenes with Mechanistic Studies on the tert-Butoxy Radical. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01060] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yihang Jiao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Mong-Feng Chiou
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People’s Republic of China
| | - Yajun Li
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People’s Republic of China
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
32
|
Liu Y, Wang QL, Chen Z, Zhou Q, Li H, Xu WY, Xiong BQ, Tang KW. Oxone-Mediated Radical C–C Bond Acetmethylation/Arylation of Methylenecyclopropanes and Vinylcyclopropanes with α-Alkyl Ketones: Facile Access to Oxoalkyl-Substituted 3,4-Dihydronaphthalenes. J Org Chem 2019; 84:5413-5424. [DOI: 10.1021/acs.joc.9b00407] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Qiao-Lin Wang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Zan Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Quan Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Hua Li
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Wen-Yuan Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
33
|
Brandhofer T, Özdemir A, Gini A, Mancheño OG. Double Cu‐Catalyzed Direct Csp3−H Azidation/CuAAC Reaction: A Direct Approach towards Demanding Triazole Conjugates. Chemistry 2019; 25:4077-4086. [DOI: 10.1002/chem.201806288] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/21/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Tobias Brandhofer
- Organic Chemistry InstituteMünster University Corrensstr. 40 48149 Münster Germany
- Organic Chemistry InstituteRegensburg University Universitätstr. 31 93053 Regensburg Germany
| | - Aysegül Özdemir
- Organic Chemistry InstituteRegensburg University Universitätstr. 31 93053 Regensburg Germany
| | - Andrea Gini
- Organic Chemistry InstituteRegensburg University Universitätstr. 31 93053 Regensburg Germany
| | - Olga García Mancheño
- Organic Chemistry InstituteMünster University Corrensstr. 40 48149 Münster Germany
| |
Collapse
|
34
|
Zhang J, Song C, Sheng L, Liu P, Sun P. Annulation of 1-(2-Aminoaryl)pyrroles, Ethers with Elemental Sulfur To Give 1,3,6-Benzothiadiazepine Derivatives through Double C–S Bond Formation and C–O Cleavage of Ethers. J Org Chem 2019; 84:2191-2199. [DOI: 10.1021/acs.joc.8b03187] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jie Zhang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Chuwen Song
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Linfeng Sheng
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
35
|
Peng X, Wang HH, Cao F, Zhang HH, Lu YM, Hu XL, Tan W, Wang Z. TBHP promoted demethylation of α-amino carbonyl compounds: a concise approach to substituted γ-lactams. Org Chem Front 2019. [DOI: 10.1039/c9qo00103d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A novel tert-butyl hydroperoxide (TBHP) promoted CH2-extrusion reaction of α-amino carbonyl compounds has been developed, which is driven by a demethylenation process to give various ring contraction products γ-lactams under radical conditions.
Collapse
Affiliation(s)
- Xue Peng
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Hui-Hong Wang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Fei Cao
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | | | - Ying-Mei Lu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Xiao-Ling Hu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Wen Tan
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Zhen Wang
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
- State Key Laboratory of Applied Organic Chemistry
| |
Collapse
|
36
|
Wei XH, Li ZH, Zhao LB, Zhang P, Zhou HC, Wang YB. Palladium-catalyzed oxidative cross-coupling for the synthesis of α-amino ketones. RSC Adv 2019; 9:32081-32084. [PMID: 35530775 PMCID: PMC9072988 DOI: 10.1039/c9ra06108h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/18/2019] [Indexed: 11/24/2022] Open
Abstract
A novel oxidative cross-coupling reaction for the synthesis of α-aryl α-amino ketones in the presence of palladium catalysts using T+BF4− as an oxidant has been developed. This transformation was achieved by direct C–H oxidation of α-aminocarbonyl compounds and arylation. The mild reaction has a broad reaction scope and gives desired α-aryl α-amino ketones in moderate to excellent yields. A novel oxidative cross-coupling reaction for the synthesis of α-aryl α-amino ketones in the presence of palladium catalysts using T+BF4− as an oxidant has been developed.![]()
Collapse
Affiliation(s)
- Xiao-Hong Wei
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province
- College of Chemical Engineering
- Northwest Minzu University
- Lanzhou 730030
- P. R. China
| | - Zhen-Hua Li
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province
- College of Chemical Engineering
- Northwest Minzu University
- Lanzhou 730030
- P. R. China
| | - Lian-Biao Zhao
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province
- College of Chemical Engineering
- Northwest Minzu University
- Lanzhou 730030
- P. R. China
| | - Ping Zhang
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province
- College of Chemical Engineering
- Northwest Minzu University
- Lanzhou 730030
- P. R. China
| | - Han-Cheng Zhou
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province
- College of Chemical Engineering
- Northwest Minzu University
- Lanzhou 730030
- P. R. China
| | - Yan-Bin Wang
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province
- College of Chemical Engineering
- Northwest Minzu University
- Lanzhou 730030
- P. R. China
| |
Collapse
|
37
|
Yu Y, Su Z, Cao H. Strategies for Synthesis of Imidazo[1,2-a
]pyridine Derivatives: Carbene Transformations or C−H Functionalizations. CHEM REC 2018; 19:2105-2118. [DOI: 10.1002/tcr.201800168] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/22/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Yue Yu
