1
|
Chinn AJ, Sedillo K, Doyle AG. Phosphine/Photoredox Catalyzed Anti-Markovnikov Hydroamination of Olefins with Primary Sulfonamides via α-Scission from Phosphoranyl Radicals. J Am Chem Soc 2021; 143:18331-18338. [PMID: 34672192 DOI: 10.1021/jacs.1c09484] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
New strategies to access radicals from common feedstock chemicals hold the potential to broadly impact synthetic chemistry. We report a dual phosphine and photoredox catalytic system that enables direct formation of sulfonamidyl radicals from primary sulfonamides. Mechanistic investigations support that the N-centered radical is generated via α-scission of the P-N bond of a phosphoranyl radical intermediate, formed by sulfonamide nucleophilic addition to a phosphine radical cation. As compared to the recently well-explored β-scission chemistry of phosphoranyl radicals, this strategy is applicable to activation of N-based nucleophiles and is catalytic in phosphine. We highlight application of this activation strategy to an intermolecular anti-Markovnikov hydroamination of unactivated olefins with primary sulfonamides. A range of structurally diverse secondary sulfonamides can be prepared in good to excellent yields under mild conditions.
Collapse
Affiliation(s)
- Alex J Chinn
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Kassandra Sedillo
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Abigail G Doyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Henry Blackwell J, Harris GR, Smith MA, Gaunt MJ. Modular Photocatalytic Synthesis of α-Trialkyl-α-Tertiary Amines. J Am Chem Soc 2021; 143:15946-15959. [PMID: 34551248 DOI: 10.1021/jacs.1c07402] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecules displaying an α-trialkyl-α-tertiary amine motif provide access to an important and versatile area of biologically relevant chemical space but are challenging to access through existing synthetic methods. Here, we report an operationally straightforward, multicomponent protocol for the synthesis of a range of functionally and structurally diverse α-trialkyl-α-tertiary amines, which makes use of three readily available components: dialkyl ketones, benzylamines, and alkenes. The strategy relies on the of use visible-light-mediated photocatalysis with readily available Ir(III) complexes to bring about single-electron reduction of an all-alkyl ketimine species to an α-amino radical intermediate; the α-amino radical undergoes Giese-type addition with a variety of alkenes to forge the α-trialkyl-α-tertiary amine center. The mechanism of this process is believed to proceed through an overall redox neutral pathway that involves photocatalytic redox-relay of the imine, generated from the starting amine-ketone condensation, through to an imine-derived product. This is possible because the presence of a benzylic amine component in the intermediate scaffold drives a 1,5-hydrogen atom transfer step after the Giese addition to form a stable benzylic α-amino radical, which is able to close the photocatalytic cycle. These studies detail the evolution of the reaction platform, an extensive investigation of the substrate scope, and preliminary investigation of some of the mechanistic features of this distinct photocatalytic process. We believe this transformation will provide convenient access to previously unexplored α-trialkyl-α-tertiary amine scaffolds that should be of considerable interest to practitioners of synthetic and medicinal chemistry in academic and industrial institutions.
Collapse
Affiliation(s)
- J Henry Blackwell
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Georgia R Harris
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Milo A Smith
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
3
|
Ji YX, Li J, Li CM, Qu S, Zhang B. Manganese-Catalyzed N-F Bond Activation for Hydroamination and Carboamination of Alkenes. Org Lett 2020; 23:207-212. [PMID: 33305569 DOI: 10.1021/acs.orglett.0c03916] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A visible-light-promoted method for generating amidyl radicals from N-fluorosulfonamides via a manganese-catalyzed N-F bond activation strategy is reported. This protocol employs a simple manganese complex, Mn2(CO)10, as the precatalyst and a cheap silane, (MeO)3SiH, as both the hydrogen-atom donor and the F-atom acceptor, enabling intramolecular/intermolecular hydroaminations of alkenes, two-component carboamination of alkenes, and even three-component carboamination of alkenes. A wide range of valuable aliphatic sulfonamides can be readily prepared using these practical reactions.
Collapse
Affiliation(s)
- Yun-Xing Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jinxia Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chun-Min Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shuanglin Qu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bo Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Breder A, Depken C. Lichtgetriebene Ein‐Elektronen‐Transferprozesse als Funktionsprinzip in der Schwefel‐ und Selen‐Multikatalyse. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexander Breder
- Institut für Organische ChemieUniversität Regensburg Universitätsstrasse 31 93053 Regenburg Deutschland
- Institut für Organische und Biomolekulare ChemieUniversität Göttingen Tammannstrasse 2 37077 Göttingen Deutschland
| | - Christian Depken
- Institut für Organische und Biomolekulare ChemieUniversität Göttingen Tammannstrasse 2 37077 Göttingen Deutschland
| |
Collapse
|
5
|
Breder A, Depken C. Light‐Driven Single‐Electron Transfer Processes as an Enabling Principle in Sulfur and Selenium Multicatalysis. Angew Chem Int Ed Engl 2019; 58:17130-17147. [DOI: 10.1002/anie.201812486] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/17/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Alexander Breder
- Institut für Organische ChemieUniversität Regensburg Universitätsstrasse 31 93053 Regenburg Deutschland
- Institut für Organische und Biomolekulare ChemieUniversität Göttingen Tammannstrasse 2 37077 Göttingen Deutschland
| | - Christian Depken
- Institut für Organische und Biomolekulare ChemieUniversität Göttingen Tammannstrasse 2 37077 Göttingen Deutschland
| |
Collapse
|
6
|
Branched alkylphosphinic acids demonstrate explicit anti-wear effect. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Geng X, Lin F, Wang X, Jiao N. Photoredox-catalyzed hydroxyfluoroalkylation of alkene with simple fluoroalkyl iodides. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.09.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Zhu Q, Graff DE, Knowles RR. Intermolecular Anti-Markovnikov Hydroamination of Unactivated Alkenes with Sulfonamides Enabled by Proton-Coupled Electron Transfer. J Am Chem Soc 2018; 140:741-747. [PMID: 29268020 PMCID: PMC6247111 DOI: 10.1021/jacs.7b11144] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here we report a catalytic method for the intermolecular anti-Markovnikov hydroamination of unactivated alkenes using primary and secondary sulfonamides. These reactions occur at room temperature under visible light irradiation and are jointly catalyzed by an iridium(III) photocatalyst, a dialkyl phosphate base, and a thiol hydrogen atom donor. Reaction outcomes are consistent with the intermediacy of an N-centered sulfonamidyl radical generated via proton-coupled electron transfer activation of the sulfonamide N-H bond. Studies outlining the synthetic scope (>60 examples) and mechanistic features of the reaction are presented.
Collapse
Affiliation(s)
- Qilei Zhu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - David E. Graff
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
9
|
Huang W, Chen J, Hong D, Chen W, Cheng X, Tian Y, Li G. Hydrophosphonodifluoromethylation of Alkenes via Thiyl-Radical/Photoredox Catalysis. J Org Chem 2018; 83:578-587. [DOI: 10.1021/acs.joc.7b02354] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | | | - Xu Cheng
- State
Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, China
| | | | | |
Collapse
|
10
|
Kiyokawa K, Watanabe T, Fra L, Kojima T, Minakata S. Hypervalent Iodine(III)-Mediated Decarboxylative Ritter-Type Amination Leading to the Production of α-Tertiary Amine Derivatives. J Org Chem 2017; 82:11711-11720. [DOI: 10.1021/acs.joc.7b01202] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Kensuke Kiyokawa
- Department of Applied Chemistry,
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoki Watanabe
- Department of Applied Chemistry,
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Laura Fra
- Department of Applied Chemistry,
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takumi Kojima
- Department of Applied Chemistry,
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Minakata
- Department of Applied Chemistry,
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Li J, Chen J, Jiao W, Wang G, Li Y, Cheng X, Li G. Difluoroalkylation/C–H Annulation Cascade Reaction Induced by Visible-Light Photoredox Catalysis. J Org Chem 2016; 81:9992-10001. [DOI: 10.1021/acs.joc.6b01825] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jin Li
- Institute
of Chemistry and Biomedical Science, School of Chemistry and Chemical
Engineering, Nanjing University, Nanjing, China
| | - Jingzhi Chen
- Institute
of Chemistry and Biomedical Science, School of Chemistry and Chemical
Engineering, Nanjing University, Nanjing, China
| | - Wei Jiao
- Institute
of Chemistry and Biomedical Science, School of Chemistry and Chemical
Engineering, Nanjing University, Nanjing, China
| | - Guoqiang Wang
- Institute
of Theoretical and Computational Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing, China
| | - Ying Li
- Institute
of Chemistry and Biomedical Science, School of Chemistry and Chemical
Engineering, Nanjing University, Nanjing, China
| | - Xu Cheng
- Institute
of Chemistry and Biomedical Science, School of Chemistry and Chemical
Engineering, Nanjing University, Nanjing, China
| | - Guigen Li
- Institute
of Chemistry and Biomedical Science, School of Chemistry and Chemical
Engineering, Nanjing University, Nanjing, China
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
12
|
Zahn D, Frömel T, Knepper TP. Halogenated methanesulfonic acids: A new class of organic micropollutants in the water cycle. WATER RESEARCH 2016; 101:292-299. [PMID: 27267477 DOI: 10.1016/j.watres.2016.05.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 05/06/2023]
Abstract
Mobile and persistent organic micropollutants may impact raw and drinking waters and are thus of concern for human health. To identify such possible substances of concern nineteen water samples from five European countries (France, Switzerland, The Netherlands, Spain and Germany) and different compartments of the water cycle (urban effluent, surface water, ground water and drinking water) were enriched with mixed-mode solid phase extraction. Hydrophilic interaction liquid chromatography - high resolution mass spectrometry non-target screening of these samples led to the detection and structural elucidation of seven novel organic micropollutants. One structure could already be confirmed by a reference standard (trifluoromethanesulfonic acid) and six were tentatively identified based on experimental evidence (chloromethanesulfonic acid, dichloromethanesulfonic acid, trichloromethanesulfonic acid, bromomethanesulfonic acid, dibromomethanesulfonic acid and bromochloromethanesulfonic acid). Approximated concentrations for these substances show that trifluoromethanesulfonic acid, a chemical registered under the European Union regulation REACH with a production volume of more than 100 t/a, is able to spread along the water cycle and may be present in concentrations up to the μg/L range. Chlorinated and brominated methanesulfonic acids were predominantly detected together which indicates a common source and first experimental evidence points towards water disinfection as a potential origin. Halogenated methanesulfonic acids were detected in drinking waters and thus may be new substances of concern.
Collapse
Affiliation(s)
- Daniel Zahn
- Hochschule Fresenius University of Applied Sciences, Limburger Straße 2, 65510 Idstein, Germany
| | - Tobias Frömel
- Hochschule Fresenius University of Applied Sciences, Limburger Straße 2, 65510 Idstein, Germany
| | - Thomas P Knepper
- Hochschule Fresenius University of Applied Sciences, Limburger Straße 2, 65510 Idstein, Germany.
| |
Collapse
|