1
|
Zhang XQ, Ma YR, Liu YK. Organocatalytic Enantioselective Functionalization of Cyclic α-Hydroxyamides: Access to Chiral Cyclic Imides and Azapolycyclic Compounds. Org Lett 2023; 25:8220-8224. [PMID: 37955418 DOI: 10.1021/acs.orglett.3c03182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
A highly efficient enantioselective enamine-catalyzed asymmetric conjugate addition has been developed to directly convert unfunctionalized cyclic α-hydroxyamides into chiral cyclic α-hydroxyamides by reacting with vinyl sulfones, which could be used as versatile azacyclic synthons in the following sequences: (1) as the precursors of cyclic N-acyliminium ions to prepare natural productlike chiral azapolycyclic compounds under acidic conditions and (2) to construct chiral cyclic imides bearing unilateral substituents via oxidation reaction-induced formal desymmetrization.
Collapse
Affiliation(s)
- Xiao-Qian Zhang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yuan-Ren Ma
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yan-Kai Liu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
2
|
Quintavalla A, Carboni D, Simeone M, Lombardo M. Stereoselective Synthesis of α-Disubstituted β-Homoprolines. Org Lett 2023; 25:7067-7071. [PMID: 37729003 PMCID: PMC10546376 DOI: 10.1021/acs.orglett.3c02891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Indexed: 09/22/2023]
Abstract
An efficient enantioselective synthesis of chiral α-disubstituted β-homoprolines was developed, starting with the stereodivergent allylation of chiral N-tert-butanesulfinyl imines derived from 4-bromobutanal with indium or zinc and using well-established and reliable synthetic transformations. This methodology allows the easy introduction of different substituents at the α-position of the pyrrolidine scaffold and is characterized by the possibility of switching the absolute configuration of the newly formed stereocenter either by changing the configuration of the tert-butanesufinamide chiral auxiliary or by using a different stereodivergent allylation protocol with the same auxiliary.
Collapse
Affiliation(s)
- Arianna Quintavalla
- Alma
Mater Studiorum - University of Bologna, Department of Chemistry “G. Ciamician”, via P. Gobetti 85, 40129 Bologna, Italy
- Center
for Chemical Catalysis - C3, Alma Mater
Studiorum - Università di Bologna, via P. Gobetti 85, 40129 Bologna, Italy
| | - Davide Carboni
- Alma
Mater Studiorum - University of Bologna, Department of Chemistry “G. Ciamician”, via P. Gobetti 85, 40129 Bologna, Italy
- Center
for Chemical Catalysis - C3, Alma Mater
Studiorum - Università di Bologna, via P. Gobetti 85, 40129 Bologna, Italy
| | - Maria Simeone
- Alma
Mater Studiorum - University of Bologna, Department of Chemistry “G. Ciamician”, via P. Gobetti 85, 40129 Bologna, Italy
| | - Marco Lombardo
- Alma
Mater Studiorum - University of Bologna, Department of Chemistry “G. Ciamician”, via P. Gobetti 85, 40129 Bologna, Italy
- Center
for Chemical Catalysis - C3, Alma Mater
Studiorum - Università di Bologna, via P. Gobetti 85, 40129 Bologna, Italy
| |
Collapse
|
3
|
Lu X, Huang G, Liang F, Sun S, Chen Y, Liang Z. A highly efficient method to access unprotected C-3 bifunctional quaternary 3-allyl-3-(amino)oxindoles. Org Biomol Chem 2023; 21:3547-3551. [PMID: 37060142 DOI: 10.1039/d3ob00478c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
A highly efficient Rh(II) catalyzed non-radical protocol to access NH-free C-3 bifunctional oxindoles, which possess 3-allyl and 3-amino simultaneously, was first achieved by employing an intermolecular [2,3]-sigmatropic rearrangement reaction between diazooxindoles and tertiary allylic amines. Utilizing readily available allylamines as the nitrogen and allyl source concurrently, a wide range of bio-active 3-allyl-3-(amino)oxindoles were obtained in excellent yields under very mild reaction conditions; meanwhile, the TON can be up to 90 000. Our study addresses a gap in the literature by investigating intermolecular rearrangements of ammonium ylides with diazoamides, which have been relatively understudied.
Collapse
Affiliation(s)
- Xunbo Lu
- School of Chemistry and Chemical Engineering, Laboratory of Marine Green Fine Chemicals, Lingnan Normal University, Zhanjiang, 524048, P. R. China.
| | - Guoling Huang
- School of Chemistry and Chemical Engineering, Laboratory of Marine Green Fine Chemicals, Lingnan Normal University, Zhanjiang, 524048, P. R. China.
| | - Fangpeng Liang
- School of Chemistry and Chemical Engineering, Laboratory of Marine Green Fine Chemicals, Lingnan Normal University, Zhanjiang, 524048, P. R. China.
| | - Siyu Sun
- Qiqihar Medical University, Qiqihar, 161006, P. R. China
| | - Yalin Chen
- School of Chemistry and Chemical Engineering, Laboratory of Marine Green Fine Chemicals, Lingnan Normal University, Zhanjiang, 524048, P. R. China.
| | - Zi Liang
- School of Chemistry and Chemical Engineering, Laboratory of Marine Green Fine Chemicals, Lingnan Normal University, Zhanjiang, 524048, P. R. China.
| |
Collapse
|
4
|
Tang X, Tak RK, Noda H, Shibasaki M. A Missing Link in Multisubstituted Pyrrolidines: Remote Stereocontrol Forged by Rhodium‐Alkyl Nitrene. Angew Chem Int Ed Engl 2022; 61:e202212421. [DOI: 10.1002/anie.202212421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Xinxin Tang
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki Shinagawa-ku, Tokyo 141-0021 Japan
| | - Raj K. Tak
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki Shinagawa-ku, Tokyo 141-0021 Japan
| | - Hidetoshi Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki Shinagawa-ku, Tokyo 141-0021 Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki Shinagawa-ku, Tokyo 141-0021 Japan
| |
Collapse
|
5
|
Woldegiorgis AG, Muhammad S, Lin X. Asymmetric Cycloaddition/Annulation Reactions by Chiral Phosphoric Acid Catalysis: Recent Advances. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Xufeng Lin
- Zhejiang University Department of Chemistry 38 Zheda Road 310027 Hangzhou CHINA
| |
Collapse
|
6
|
Basson AJ, McLaughlin MG. Recent advancements in catalytic generation of N-Acyliminium ions and subsequent applications. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Liu M, Qian C, Li P. Organocatalytic Regio‐ and Enantioselective
N
‐Alkylation of Isoxazol‐5‐ones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Meiwen Liu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis College of Science Southern University of Science and Technology Shenzhen 518055 China
| | - Chenxiao Qian
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis College of Science Southern University of Science and Technology Shenzhen 518055 China
| | - Pengfei Li
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis College of Science Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
8
|
Matheau-Raven D, Boulter E, Rogova T, Dixon DJ. A Three-Component Ugi-Type Reaction of N-Carbamoyl Imines Enables a Broad Scope Primary α-Amino 1,3,4-Oxadiazole Synthesis. Org Lett 2021; 23:8209-8213. [PMID: 34633203 DOI: 10.1021/acs.orglett.1c02945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A general synthesis of N-protected primary α-amino 1,3,4-oxadiazoles, from N-carbamoyl imines, N-isocyaniminotriphenylphosphorane (NIITP), and carboxylic acids, is described. Featuring an isocyanide addition reaction with N-carbamoyl imines, this efficient three-component Ugi-type reaction was found to be broad in scope with respect to imine, and carboxylic acid coupling partners. Furthermore, the versatility of this method was demonstrated by α-amino 1,2,4-triazole synthesis, the late-stage functionalization of seven drug molecules, and five divergent derivatizations of a primary α-amino 1,3,4-oxadiazole.
Collapse
Affiliation(s)
- Daniel Matheau-Raven
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Elizabeth Boulter
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Tatiana Rogova
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Darren J Dixon
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
9
|
Kiss L, Nonn M, Ouchakour L, Remete AM. Application of Oxidative Ring Opening/Ring Closing by Reductive Amination Protocol for the Stereocontrolled Synthesis of Functionalized Azaheterocycles. Synlett 2021. [DOI: 10.1055/s-0040-1719850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe current Account gives an insight into the synthesis of some N-heterocyclic β-amino acid derivatives and various functionalized saturated azaheterocycles accessed from substituted cycloalkenes via ring C=C bond oxidative cleavage followed by ring closing across double reductive amination. The ring-cleavage protocol has been accomplished according to two common approaches: a) Os-catalyzed dihydroxylation/NaIO4 vicinal diol oxidation and b) ozonolysis. A comparative study on these methodologies has been investigated. Due to the everincreasing relevance of organofluorine chemistry in drug research as well as of the high biological potential of β-amino acid derivatives several illustrative examples to the access of various fluorine-containing piperidine or azepane β-amino acid derivatives are also presented in the current Account.1 Introduction2 Olefin-Bond Transformation by Oxidative Ring Cleavage3 Synthesis of Saturated Azaheterocycles via Oxidative Ring-Opening/Ring-Closing Double Reductive Amination3.1 Importance of Fluorine-Containing Azaheterocycles in Pharmaceutical Research3.2 Synthesis of Azaheterocyclic Amino Acid Derivatives with a Piperidine or Azepane Framework through Oxidative Ring Opening/Reductive Amination3.2.1 Synthesis of Piperidine β-Amino Esters3.2.2 Synthesis of Azepane β-Amino Esters3.2.3 Synthesis of Fluorine-Containing Piperidine γ-Amino Esters3.3 Synthesis of Tetrahydroisoquinoline Derivatives through Oxidative Ring Opening/Reductive Amination Protocol3.4 Synthesis of Functionalized Benzazepines through Reductive Amination3.4.1 Synthesis of Benzo[c]azepines3.4.2 Synthesis of Benzo[d]azepines3.5 Synthesis of Various N-Heterocycles via Ozonolysis/Reductive Amination3.5.1 Synthesis of Compounds with an Azepane Ring3.5.2 Synthesis of Piperidine β-Amino Acids and Piperidine-Fused β-Lactams3.5.3 Synthesis of γ-Lactams with a Piperidine Ring3.5.4 Synthesis of other N-Heterocycles4 Summary and Outlook5 List of Abbreviations
Collapse
Affiliation(s)
- Loránd Kiss
- Institute of Organic Chemistry, Research Centre for Natural Sciences
| | - Melinda Nonn
- Institute of Pharmaceutical Chemistry, University of Szeged
| | | | | |
Collapse
|
10
|
Parida C, Mondal B, Ghosh A, Pan SC. Organocatalytic Asymmetric Synthesis of Spirooxindole Embedded Oxazolidines. J Org Chem 2021; 86:13082-13091. [PMID: 34448585 DOI: 10.1021/acs.joc.1c00644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The first organocatalytic asymmetric synthesis of spirooxindole embedded oxazolidines has been developed via a domino reaction involving hemiaminal formation, followed by an unprecedented aza-Michael reaction between isatin derived N-Boc ketimines and γ-hydroxy enones. A quinine derived bifunctional squaramide catalyst was found to be efficient for this reaction, and the products were obtained in good diastereoselectivity and with high enantioselectivity.
Collapse
Affiliation(s)
- Chandrakanta Parida
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Buddhadeb Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Animesh Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| |
Collapse
|
11
|
Semghouli A, Benke Z, Remete AM, Novák TT, Fustero S, Kiss L. Selective Transformation of Norbornadiene into Functionalized Azaheterocycles and β-Amino Esters with Stereo- and Regiocontrol. Chem Asian J 2021; 16:3873-3881. [PMID: 34498420 DOI: 10.1002/asia.202100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/03/2021] [Indexed: 11/06/2022]
Abstract
Novel functionalized azaheterocycles with multiple chiral centers have been accessed from readily available norbornene β-amino acids or β-lactams across a stereocontrolled synthetic route, based on ring-opening metathesis (ROM) of the staring unsaturated bicyclic amino esters, followed by selective cyclization through ring-closing metathesis (RCM). The RCM transformations have been studied under various experimental conditions to assess the scope of conversion, catalyst, yield, and substrate influence. The structure of the starting norbornene β-amino acids predetermined the structure of the new azaheterocycles, and the developed synthetic route took place with the conservation of the configuration of the chiral centers.
Collapse
Affiliation(s)
- Anas Semghouli
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Zsanett Benke
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Attila M Remete
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Tamás T Novák
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Santos Fustero
- Department of Organic Chemistry, University of Valencia, Pharmacy Faculty, 46100-Burjassot, Valencia, Spain
| | - Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| |
Collapse
|
12
|
Ouchakour L, Nonn M, Remete AM, Kiss L. An Improved Stereocontrolled Access Route to Piperidine or Azepane β‐Amino Esters and Azabicyclic β‐ and γ‐Lactams; Synthesis of Novel Functionalized Azaheterocyles. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lamiaa Ouchakour
- Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
- Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
| | - Melinda Nonn
- Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
- Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
| | - Attila M. Remete
- Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
- Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
| | - Loránd Kiss
- Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
- Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
| |
Collapse
|
13
|
Lupidi G, Palmieri A, Petrini M. Enantioselective Catalyzed Synthesis of Amino Derivatives Using Electrophilic Open‐Chain
N
‐Activated Ketimines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gabriele Lupidi
- School of Science and Technology, Chemistry Division Università di Camerino via S.Agostino, 1 I-62032 Camerino Italy
| | - Alessandro Palmieri
- School of Science and Technology, Chemistry Division Università di Camerino via S.Agostino, 1 I-62032 Camerino Italy
| | - Marino Petrini
- School of Science and Technology, Chemistry Division Università di Camerino via S.Agostino, 1 I-62032 Camerino Italy
| |
Collapse
|
14
|
Qiu Y, Yuan H, Zhang X, Zhang J. Insights into the Chiral Phosphoric Acid-Catalyzed Dynamic Kinetic Asymmetric Hydroamination of Racemic Allenes: An Allyl Carbocation/Phosphate Pair Mechanism. J Org Chem 2021; 86:4121-4130. [PMID: 33617248 DOI: 10.1021/acs.joc.0c02956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Computational studies of chiral phosphoric acid (CPA)-catalyzed dynamic kinetic asymmetric hydroamination (DyKAH) of racemic allenes show that the reaction proceeds through a catalytic asymmetric model involving a highly reactive π-allylic carbocationic intermediate, generated from a racemic allene through an intermolecular proton transfer mediated by CPA, which also results in a high E/Z selectivity. Moreover, the distortion-interaction, atom in molecule, and electrostatic interaction analyses and space-filling models are employed on the basis of the DyKAH catalyzed by (S)-A5 (reaction 1) or (R)-A2 (reaction 2) to explain the high enantioselectivity and the controlling effects of SPINOL scaffolds on the signs of enantioselectivity. Our calculations indicate that the enantioselectivity of reactions 1 and 2 can be mainly ascribed to the favorable noncovalent interactions within the stronger chiral electrostatic environment created by the phosphoric acid in the preferential transition states. Finally, the effect of (S/R)-SPINOL-based CPAs on the signs of enantioselectivity can be explained by the different combination modes of substrates into the chiral binding pocket of the catalyst controlled by the chirality of SPINOL backbones. Overall, the new insights into the reaction rationalize the outcome and these key factors that affect the product enantioselectivity are important to guide the DyKAHs.
Collapse
Affiliation(s)
- Yuting Qiu
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Haiyan Yuan
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaoying Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jingping Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
15
|
Yamamoto K, Kuriyama M, Onomura O. Shono-Type Oxidation for Functionalization of N-Heterocycles. CHEM REC 2021; 21:2239-2253. [PMID: 33656281 DOI: 10.1002/tcr.202100031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 01/05/2023]
Abstract
The development of facile synthetic methods for stereodefined aliphatic cyclic amines is an important research field in synthetic organic chemistry since such scaffolds constitute a variety of natural products and biologically active compounds. N-Acyl cyclic N,O-acetals which prepared by electrochemical oxidation of the corresponding cyclic amines have proven to be useful and versatile precursors for the synthesis of such skeletons. In this Personal Account, we introduce our efforts toward the development of synthetic strategies for the diastereo- and/or enantioselective synthesis of cyclic amines by using electrochemically prepared cyclic N,O-acetals. In addition, the investigation of the "memory of chirality" in the electrooxidative methoxylation of N-acyl amino acid derivatives, the strategy for the synthesis of chiral azabicyclic compounds by utilizing electrochemical oxidation, and halogen cation-mediated synthesis of nitrogen-containing heterocycles are also described.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| |
Collapse
|
16
|
Zhou K, Bao M, Sha H, Dong G, Hong K, Xu X, Hu W. Highly diastereoselective synthesis of vicinal diamines via a Rh-catalyzed three-component reaction of diazo compounds with diarylmethanimines and ketimines. Org Chem Front 2021. [DOI: 10.1039/d1qo00083g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Rh-catalyzed selective three-component reaction of diazo compounds with diarylmethanimines and ketimines is reported that offers an efficient and convenient access to vicinal diamine derivatives with two tertiary stereocenters in high yields.
Collapse
Affiliation(s)
- Kai Zhou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Ming Bao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Hongkai Sha
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Guizhi Dong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Kemiao Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
17
|
Koay WL, Mei GJ, Lu Y. Facile access to benzofuran-fused tetrahydropyridines via catalytic asymmetric [4 + 2] cycloaddition of aurone-derived 1-azadienes with 3-vinylindoles. Org Chem Front 2021. [DOI: 10.1039/d0qo01236j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly enantioselective [4 + 2] cycloaddition reaction of 1-azadienes with 3-vinylindoles, catalyzed by chiral phosphoric acid has been developed to furnish a range of benzofuran-fused tetrahydropyridines with three contiguous stereogenic centers.
Collapse
Affiliation(s)
- Wai Lean Koay
- Department of Chemistry
- National University of Singapore
- Singapore
- NUS Graduate School for Integrative Sciences & Engineering (NGS)
- National University of Singapore
| | - Guang-Jian Mei
- Department of Chemistry
- National University of Singapore
- Singapore
| | - Yixin Lu
- Department of Chemistry
- National University of Singapore
- Singapore
- NUS Graduate School for Integrative Sciences & Engineering (NGS)
- National University of Singapore
| |
Collapse
|
18
|
Hatanaka M, Yoshimura T, Puripat M, Parasuk V. Stereoselectivity of the Biginelli Reaction Catalyzed by Chiral Primary Amine: A Computational Study. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Abstract
C-N coupling reactions were found to be attractive among researchers owing to
the importance of C-N bond formation in heterocyclic synthesis. Hence C-N bond formation
via amination reaction with the assistance of microwave radiations gained significant
attraction recently. Microwave-assisted reactions are greener, faster and generally efficient
compared to the conventional thermal reactions offering better purity of the product with
enhancement in the yield. It was surprisingly revealed that several new advancements in
amination reactions were highly influenced by this greener technology. This first review on
microwave-assisted amination reaction focuses on the novel amination strategies that
emerged with the help of microwave methodology, and covers literature up to 2019.
Collapse
Affiliation(s)
- Sankaran Radhika
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| | - Mohan Neetha
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| | - Thaipparambil Aneeja
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| |
Collapse
|
20
|
Domaradzki ME, Liu X, Ong J, Yu G, Zhang G, Simantov A, Perl E, Chen Y. Triflic acid mediated sequential cyclization of ortho-alkynylarylesters with ammonium acetate. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Allahresani A, Sangani MM, Nasseri MA, Hemmat K. CoFe2O4@SiO2-NH2-CoII NPs: An effective magnetically recoverable catalyst for Biginelli reaction. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Muñoz-Pina S, Ros-Lis JV, Delgado-Pinar EA, Martı Nez-Camarena A, Verdejo B, Garcı A-España E, Argüelles Á, Andrés A. Inhibitory Effect of Azamacrocyclic Ligands on Polyphenol Oxidase in Model and Food Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7964-7973. [PMID: 32609498 DOI: 10.1021/acs.jafc.0c02407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Enzymatic browning is one of the main problems faced by the food industry due to the enzyme polyphenol oxidase (PPO) provoking an undesirable color change in the presence of oxygen. Here, we report the evaluation of 10 different azamacrocyclic compounds with diverse morphologies as potential inhibitors against the activity of PPO, both in model and real systems. An initial screening of 10 ligands shows that all azamacrocyclic compounds inhibit to some extent the enzymatic browning, but the molecular structure plays a crucial role on the power of inhibition. Kinetic studies of the most active ligand (L2) reveal a S-parabolic I-parabolic noncompetitive inhibition mechanism and a remarkable inhibition at micromolar concentration (IC50 = 10 μM). Furthermore, L2 action has been proven on apple juice to significantly reduce the enzymatic browning.
Collapse
Affiliation(s)
- Sara Muñoz-Pina
- Instituto Universitario de Ingenierı́a de Alimentos para el Desarrollo (IUIAD-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - José V Ros-Lis
- REDOLı́, Departamento de Quı́mica Inorgánica, Universitat de València, 46100 Burjassot, Valencia, Spain
| | - Estefanı A Delgado-Pinar
- Instituto de Ciencia Molecular, Universitat de València, C/Catedrático José Beltrán 2, Paterna, Valencia, Spain
| | - Alvaro Martı Nez-Camarena
- Instituto de Ciencia Molecular, Universitat de València, C/Catedrático José Beltrán 2, Paterna, Valencia, Spain
| | - Begoña Verdejo
- Instituto de Ciencia Molecular, Universitat de València, C/Catedrático José Beltrán 2, Paterna, Valencia, Spain
| | - Enrique Garcı A-España
- Instituto de Ciencia Molecular, Universitat de València, C/Catedrático José Beltrán 2, Paterna, Valencia, Spain
| | - Ángel Argüelles
- Instituto Universitario de Ingenierı́a de Alimentos para el Desarrollo (IUIAD-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ana Andrés
- Instituto Universitario de Ingenierı́a de Alimentos para el Desarrollo (IUIAD-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
23
|
Llobat A, Escorihuela J, Sedgwick DM, Rodenes M, Román R, Soloshonok VA, Han J, Medio‐Simón M, Fustero S. The Ruthenium‐Catalyzed Domino Cross Enyne Metathesis/Ring‐Closing Metathesis in the Synthesis of Enantioenriched Nitrogen‐Containing Heterocycles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alberto Llobat
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| | - Jorge Escorihuela
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| | - Daniel M. Sedgwick
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| | - Miriam Rodenes
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| | - Raquel Román
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I Faculty of Chemistry University of the Basque Country 20018 San Sebastian Spain
- Basque Foundation for Science IKERBASQUE 48011 Bilbao Spain
| | - Jianlin Han
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University 210037 Jiangsu People's Republic of China
| | - Mercedes Medio‐Simón
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| | - Santos Fustero
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| |
Collapse
|
24
|
Wang MX, Liu J, Liu Z, Wang Y, Yang QQ, Shan W, Deng YH, Shao Z. Enantioselective synthesis of chiral α-alkynylated thiazolidones by tandem S-addition/acetalization of alkynyl imines. Org Biomol Chem 2020; 18:3117-3124. [PMID: 32253417 DOI: 10.1039/d0ob00365d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A SPINOL-derived chiral phosphoric acid catalyzed asymmetric formal [2 + 3]-annulation of in situ generated alkynyl imines and 1,4-dithiane-2,5-diol has been developed to afford enantiopure α-alkynylated thiazolidones with up to 72% yield and 98.5 : 1.5 er. This tandem annulation involved a tandem S-addition of alkynyl imines/intramolecular acetalization, followed by PDC-mediated oxidation. The α-alkynylated thiazolidones could facilely afford the corresponding chiral α-alkynylated or α-alkenylated cyclic sulfoxides via further elaboration.
Collapse
Affiliation(s)
- Mei-Xin Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Juan Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China. and Yunnan Baiyao Group CO., Ltd, Kunming, 650500, China
| | - Zhen Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Yingcheng Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Qi-Qiong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Wenyu Shan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Yu-Hua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
25
|
Brandolese A, Ragno D, Leonardi C, Di Carmine G, Bortolini O, De Risi C, Massi A. Enantioselective N
-Acylation of Biginelli Dihydropyrimidines by Oxidative NHC Catalysis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Arianna Brandolese
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; Via L. Borsari, 46 44121 Ferrara Italy
| | - Daniele Ragno
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; Via L. Borsari, 46 44121 Ferrara Italy
| | - Costanza Leonardi
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; Via L. Borsari, 46 44121 Ferrara Italy
| | - Graziano Di Carmine
- School of Chemical Engineering and Analytical Science; The University of Manchester; M13 9PL Manchester UK
| | - Olga Bortolini
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; Via L. Borsari, 46 44121 Ferrara Italy
| | - Carmela De Risi
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; Via L. Borsari, 46 44121 Ferrara Italy
| | - Alessandro Massi
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; Via L. Borsari, 46 44121 Ferrara Italy
| |
Collapse
|
26
|
Harsh S, Kumar S, Sharma R, Kumar Y, Kumar R. Chlorophyll triggered one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones via photo induced electron transfer reaction. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
27
|
Yamamoto K, Kuriyama M, Onomura O. Anodic Oxidation for the Stereoselective Synthesis of Heterocycles. Acc Chem Res 2020; 53:105-120. [PMID: 31872753 DOI: 10.1021/acs.accounts.9b00513] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stereodefined aliphatic heterocycles are one of the fundamental structural motifs observed in natural products and biologically active compounds. Various strategies for the synthesis of these building blocks based on transition metal catalysis, organocatalysis, and noncatalytic conditions have been developed. Although electrosynthesis has also been utilized for the functionalization of aliphatic heterocycles, stereoselective transformations under electrochemical conditions are still a challenging field in electroorganic chemistry. This Account consists of four main topics related to our recent efforts on the diastereo- and/or enantioselective synthesis of aliphatic heterocycles, especially N-heterocycles, using anodic oxidations as key steps. The first topic is the development of stereoselective synthetic methods for multisubstituted piperidines and pyrrolidines from anodically prepared α-methoxy cyclic amines. Our strategies were based primarily on N-acyliminium ion chemistry, and the key electrochemical transformations were diastereoselective anodic methoxylation, diastereoselective arylation, and anodic deallylative methoxylation. Furthermore, we found a unique property of the N-cyano protecting group that enabled the electrochemical α-methoxylation of α-substituted cyclic amines. The second topic of investigation is memory of chirality in electrochemical decarboxylative methoxylation. We observed that the electrochemical decarboxylative methoxylation of oxazolidine and thiazolidine derivatives with the appropriate N-protecting group occurred in a stereospecific manner even though the reaction proceeded through an sp2 planar carbon center. Our findings demonstrated the first example of memory of chirality in N-acyliminium ion chemistry. The third topic is the synthesis of chiral azabicyclo-N-oxyls and their application to chiral organocatalysis in the electrochemical oxidative kinetic resolution of secondary alcohols. The final topic is stereoselective transformations utilizing anodically generated halogen cations. We investigated the oxidative kinetic resolution of amino alcohol derivatives using anodically generated bromo cations. We also developed an intramolecular C-C bond formation of keto amides, a diastereoselective bromoiminolactonization of α-allyl malonamides, and an oxidative ring expansion reaction of allyl alcohols. It is noteworthy that most of the electrochemical reactions were performed in undivided cells under constant-current conditions, which avoided a complicated reaction setup and was beneficial for a large-scale reaction. In addition, we developed some enantioselective electrochemical transformations that are still challenges in electroorganic chemistry. We hope that our research will contribute to the further development of diastereo- and/or enantioselective transformations and the construction of valuable heterocyclic compounds using an electrochemical approach.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
28
|
Meng F, Zhang H, He H, Xu N, Fang Q, Guo K, Cao S, Shi Y, Zhu Y. Copper‐Catalyzed Domino Cyclization/Thiocyanation of Unactivated Olefins: Access to SCN‐Containing Pyrazolines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901104] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fei Meng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Honglin Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Han He
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Ning Xu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Qin Fang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Kang Guo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Shujun Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yun Shi
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
- College of Plant ProtectionNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| |
Collapse
|
29
|
Hashemi SA, Mohammadizadeh MR. Catalyst‐Free Efficient Synthesis of Alkyl Acetates Bearing Arylsulfide and Quinoxaline Moieties and Stereoselective Synthesis of Dialkyl 2‐Amino‐3‐thiomalates at Room Temperature. ChemistrySelect 2019. [DOI: 10.1002/slct.201901287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | - Mohammad Reza Mohammadizadeh
- Department of ChemistryFaculty of SciencesPersian Gulf University Bushehr 75169 Iran
- Oil and Gas Research CenterPersian Gulf University Bushehr 75169 Iran
| |
Collapse
|
30
|
Fesenko AA, Yankov AN, Shutalev AD. A general and convenient synthesis of 4-(tosylmethyl)semicarbazones and their use in amidoalkylation of hydrogen, heteroatom, and carbon nucleophiles. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Guan H, Cao X, Walsh PJ, Mao J. One-Pot Aminoalkylation of Aldehydes: Diastereoselective Synthesis of Vicinal Diamines with Azaarylmethylamines. Org Lett 2019; 21:8679-8683. [DOI: 10.1021/acs.orglett.9b03287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Haixing Guan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Xianzhong Cao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Patrick J. Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jianyou Mao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P.R. China
| |
Collapse
|
32
|
Zhang C, Yang J, Zhou W, Tan Q, Yang Z, He L, Zhang M. Enantioselective Mannich Reaction of Glycine Iminoesters with N-Phosphinoyl Imines: A Bifunctional Approach. Org Lett 2019; 21:8620-8624. [DOI: 10.1021/acs.orglett.9b03223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Changhui Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jiao Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Wenqiang Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qiuyuan Tan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhao Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Min Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
33
|
Zhang C, Shang X, Cheng Y, Li F, Zhao H, Li P, Li W. Enantioselective construction of 3-substituted 3-amino-2-oxindoles containing an N,N-ketal skeleton via organocatalyzed aza-addition of isatin imines. Org Biomol Chem 2019; 17:8374-8378. [PMID: 31486458 DOI: 10.1039/c9ob01870k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of organocatalytic chemo-, regio- and enantioselective aza-Mannich reactions of triazoles and arylamines, respectively, with isatin-derived imines has been achieved in the presence of double hydrogen bonding organocatalysts, affording the valuable optically active 3-substituted 3-amino-2-oxindoles featuring N,N-ketal structural motifs in high yields. This strategy was featured by low catalyst loading, mild conditions, broad substrate scope, and high efficiency and selectivity.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Xinye Shang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Yuyu Cheng
- Department of Chemistry and Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Fushuai Li
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Hanhui Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Pengfei Li
- Department of Chemistry and Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Wenjun Li
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
34
|
Li Y, Li Y, Li Y, Chen C, Ying F, Dong Y, Liang D. Metal-free cross-dehydrogenative C–N coupling of azoles with xanthenes and related activated arylmethylenes. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1615097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yanni Li
- Department of Chemistry, Kunming University, Kunming, China
| | - Yanping Li
- Department of Chemistry, Kunming University, Kunming, China
| | - Yuan Li
- Department of Chemistry, Kunming University, Kunming, China
| | - Chunlin Chen
- Department of Chemistry, Kunming University, Kunming, China
| | - Fengyuan Ying
- Department of Chemistry, Kunming University, Kunming, China
| | - Ying Dong
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
| | - Deqiang Liang
- Department of Chemistry, Kunming University, Kunming, China
- Yunnan Engineering Technology Research Center for Plastic Films, Kunming, China
| |
Collapse
|
35
|
Kiss L, Ouchakour L, Ábrahámi RA, Nonn M. Stereocontrolled Synthesis of Functionalized Azaheterocycles from Carbocycles through Oxidative Ring Opening/Reductive Ring Closing Protocols. CHEM REC 2019; 20:120-141. [PMID: 31250972 DOI: 10.1002/tcr.201900025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Fluorine-containing organic scaffolds are of significant interest in medicinal chemistry. The incorporation of fluorine into biomolecules can lead to remarkable changes in their physical, chemical, and biological properties. There are already many drugs on the market, which contain at least one fluorine atom. Saturated functionalized azaheterocycles as bioactive substances have gained increasing attention in pharmaceutical chemistry. Due to the high biorelevance of organofluorine molecules and the importance of N-heterocyclic compounds, selective stereocontrolled procedures to the access of new fluorine-containing saturated N-heterocycles are considered to be a hot research topic. This account summarizes the synthesis of functionalized and fluorine-containing saturated azaheterocycles starting from functionalized cycloalkenes and based on oxidative ring cleavage of diol intermediates followed by ring expansion with reductive amination.
Collapse
Affiliation(s)
- Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, Hungary
| | - Lamiaa Ouchakour
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, Hungary
| | - Renáta A Ábrahámi
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Melinda Nonn
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, Hungary
| |
Collapse
|
36
|
Roldán R, Hernández K, Joglar J, Bujons J, Parella T, Fessner W, Clapés P. Aldolase-Catalyzed Asymmetric Synthesis of N-Heterocycles by Addition of Simple Aliphatic Nucleophiles to Aminoaldehydes. Adv Synth Catal 2019; 361:2673-2687. [PMID: 31680790 PMCID: PMC6813633 DOI: 10.1002/adsc.201801530] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/22/2019] [Indexed: 11/08/2022]
Abstract
Nitrogen heterocycles are structural motifs found in many bioactive natural products and of utmost importance in pharmaceutical drug development. In this work, a stereoselective synthesis of functionalized N-heterocycles was accomplished in two steps, comprising the biocatalytic aldol addition of ethanal and simple aliphatic ketones such as propanone, butanone, 3-pentanone, cyclobutanone, and cyclopentanone to N-Cbz-protected aminoaldehydes using engineered variants of d-fructose-6-phosphate aldolase from Escherichia coli (FSA) or 2-deoxy-d-ribose-5-phosphate aldolase from Thermotoga maritima (DERA Tma ) as catalysts. FSA catalyzed most of the additions of ketones while DERA Tma was restricted to ethanal and propanone. Subsequent treatment with hydrogen in the presence of palladium over charcoal, yielded low-level oxygenated N-heterocyclic derivatives of piperidine, pyrrolidine and N-bicyclic structures bearing fused cyclobutane and cyclopentane rings, with stereoselectivities of 96-98 ee and 97:3 dr in isolated yields ranging from 35 to 79%.
Collapse
Affiliation(s)
- Raquel Roldán
- Dept. Biological Chemistry. Instituto de Química Avanzada de Cataluña IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| | - Karel Hernández
- Dept. Biological Chemistry. Instituto de Química Avanzada de Cataluña IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| | - Jesús Joglar
- Dept. Biological Chemistry. Instituto de Química Avanzada de Cataluña IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| | - Jordi Bujons
- Dept. Biological Chemistry. Instituto de Química Avanzada de Cataluña IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear.Universitat Autònoma de BarcelonaBellaterraSpain
| | - Wolf‐Dieter Fessner
- Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtPetersenstraße 22D-64287DarmstadtGermany
| | - Pere Clapés
- Dept. Biological Chemistry. Instituto de Química Avanzada de Cataluña IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| |
Collapse
|
37
|
Marcantoni E, Palmieri A, Petrini M. Recent synthetic applications of α-amido sulfones as precursors of N-acylimino derivatives. Org Chem Front 2019. [DOI: 10.1039/c9qo00196d] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
α-Amido sulfones can be directly used as N-acylimine or N-acyliminium ion precursors in several synthetic processes aimed at the preparation of nitrogen containing compounds. This review collects the most relevant and practical utilizations of α-amido sulfones appeared in the literature after 2005.
Collapse
Affiliation(s)
- Enrico Marcantoni
- School of Science and Technology
- Chemistry Division
- University of Camerino
- 1 I-62032 Camerino
- Italy
| | - Alessandro Palmieri
- School of Science and Technology
- Chemistry Division
- University of Camerino
- 1 I-62032 Camerino
- Italy
| | - Marino Petrini
- School of Science and Technology
- Chemistry Division
- University of Camerino
- 1 I-62032 Camerino
- Italy
| |
Collapse
|
38
|
Franc M, Urban M, Císařová I, Veselý J. Highly enantioselective addition of sulfur-containing heterocycles to isatin-derived ketimines. Org Biomol Chem 2019; 17:7309-7314. [DOI: 10.1039/c9ob01338e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this study, we report a highly stereoselective addition of sulfur-containing heterocyclic compounds to isatin-derived ketimines efficiently catalyzed by cinchonidine-derived bifunctional tertiary aminothiourea (1 mol%).
Collapse
Affiliation(s)
- Michael Franc
- Department of Organic Chemistry
- Charles University
- 12843 Prague
- Czech Republic
| | - Michal Urban
- Department of Organic Chemistry
- Charles University
- 12843 Prague
- Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry
- Charles University
- 12843 Prague
- Czech Republic
| | - Jan Veselý
- Department of Organic Chemistry
- Charles University
- 12843 Prague
- Czech Republic
| |
Collapse
|
39
|
Palmieri A, Petrini M. Tryptophol and derivatives: natural occurrence and applications to the synthesis of bioactive compounds. Nat Prod Rep 2019; 36:490-530. [DOI: 10.1039/c8np00032h] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This report presents some fundamental aspects related to the natural occurrence and bioactivity of tryptophol as well as the synthesis of tryptophols and their utilization for the preparation of naturally occurring alkaloid metabolites embedding the indole system.
Collapse
Affiliation(s)
- Alessandro Palmieri
- School of Science and Technology
- Chemistry Division
- University of Camerino
- Italy
| | - Marino Petrini
- School of Science and Technology
- Chemistry Division
- University of Camerino
- Italy
| |
Collapse
|
40
|
Yang GP, He X, Yu B, Hu CW. Cu1.5
PMo12
O40
-catalyzed condensation cyclization for the synthesis of substituted pyrazoles. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4532] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Guo-Ping Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
- China Academy of Engineering Physics; P. R. China
| | - Xing He
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Bing Yu
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 Henan Province P. R. China
| | - Chang-Wen Hu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| |
Collapse
|
41
|
Huang Q, Zhang L, Cheng Y, Li P, Li W. Enantioselective Construction of Vicinal Sulfur-containing Tetrasubstituted Stereocenters via Organocatalyzed Mannich-Type Addition of Rhodanines to Isatin Imines. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800642] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qiuhong Huang
- Department of Medicinal Chemistry, School of Pharmacy; Qingdao University, Qingdao; Shandong People's Republic of China 266021
| | - Lili Zhang
- Department of Medicinal Chemistry, School of Pharmacy; Qingdao University, Qingdao; Shandong People's Republic of China 266021
| | - Yuyu Cheng
- Department of Chemistry, Southern; University of Science and Technology, Shenzhen; Guangdong People's Republic of China 518055
| | - Pengfei Li
- Department of Chemistry, Southern; University of Science and Technology, Shenzhen; Guangdong People's Republic of China 518055
| | - Wenjun Li
- Department of Medicinal Chemistry, School of Pharmacy; Qingdao University, Qingdao; Shandong People's Republic of China 266021
| |
Collapse
|
42
|
Metal-catalyzed synthesis of five-membered ring N-heterocycles. A recent update. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2260-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
Urban M, Franc M, Hofmanová M, Císařová I, Veselý J. The enantioselective addition of 1-fluoro-1-nitro(phenylsulfonyl)methane to isatin-derived ketimines. Org Biomol Chem 2018; 15:9071-9076. [PMID: 29083001 DOI: 10.1039/c7ob02408h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An asymmetric organocatalytic addition of fluorinated phenylsulfonylnitromethane to isatin-derived ketimines was developed. The reaction was efficiently catalyzed by a chiral tertiary amine, cinchonine. This methodology provides a new type of optically active compound with two adjacent quaternary carbon stereocenters in good yield (up to 96%), with moderate diastereoselectivity (up to 5.7 : 1 dr) and excellent enantioselectivity (up to 98/96% ee).
Collapse
Affiliation(s)
- M Urban
- Department of Organic Chemistry, Charles University, Hlavova 8, 12843 Prague, Czech Republic.
| | - M Franc
- Department of Organic Chemistry, Charles University, Hlavova 8, 12843 Prague, Czech Republic.
| | - M Hofmanová
- Department of Organic Chemistry, Charles University, Hlavova 8, 12843 Prague, Czech Republic.
| | - I Císařová
- Department of Inorganic Chemistry, Charles University, Hlavova 8, 12843 Prague, Czech Republic
| | - J Veselý
- Department of Organic Chemistry, Charles University, Hlavova 8, 12843 Prague, Czech Republic.
| |
Collapse
|
44
|
He Y, Foley P, Hughes S, Argyropoulos J, Ulbrich A. Mechanistic Investigation of the Reactions between Cyclohexane Carboxaldehyde and Ureido Groups. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yiyong He
- Corporate R&D, The Dow Chemical Company, 1897 Building, Midland, Michigan 48667, United States
| | - Paul Foley
- Corporate R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Stephanie Hughes
- Corporate R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - John Argyropoulos
- Dow Coating Materials,
The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Arne Ulbrich
- Corporate R&D, The Dow Chemical Company, 1897 Building, Midland, Michigan 48667, United States
| |
Collapse
|
45
|
Kramer P, Schönfeld J, Bolte M, Manolikakes G. Stereoselective One-Pot Synthesis of Dihydropyrimido[2,1-a]isoindole-6(2H)-ones. Org Lett 2018; 20:178-181. [PMID: 29278338 DOI: 10.1021/acs.orglett.7b03545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A diastereoselective one-pot synthesis of highly substituted dihydropyrimido[2,1-a]isoindole-6(2H)-ones containing three continuous stereocenters is reported. The reaction sequence is based on a hetero-Diels-Alder reaction between an enimide and a N-acylimine followed by an unprecedented Brønsted acid mediated rearrangement of an intermediate 5,6-dihydro-4H-1,3-oxazine to a pyrimido[2,1-a]isoindole.
Collapse
Affiliation(s)
- Philipp Kramer
- Department of Biochemistry, Chemistry and Pharmacy, Goethe-University , Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| | - Julia Schönfeld
- Department of Biochemistry, Chemistry and Pharmacy, Goethe-University , Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| | - Michael Bolte
- Department of Biochemistry, Chemistry and Pharmacy, Goethe-University , Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| | - Georg Manolikakes
- Department of Biochemistry, Chemistry and Pharmacy, Goethe-University , Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| |
Collapse
|
46
|
Yang GP, Shang SX, Yu B, Hu CW. Ce(iii)-Containing tungstotellurate(vi) with a sandwich structure: an efficient Lewis acid–base catalyst for the condensation cyclization of 1,3-diketones with hydrazines/hydrazides or diamines. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00678d] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A new Ce3+ modified Dawson-like polyoxometalate cluster was synthesized, which showed good Lewis acid and Lewis base activities in the condensation reaction.
Collapse
Affiliation(s)
- Guo-Ping Yang
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Shu-Xia Shang
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Bing Yu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Chang-Wen Hu
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| |
Collapse
|
47
|
Huang Q, Cheng Y, Yuan H, Chang X, Li P, Li W. Organocatalytic enantioselective Mannich-type addition of 5H-thiazol-4-ones to isatin-derived imines: access to 3-substituted 3-amino-2-oxindoles featured by vicinal sulfur-containing tetrasubstituted stereocenters. Org Chem Front 2018. [DOI: 10.1039/c8qo00814k] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
3-Substituted 3-amino-2-oxindoles featuring both 5H-thiazol-4-one and vicinal sulfur-containing tetrasubstituted stereocenter structural motifs were obtained in high yields with excellent enantioselectivities and diastereoselectivities.
Collapse
Affiliation(s)
- Qiuhong Huang
- Department of Medicinal Chemistry
- School of Pharmacy
- Qingdao University
- Qingdao
- China
| | - Yuyu Cheng
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| | - Huijun Yuan
- Department of Medicinal Chemistry
- School of Pharmacy
- Qingdao University
- Qingdao
- China
| | - Xiaoyong Chang
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| | - Pengfei Li
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| | - Wenjun Li
- Department of Medicinal Chemistry
- School of Pharmacy
- Qingdao University
- Qingdao
- China
| |
Collapse
|
48
|
Takasu K, Shindo N. Synthesis of Azaheterocycles and Related Molecules by Tf2NH-Catalyzed Cycloadditions. HETEROCYCLES 2018. [DOI: 10.3987/rev-17-875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Ganesh M, Rao MP, Mirajakar SJ. Part I: Diastereoselective Reactions Involving β-Mono- and β,β′-Disubstituted Alkylidene Oxindoles: Pondering Alkene Geometry. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Madhu Ganesh
- Department of Chemistry, P.O. Box 1908, B.M.S.; College of Engineering; Bull Temple Road Bengaluru 560019 India
| | - Madhuri P. Rao
- Department of Chemistry, P.O. Box 1908, B.M.S.; College of Engineering; Bull Temple Road Bengaluru 560019 India
| | - Shruti J. Mirajakar
- Department of Chemistry, P.O. Box 1908, B.M.S.; College of Engineering; Bull Temple Road Bengaluru 560019 India
| |
Collapse
|
50
|
Fan WT, Li NK, Xu L, Qiao C, Wang XW. Organo-Catalyzed Asymmetric Michael-Hemiketalization-Oxa-Pictet-Spengler Cyclization for Bridged and Spiro Heterocyclic Skeletons: Oxocarbenium Ion as a Key Intermediate. Org Lett 2017; 19:6626-6629. [PMID: 29192792 DOI: 10.1021/acs.orglett.7b03341] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A Michael-hemiketalization-oxa-Pictet-Spengler cyclization has been developed for the construction of chiral bridged and spiro heterocyclic skeletons with one spiro stereogenic carbon center and two bridgehead carbon centers, utilizing cooperative catalysts of a Takemoto thiourea catalyst and a triflimide. In particular, an oxocarbenium ion acts as a key intermediate for this cyclization reaction. Additionally, biological evaluation of this type of novel structure has revealed obvious antiproliferative activity against some cancer cell lines.
Collapse
Affiliation(s)
- Wei-Tai Fan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and ‡College of Pharmaceutical Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Nai-Kai Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and ‡College of Pharmaceutical Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Lumei Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and ‡College of Pharmaceutical Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Chunhua Qiao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and ‡College of Pharmaceutical Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Xing-Wang Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and ‡College of Pharmaceutical Science, Soochow University , Suzhou 215123, People's Republic of China
| |
Collapse
|