- School of Chemistry and Chemical Engineering; Guangdong Pharmaceutical University; Zhongshan 528458 P.R. of China
| | - Zhengquan Su
- School of Public Health; Guangdong Pharmaceutical University; Guangzhou 510006 P.R. of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering; Guangdong Pharmaceutical University; Zhongshan 528458 P.R. of China
| |
Collapse
|
38
|
Sun B, Deng J, Li D, Jin C, Su W. Photocatalytic aerobic cross-coupling reaction of N-substituted anilines with N-aryl glycine esters: Synthesis of α-aryl α-amino esters. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
San Segundo M, Correa A. Site-Selective Cu-Catalyzed Alkylation of α-Amino Acids and Peptides toward the Assembly of Quaternary Centers. CHEMSUSCHEM 2018; 11:3893-3898. [PMID: 30320455 DOI: 10.1002/cssc.201802216] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/15/2018] [Indexed: 06/08/2023]
Abstract
The CuI -catalyzed selective α-alkylation of α-amino acid and peptide derivatives with 2-alkyl-1,3-dioxolanes is reported. This oxidative coupling is distinguished by its site-specificity, high diastereoselectivity, and chirality preservation and exhibits absolute chemoselectivity for N-aryl glycine motifs over other amino acid units. Collectively, the method allows for the assembly of challenging quaternary centers, as well as compounds derived from natural products of high structural complexity, which may provide ample opportunities for late-stage functionalization of peptides.
Collapse
Affiliation(s)
- Marcos San Segundo
- University of the Basque Country (UPV/EHU), Department of Organic Chemistry I, Joxe Mari Korta R&D Center, Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain
| | - Arkaitz Correa
- University of the Basque Country (UPV/EHU), Department of Organic Chemistry I, Joxe Mari Korta R&D Center, Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain
| |
Collapse
|
40
|
Yang Q, Lou M, Yin Z, Deng Z, Ding Q, Peng Y. Direct C-4 alkylation of quinazoline N-oxides with ethers via an oxidative cross-coupling reaction under metal-free conditions. Org Biomol Chem 2018; 16:8724-8731. [PMID: 30209478 DOI: 10.1039/c8ob01429a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel and efficient protocol for the direct C-4 alkylation of quinazoline-3-oxides via radical oxidative coupling between quinazoline 3-oxides and ethers in the presence of TBHP was developed. The reaction proceeded smoothly under metal-free conditions, which provided quinazoline-containing heterocyclic molecules in moderate to good yields.
Collapse
Affiliation(s)
- Qin Yang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, and Jiangxi Province's Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | | | | | | | | | | |
Collapse
|
41
|
Mutra MR, Dhandabani GK, Wang JJ. Mild Access to N-Formylation of Primary Amines using Ethers as C1 Synthons under Metal-Free Conditions. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800783] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohana Reddy Mutra
- Department of Medicinal and Applied Chemistry; Kaohsiung Medical University; No. 100, Shih-Chuan 1st Rd, Sanmin District Kaohsiung City 807 Taiwan
| | - Ganesh Kumar Dhandabani
- Department of Medicinal and Applied Chemistry; Kaohsiung Medical University; No. 100, Shih-Chuan 1st Rd, Sanmin District Kaohsiung City 807 Taiwan
| | - Jeh-Jeng Wang
- Department of Medicinal and Applied Chemistry; Kaohsiung Medical University; No. 100, Shih-Chuan 1st Rd, Sanmin District Kaohsiung City 807 Taiwan
- Department of Medical Research; Kaohsiung Medical University Hospital; No. 100, Tzyou 1st Rd, Sanmin District Kaohsiung City 807 Taiwan
| |
Collapse
|
42
|
Synthesis of ( Z )-nitroalkene derivatives through oxidative dehydrogenation coupling of α -aminocarbonyl compounds with nitromethane by copper catalysis. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.07.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Zhu ZQ, Xiao LJ, Zhou CC, Song HL, Xie ZB, Le ZG. A visible-light-promoted cross-dehydrogenative-coupling reaction of N -arylglycine esters with imidazo[1,2- a ]pyridines. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.07.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Faisca Phillips AM, Pombeiro AJL. Recent Developments in Transition Metal-Catalyzed Cross-Dehydrogenative Coupling Reactions of Ethers and Thioethers. ChemCatChem 2018. [DOI: 10.1002/cctc.201800582] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ana Maria Faisca Phillips
- Centro de Química Estrutural; Complexo I; Instituto Superior Técnico; Universidade de Lisboa; Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural; Complexo I; Instituto Superior Técnico; Universidade de Lisboa; Av. Rovisco Pais 1049-001 Lisboa Portugal
| |
Collapse
|
45
|
Synthesis of Alkyl-Substituted Pyrazine N
-Oxides by Transition-Metal-Free Oxidative Cross-Coupling Reactions. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
46
|
Zeng H, Yang S, Li H, Lu D, Gong Y, Zhu JT. Site-Specific Functionalization of 1,3-Dioxolane with Imines: A Radical Chain Approach to Masked α-Amino Aldehydes. J Org Chem 2018; 83:5256-5266. [PMID: 29644853 DOI: 10.1021/acs.joc.8b00715] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A thiol-promoted site-specific addition of 1,3-dioxolane to imines through a radical chain process is described. This process represents a metal-free and redox-neutral way to convert inexpensive materials to a broad range of protected α-amino aldehydes in good to excellent yields using only a catalytic amount of radical precursor. Control experiments revealed that both the thiol and a small amount of oxygen from air are indispensable to the success of this reaction.
Collapse
Affiliation(s)
- Haipeng Zeng
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan , Hubei 430074 , China
| | - Sen Yang
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan , Hubei 430074 , China
| | - Haotian Li
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan , Hubei 430074 , China
| | - Dengfu Lu
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan , Hubei 430074 , China
| | - Yuefa Gong
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan , Hubei 430074 , China
| | - Jin-Tao Zhu
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan , Hubei 430074 , China
| |
Collapse
|
47
|
Chen L, Sun C, Feng G, Cao M, Zhao SL, Yan J, Wan RZ, Liu L. Direct oxidative C-H alkynylation of N-carbamoyl tetrahydroisoquinolines and dihydroisoquinolines. Org Biomol Chem 2018; 16:2792-2799. [PMID: 29611855 DOI: 10.1039/c8ob00373d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient oxidative C-H alkynylation of N-carbamoyl tetrahydroisoquinolines mediated by a TEMPO oxoammonium salt has been established. A variety of electronically varied N-carbamoyl tetrahydroisoquinolines reacted with a range of alkynyl potassium trifluoroborates smoothly under mild metal-free conditions. Dihydroisoquinolines were also suitable components for the reaction. The synthetic applicability of the method for facile access to structurally diverse bioactive molecules was further demonstrated.
Collapse
Affiliation(s)
- Lei Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
An Z, Zhao L, Wu M, Ni J, Qi Z, Yu G, Yan R. FeCl 3-Catalyzed synthesis of pyrrolo[1,2-a]quinoxaline derivatives from 1-(2-aminophenyl)pyrroles through annulation and cleavage of cyclic ethers. Chem Commun (Camb) 2018; 53:11572-11575. [PMID: 28990598 DOI: 10.1039/c7cc07089f] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A straightforward Fe-catalyzed method for the synthesis of pyrrolo[1,2-a]quinoxalines from 1-(2-aminophenyl)pyrroles and cyclic ethers, which includes functionalization of C(sp3)-H bonds and the construction of C-C and C-N bonds, has been developed. The features of this reaction are Fe catalysis, low-cost and readily accessible starting materials. Moreover, this procedure exhibits good functional group tolerance and a series of pyrrolo[1,2-a]quinoxaline derivatives are obtained in moderate to good yields.
Collapse
Affiliation(s)
- Zhenyu An
- State Key Laboratory of Applied Organic Chemistry, Key laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, China.
| | | | | | | | | | | | | |
Collapse
|
49
|
TBN as a metal-free reagent initiated sp 3 C–H functionalization of glycine esters: Synthesis of quinoline-2-carboxylate esters. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Sun B, Wang Y, Li D, Jin C, Su W. A copper/O2-mediated direct sp3 C–H/N–H cross-dehydrogen coupling reaction of acylated amines and N-aryl glycine esters. Org Biomol Chem 2018; 16:2902-2909. [DOI: 10.1039/c8ob00176f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We described a mild and efficient CDC reaction between N-aryl glycine esters and various acylated amines for the synthesis of α-amino α-amide acid esters with an excellent regioselectivity in the presence of copper salts.
Collapse
Affiliation(s)
- Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Yao Wang
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Deyu Li
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Can Jin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou
- PR China
- College of Pharmaceutical Sciences
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou
- PR China
- College of Pharmaceutical Sciences
| |
Collapse
|