1
|
Block E, Cotelesage JJH, Dikarev E, Garosi B, George GN, Musah RA, Vogt LI, Wei Z, Zhang Y. Re-examination of the Claimed Isolation of Stable Noncyclic 1,2-Disulfoxides. Org Lett 2024; 26:9619-9624. [PMID: 39230394 PMCID: PMC11574841 DOI: 10.1021/acs.orglett.4c02849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024]
Abstract
Re-examination of the claimed isolation and X-ray characterization of di-p-tolyl and dimesityl 1,2-disulfoxides from thermolysis of the corresponding aryl sulfinimines and thiosulfinates showed that the isolated disulfide dioxides are instead the well-known isomeric thiosulfonates, as confirmed by XAS, DART-MS, X-ray, IR and NMR methods. Concerns with the original X-ray structures are addressed. Our results agree with the DFT prediction of very weak diaryl 1,2-disulfoxide S-S bond dissociation enthalpies. For now, room-temperature-stable noncyclic 1,2-disulfoxides remain unknown.
Collapse
Affiliation(s)
- Eric Block
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Julien J H Cotelesage
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Evgeny Dikarev
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Benedetta Garosi
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Graham N George
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Rabi A Musah
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Linda I Vogt
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Zheng Wei
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Yuxuan Zhang
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
2
|
Wen X, Li M, Peng X, Liu C, Zhong X, Tan R, Jiang H, Li J. Bifunctionalization of α-Bromophenone: An Access to Functionalized β-Keto Thiosulfones. J Org Chem 2024; 89:14255-14264. [PMID: 39264813 DOI: 10.1021/acs.joc.4c01681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
A simple and high-yielding strategy to produce a variety of β-keto sulfides using asymmetrical and symmetrical thiosulfonates with ketones under mild conditions is reported. It was found that the various substituted compounds, with both electron-withdrawing and electron-donating substituents, afforded a wide range of β-keto thiosulfones (α-thioaryl-β-keto sulfones) in moderate to high yields. The transformations were reliable at the gram-scale, thus illustrating their efficiency and practicality. A plausible mechanism for the protocol is also proposed.
Collapse
Affiliation(s)
- Xiaoqing Wen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Mengxin Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaoyan Peng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chuanli Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xianglin Zhong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Rui Tan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiahong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
3
|
Ye Z, Zhang Y, Guo G, Shao X, Wu JR. Silver-Catalyzed 1,2-Thiosulfonylation of Alkenes: Development of a Nucleophilic d3-Methylthiolating Reagent. J Org Chem 2024; 89:14369-14383. [PMID: 39323108 DOI: 10.1021/acs.joc.4c01787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Development of robust d3-methylthiolating reagents represents an attractive synthetic method to access deuterated molecules in the field of drug discovery. Here, we report a straightforward strategy to prepare electrophilic S-methyl-d3 arylsulfonothioates in one-step without column purification. These reagents exhibit good radical reactivity toward silver-catalyzed vicinal thiosulfonylation of alkenes or 1,6-enynes on water. As a result, simultaneous incorporation of both SCD3 and ArSO2 units into unsaturated carbon-carbon bonds with 100% atom economy has been established. Moreover, the ATRA adducts with >99% D incorporation can serve as nucleophilic d3-methylthiolating synthons via retro-Michael addition under mild basic conditions, providing a good alternative in trideuteromethylthiolating alkyl iodides to access corresponding trideuteromethyl sulfides with high efficiency.
Collapse
Affiliation(s)
- Zhiyong Ye
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Yan Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Guofang Guo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Xinxin Shao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Ji-Rong Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| |
Collapse
|
4
|
Hu XB, Chen Y, Zhu CL, Xu H, Zhou X, Rao W, Hang XC, Chu XQ, Shen ZL. Cross-Electrophile Couplings of Benzyl Sulfonium Salts with Thiosulfonates via C-S Bond Activation. J Org Chem 2024; 89:13601-13607. [PMID: 39228065 DOI: 10.1021/acs.joc.4c01786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A zinc-mediated cross-electrophile coupling of benzyl sulfonium salts with thiosulfonates via C-S bond cleavage was achieved. The reductive thiolation proceeded well under transition metal-free conditions to afford the desired benzyl sulfides in good yields, exhibiting both broad substrate scope and good functionality tolerance. In addition, the reaction could be applied to the use of selenosulfonate as an effective selenylation agent and be subjected to scale-up synthesis.
Collapse
Affiliation(s)
- Xuan-Bo Hu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Yuwei Chen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Chen-Long Zhu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Hao Xu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Xiaocong Zhou
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiao-Chun Hang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
5
|
Lin HM, Ren SY, Cui FH, Pan YM, Tang HT. Electrochemical promoted three-component reaction to unsymmetric thiosulfonates. Chem Commun (Camb) 2024; 60:10394-10397. [PMID: 39224062 DOI: 10.1039/d4cc03570d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Compounds comprising S-S bonds serve as significant pharmacological scaffolds in medicinal chemistry and natural products. We have devised an efficient electrochemical method for the construction of asymmetric disulfide bonds, leading to the synthesis of unsymmetric thiosulfonates. Compared with existing synthesis methods, our work not only avoids the use of metals and oxidants, but also realizes the operation of a one-pot three-component method, which makes this strategy extremely attractive.
Collapse
Affiliation(s)
- Hong-Min Lin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Sai-Yan Ren
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Fei-Hu Cui
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| |
Collapse
|
6
|
Xu J, Liu BX, Liu XY, Rao W, Wang SY. Light-Induced 1,3-Thiosulfonylation of β,γ-Unsaturated Ketones with Thiosulfonates. Org Lett 2024; 26:6798-6802. [PMID: 39109986 DOI: 10.1021/acs.orglett.4c01925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Sulfur-containing compounds exhibit potent significance in drug molecules. Thiosulfonates as 1,3-thiosulfonylation reactants to olefins have yet to be investigated. Herein, we report photoinduced 1,3-difunctionalization of β,γ-unsaturated ketones with thiosulfonates, which undergo a radical 1,2-acyl shift. The protocol features mild conditions, high regioselectivity, and 100% atom economy.
Collapse
Affiliation(s)
- Jiuwen Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Bo-Xi Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xin-Yu Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
Yu SW, Chen ZJ, Li HQ, Li WX, Li Y, Li Z, Wang ZY. Oxysulfonylation of Alkynes with Sodium Sulfinates to Access β-Keto Sulfones Catalyzed by BF 3·OEt 2. Molecules 2024; 29:3559. [PMID: 39124964 PMCID: PMC11314596 DOI: 10.3390/molecules29153559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
An efficient and operationally simple method for the synthesis of β-keto sulfones through the BF3·OEt2-promoted reaction of alkynes and sodium sulfinates is developed. With its facile and selective access to the targets, it features good functional group compatibility, mild conditions, easily available starting materials, and good yields. Notably, the reaction does not require metal catalysts or chemical reagents with pungent odors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (S.-W.Y.); (Z.-J.C.); (H.-Q.L.); (W.-X.L.); (Y.L.); (Z.L.)
| |
Collapse
|
8
|
Xiao Y, Zhou H, Shi P, Zhao X, Liu H, Li X. Clickable tryptophan modification for late-stage diversification of native peptides. SCIENCE ADVANCES 2024; 10:eadp9958. [PMID: 38985871 PMCID: PMC11235173 DOI: 10.1126/sciadv.adp9958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
As the least abundant residue in proteins, tryptophan widely exists in peptide drugs and bioactive natural products and contributes to drug-target interactions in multiple ways. We report here a clickable tryptophan modification for late-stage diversification of native peptides, via catalyst-free C2-sulfenylation with 8-quinoline thiosulfonate reagents in trifluoroacetic acid (TFA). A wide range of groups including trifluoromethylthio (SCF3), difluoromethylthio (SCF2H), (ethoxycarbonyl)difluoromethylthio (SCF2CO2Et), alkylthio, and arylthio were readily incorporated. The rapid reaction kinetics of Trp modification and full tolerance with other 19 proteinogenic amino acids, as well as the super dissolving capability of TFA, render this method suitable for all kinds of Trp-containing peptides without limitations from sequences, hydrophobicity, and aggregation propensity. The late-stage modification of 15 therapeutic peptides (1.0 to 7.6 kilodaltons) and the improved bioactivity and serum stability of SCF3- and SCF2H-modified melittin analogs illustrated the effectiveness of this method and its potential in pharmacokinetic property improvement.
Collapse
Affiliation(s)
- Yisa Xiao
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Haiyan Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong Province 515063, P. R. China
| | - Pengfei Shi
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xueqian Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| |
Collapse
|
9
|
Tang LJ, Zhu WC, Deng HH, Jiang YF, Liu XY, Rao W, Shen SS, Song P, Wang SY. Visible Light-Catalyzed Reactions of Polysulfide (DBSPS) with Aryldiazonium. Chem Asian J 2024:e202400086. [PMID: 38676953 DOI: 10.1002/asia.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Indexed: 04/29/2024]
Abstract
A visible light-catalyzed radical coupling reaction of polysulfide reagents with aryldiazonium was developed, which gave thiosulfonates under mild conditions. In this reaction, the thiosulfonates were isolated in good yields with a broad tolerance to functional groups. And the synthesis of diaryl monosulfides were achieved through a step-by-step reaction of two molecular aryldiazonium with DBSPS, where the sulfur source was provided by DBSPS. It was worth noting that the reaction of this monosulfides could also be achieved by a one pot two-step process. The described polysulfide reagents were able to produce three new radicals: sulfonyl radicals, sulfur-sulfonyl radicals and sulfur-sulfur-sulfonyl radicals.
Collapse
Affiliation(s)
- Ling-Juan Tang
- Analysis and Testing Center, Nantong University, No.1 Nanhai Road, Nantong, 226019, People's Republic of China
| | - Wei-Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215000, People's Republic of China
| | - Hong-He Deng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215000, People's Republic of China
| | - Yi-Fan Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215000, People's Republic of China
| | - Xin-Yu Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215000, People's Republic of China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210000, People's Republic of China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou, 215000, People's Republic of China
| | - Ping Song
- Analysis and Testing Center, Soochow University, 199 Ren'ai Road, Suzhou, 215000, People's Republic of China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215000, People's Republic of China
| |
Collapse
|
10
|
Singh G, Marupalli SS, Arockiaraj M, Rajeshkumar V. I 2-Cs 2CO 3 Mediated Intramolecular C2-Amination and Oxidative Rearrangement Cascade of C-3 Phenylthio Indoles: A Route to Synthesize Thiosulfonate-Embedded 2-Iminoindolin-3-ones. J Org Chem 2024; 89:5861-5870. [PMID: 38552213 DOI: 10.1021/acs.joc.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
An efficient, transition-metal-free protocol employing I2/Cs2CO3 for the synthesis of thiosulfonate containing 2-iminoindolin-3-ones motifs has been developed from C-3 phenylthio indoles. The reaction proceeded through intramolecular cyclization involving C-N bond formation, leading to the formation of indole-fused benzothiazines as a key intermediate. Remarkably, Cs2CO3 played a crucial role in the reaction as an oxygen source, enabling oxidative rearrangement with [1,4]-sulfonyl migration to furnish the final products with the formation of multiple functional groups such as C═O, C═N, and S-SO2.
Collapse
Affiliation(s)
- Gargi Singh
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda - 506004, Telangana, India
| | - Sasi Sree Marupalli
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda - 506004, Telangana, India
| | - Mariyaraj Arockiaraj
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda - 506004, Telangana, India
| | - Venkatachalam Rajeshkumar
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda - 506004, Telangana, India
| |
Collapse
|
11
|
Li S, Huang Z, Wang X, Yingxiong H, Niu G, Chen Z, Zhang Z. Catalyst-Free Synthesis of Thiosulfonates and 3-Sulfenylindoles from Sodium Sulfinates in Water. Chemistry 2024:e202400153. [PMID: 38566460 DOI: 10.1002/chem.202400153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
This paper presents a green and efficient aqueous-phase method for the synthesis of thiosulfonates, which has the benefits of no need for catalysts or redox reagents and a short reaction time, providing a method with great economic value for synthesizing thiosulfonates. Furthermore, 3-Sulfenylindoles can be easily synthesized using this method, which expands the potential applications of this reaction.
Collapse
Affiliation(s)
- Shaoke Li
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China
| | - Zijun Huang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China
| | - Xin Wang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China
| | - Hui Yingxiong
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China
| | - Guohao Niu
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China
| | - Ziyan Chen
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China
| | - Zhenlei Zhang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China
| |
Collapse
|
12
|
Tian Y, Li XT, Liu JR, Cheng J, Gao A, Yang NY, Li Z, Guo KX, Zhang W, Wen HT, Li ZL, Gu QS, Hong X, Liu XY. A general copper-catalysed enantioconvergent C(sp 3)-S cross-coupling via biomimetic radical homolytic substitution. Nat Chem 2024; 16:466-475. [PMID: 38057367 DOI: 10.1038/s41557-023-01385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023]
Abstract
Although α-chiral C(sp3)-S bonds are of enormous importance in organic synthesis and related areas, the transition-metal-catalysed enantioselective C(sp3)-S bond construction still represents an underdeveloped domain probably due to the difficult heterolytic metal-sulfur bond cleavage and notorious catalyst-poisoning capability of sulfur nucleophiles. Here we demonstrate the use of chiral tridentate anionic ligands in combination with Cu(I) catalysts to enable a biomimetic enantioconvergent radical C(sp3)-S cross-coupling reaction of both racemic secondary and tertiary alkyl halides with highly transformable sulfur nucleophiles. This protocol not only exhibits a broad substrate scope with high enantioselectivity but also provides universal access to a range of useful α-chiral alkyl organosulfur compounds with different sulfur oxidation states, thus providing a complementary approach to known asymmetric C(sp3)-S bond formation methods. Mechanistic results support a biomimetic radical homolytic substitution pathway for the critical C(sp3)-S bond formation step.
Collapse
Affiliation(s)
- Yu Tian
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, China
| | - Xi-Tao Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Ji-Ren Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Jian Cheng
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Ang Gao
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Ning-Yuan Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Zhuang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Kai-Xin Guo
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Wei Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Han-Tao Wen
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China.
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
13
|
Tsukaguchi Y, Shinoda K, Noda Y, Hatta Y, Tsubouchi K, Shokura N, Nakamura F, Kimura-Suda H, Yoshikawa H, Shimizu T, Tanifuji N. Solvent-Free Reaction for Unsymmetrical Organodisulfides with High Purity and Application as Cathode-Active Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:699. [PMID: 38591987 PMCID: PMC10856588 DOI: 10.3390/ma17030699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 04/10/2024]
Abstract
Unsymmetrical disulfides, in which different organic groups are bonded to disulfide bonds, have been synthesized by cross-coupling reactions using thiols as substrates. However, due to the low-binding energy of unsymmetrical disulfides, its disproportionation occurs based on the side reactions with nucleophilic thiols, resulting in the impurity of symmetric disulfides. In this study, we developed a solvent-free synthesis method for unsymmetrical disulfides using thiosulfonates, thiols, and a base. This synthetic method enabled us to obtain highly pure diaryl-substituted unsymmetrical disulfides with particularly low-binding energy without control over the nucleophilicity and elimination properties of the substrate. Furthermore, it was observed that the disproportionation of unsymmetrical disulfides occurred in the solvent. This means that solvent-free condition is one of the factors to obtain unsymmetrical disulfides. As a new application of unsymmetrical disulfides, we applied unsymmetrical disulfides to cathode active materials of lithium batteries based on the reversible multi-electron redox activity of S-S bonds. The batteries using unsymmetrical disulfide cathode-active materials with a carbon nanotube exhibited initial capacities of 127 and 158 Ah/kg, equal to 42 and 53% of their theoretical ones. We demonstrated that unsymmetrical disulfides could be used as cathode-active materials for rechargeable batteries.
Collapse
Affiliation(s)
- Yuta Tsukaguchi
- Chemistry and Biochemistry Division, Department of Integrated Engineering, National Institute of Technology, Yonago College, 4448 Hikona-cho, Yonago 683-8502, Japan (Y.N.)
| | - Kazuki Shinoda
- Chemistry and Biochemistry Division, Department of Integrated Engineering, National Institute of Technology, Yonago College, 4448 Hikona-cho, Yonago 683-8502, Japan (Y.N.)
| | - Yusei Noda
- Chemistry and Biochemistry Division, Department of Integrated Engineering, National Institute of Technology, Yonago College, 4448 Hikona-cho, Yonago 683-8502, Japan (Y.N.)
| | - Yui Hatta
- Chemistry and Biochemistry Division, Department of Integrated Engineering, National Institute of Technology, Yonago College, 4448 Hikona-cho, Yonago 683-8502, Japan (Y.N.)
| | - Kentaro Tsubouchi
- Chemistry and Biochemistry Division, Department of Integrated Engineering, National Institute of Technology, Yonago College, 4448 Hikona-cho, Yonago 683-8502, Japan (Y.N.)
| | - Naoko Shokura
- Chemistry and Biochemistry Division, Department of Integrated Engineering, National Institute of Technology, Yonago College, 4448 Hikona-cho, Yonago 683-8502, Japan (Y.N.)
| | - Fumiya Nakamura
- Chitose Institute of Science and Technology, 758-65 Bibi, