1
|
Lahdenperä ASK, Dhankhar J, Davies DJ, Lam NYS, Bacoş PD, de la Vega-Hernández K, Phipps RJ. A chiral hydrogen atom abstraction catalyst for the enantioselective epimerization of meso-diols. Science 2024; 386:42-49. [PMID: 39361751 DOI: 10.1126/science.adq8029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/29/2024] [Indexed: 10/05/2024]
Abstract
Hydrogen atom abstraction is an important elementary chemical process but is very difficult to carry out enantioselectively. We have developed catalysts, readily derived from the Cinchona alkaloid family of natural products, which can achieve this by virtue of their chiral amine structure. The catalyst, following single-electron oxidation, desymmetrizes meso-diols by selectively abstracting a hydrogen atom from one carbon center, which then regains a hydrogen atom by abstraction from a thiol. This results in an enantioselective epimerization process, forming the chiral diastereomer with high enantiomeric excess. Cyclic and acyclic 1,2-diols are compatible, as are acyclic 1,3-diols. Additionally, we demonstrate the viability of combining our approach with carbon-carbon bond formation in Giese addition. Given the increasing number of synthetic methods involving hydrogen atom transfer steps, we anticipate that this work will have a broad impact in the field of enantioselective radical chemistry.
Collapse
Affiliation(s)
- Antti S K Lahdenperä
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Jyoti Dhankhar
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Daniel J Davies
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Nelson Y S Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - P David Bacoş
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | | | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
2
|
Zheng J, You J, Zhang D, Zhang X, Chen F, Yang T, Xu M, Hu Y, Rao Z. Pre-optimization and one-step preparation of cascade enzymes system with broad substrates by model guidance: Application of chiral L-norvaline and L-phenylglycine biosynthesis. BIORESOURCE TECHNOLOGY 2024; 393:130125. [PMID: 38040317 DOI: 10.1016/j.biortech.2023.130125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Cascade biocatalyst systems with catalytic promiscuity can be used for synthesis of a class of chiral chemicals but the optimization of these systems by model guidance is poorly explored. In this study, a cascade system with broad substrate spectrum was characterized and simulated by kinetic model with substrates of DL-Norvaline (DL-Nor) and DL-Phenylglycine (DL-Phg) as examples. To evaluate the optimal cascade system, maximum accumulation of intermediate products and conversion rate in the process were investigated by simultaneous solution of the rate equations for varying enzyme quantities. According to the simulation results, the cascade system was optimized by regulating the expression of D-amino acid oxidase and formate dehydrogenase and was prepared by one-step. The conversion efficiency of DL-Nor and DL-Phg have been significantly improved compared with that of before optimization. Moreover, the total of L-Nor and L-Phg were reached 498.2 mM and 79.5 mM through a gradient fed-batch conversion strategy, respectively.
Collapse
Affiliation(s)
- Junxian Zheng
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, Fujian, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Danfeng Zhang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, Fujian, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Fan Chen
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, Fujian, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Yuanqing Hu
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, Fujian, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
3
|
Trypsin-catalyzed aldol reactions of isatins with ketones and the mechanism probe of substrate selectivity by molecular simulations. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Spöring JD, Graf von Westarp W, Kipp CR, Jupke A, Rother D. Enzymatic Cascade in a Simultaneous, One-Pot Approach with In Situ Product Separation for the Asymmetric Production of (4 S,5 S)-Octanediol. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jan-Dirk Spöring
- Institute for Bio- and Geosciences 1 (IBG-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074 Aachen, Germany
| | | | - Carina Ronja Kipp
- Institute for Bio- and Geosciences 1 (IBG-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Andreas Jupke
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, 52074 Aachen, Germany
| | - Dörte Rother
- Institute for Bio- and Geosciences 1 (IBG-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
5
|
Abstract
The Pd-catalyzed carbon-carbon bond formation pioneered by Heck in 1969 has dominated medicinal chemistry development for the ensuing fifty years. As the demand for more complex three-dimensional active pharmaceuticals continues to increase, preparative enzyme-mediated assembly, by virtue of its exquisite selectivity and sustainable nature, is poised to provide a practical and affordable alternative for accessing such compounds. In this minireview, we summarize recent state-of-the-art developments in practical enzyme-mediated assembly of carbocycles. When appropriate, background information on the enzymatic transformation is provided and challenges and/or limitations are also highlighted.
Collapse
Affiliation(s)
- Weijin Wang
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Douglass F Taber
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Hans Renata
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
6
|
Chen X, Wang Z, Lou Y, Peng Y, Zhu Q, Xu J, Wu Q. Intramolecular Stereoselective Stetter Reaction Catalyzed by Benzaldehyde Lyase. Angew Chem Int Ed Engl 2021; 60:9326-9329. [PMID: 33559383 DOI: 10.1002/anie.202100534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 11/08/2022]
Abstract
The reliable design and prediction of enzyme promiscuity to access transformations not observed in nature remains a long-standing challenge. Herein, we present the first example of an intramolecular stereoselective Stetter reaction catalyzed by benzaldehyde lyase, guided by the rational structure screening of various ThDP-dependent enzymes using molecular dynamics (MD) simulations. After optimization, high productivity (up to 99 %) and stereoselectivity (up to 99:1 e.r.) for this novel enzyme function was achieved.
Collapse
Affiliation(s)
- Xiaoyang Chen
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China.,College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Zhiguo Wang
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China.,Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yujiao Lou
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China
| | - Yongzhen Peng
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China
| | - Qiaoyan Zhu
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China
| | - Jian Xu
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China.,College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qi Wu
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
7
|
Chen X, Wang Z, Lou Y, Peng Y, Zhu Q, Xu J, Wu Q. Intramolecular Stereoselective Stetter Reaction Catalyzed by Benzaldehyde Lyase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiaoyang Chen
- Department of Chemistry Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou 310027 China
- College of Biological, Chemical Science and Engineering Jiaxing University Jiaxing 314001 China
| | - Zhiguo Wang
- Department of Chemistry Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou 310027 China
- Institute of Aging Research School of Medicine Hangzhou Normal University Hangzhou 311121 China
| | - Yujiao Lou
- Department of Chemistry Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou 310027 China
| | - Yongzhen Peng
- Department of Chemistry Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou 310027 China
| | - Qiaoyan Zhu
- Department of Chemistry Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou 310027 China
| | - Jian Xu
- Department of Chemistry Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou 310027 China
- College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 China
| | - Qi Wu
- Department of Chemistry Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou 310027 China
| |
Collapse
|
8
|
Hollmann F, Opperman DJ, Paul CE. Biocatalytic Reduction Reactions from a Chemist's Perspective. Angew Chem Int Ed Engl 2021; 60:5644-5665. [PMID: 32330347 PMCID: PMC7983917 DOI: 10.1002/anie.202001876] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 11/09/2022]
Abstract
Reductions play a key role in organic synthesis, producing chiral products with new functionalities. Enzymes can catalyse such reactions with exquisite stereo-, regio- and chemoselectivity, leading the way to alternative shorter classical synthetic routes towards not only high-added-value compounds but also bulk chemicals. In this review we describe the synthetic state-of-the-art and potential of enzymes that catalyse reductions, ranging from carbonyl, enone and aromatic reductions to reductive aminations.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Diederik J. Opperman
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
9
|
Giovannini PP, Müller M, Presini F, Baraldi S, Ragno D, Di Carmine G, Jacoby C, Bernacchia G, Bortolini O. A One‐Pot Two‐Step Enzymatic Pathway for the Synthesis of Enantiomerically Enriched Vicinal Diols. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pier Paolo Giovannini
- Dipartimento di Scienze Chimiche e Farmaceutiche Università degli studi di Ferrara Via Luigi Borsari 46 44121 Ferrara Italy
| | - Michel Müller
- Institute of Pharmaceutical Sciences Albert-Ludwigs-Universität Freiburg Albertstrasse 25 79104 Freiburg Germany
| | - Francesco Presini
- Dipartimento di Scienze Chimiche e Farmaceutiche Università degli studi di Ferrara Via Luigi Borsari 46 44121 Ferrara Italy
| | - Serena Baraldi
- Dipartimento di Scienze Chimiche e Farmaceutiche Università degli studi di Ferrara Via Luigi Borsari 46 44121 Ferrara Italy
| | - Daniele Ragno
- Dipartimento di Scienze Chimiche e Farmaceutiche Università degli studi di Ferrara Via Luigi Borsari 46 44121 Ferrara Italy
| | - Graziano Di Carmine
- Dipartimento di Scienze Chimiche e Farmaceutiche Università degli studi di Ferrara Via Luigi Borsari 46 44121 Ferrara Italy
| | - Christian Jacoby
- Microbiology Faculty of Biology Albert-Ludwigs-Universität Freiburg Schänzlestr. 1 79104 Freiburg Germany
| | - Giovanni Bernacchia
- Dipartimento di Scienze della Vita e Biotecnologie Università degli studi di Ferrara Via Luigi Borsari 46 44121 Ferrara Italy
| | - Olga Bortolini
- Dipartimento di Scienze Chimiche e Farmaceutiche Università degli studi di Ferrara Via Luigi Borsari 46 44121 Ferrara Italy
| |
Collapse
|
10
|
Hollmann F, Opperman DJ, Paul CE. Biokatalytische Reduktionen aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Diederik J. Opperman
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
| |
Collapse
|
11
|
Liang YF, Yan LT, Yue Q, Zhao JK, Luo CY, Gao F, Li H, Gao WY. Preparation of a whole cell catalyst overexpressing acetohydroxyacid synthase of Thermotoga maritima and its application in the syntheses of α-hydroxyketones. Sci Rep 2020; 10:15404. [PMID: 32958806 PMCID: PMC7505981 DOI: 10.1038/s41598-020-72416-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/31/2020] [Indexed: 11/30/2022] Open
Abstract
The large catalytic subunit of acetohydroxyacid synthase (AHAS, EC 2.2.1.6) of Thermotoga maritima (TmcAHAS) was prepared in this study. It possesses high specific activity and excellent stability. The protein and a whole cell catalyst overexpressing the protein were applied to the preparation of α-hydroxyketones including acetoin (AC), 3-hydroxy-2-pentanone (HP), and (R)-phenylacetylcarbinol (R-PAC). The results show that AC and HP could be produced in high yields (84% and 62%, respectively), while R-PAC could be synthesized in a high yield (about 78%) with an R/S ratio of 9:1. Therefore, TmcAHAS and the whole cell catalyst overexpressing the protein could be practically useful bio-catalysts in the preparation of α-hydroxyketones including AC, HP, and R-PAC. To the best of our knowledge, this is the first time that bacterial AHAS was used as a catalyst to prepare HP with a good yield, and also the first time that TmcAHAS was employed to synthesize AC and R-PAC.
Collapse
Affiliation(s)
- Yan-Fei Liang
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Le-Tian Yan
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Qiao Yue
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Ji-Kui Zhao
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Cai-Yun Luo
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Feng Gao
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Heng Li
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China.
| | - Wen-Yun Gao
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China.
| |
Collapse
|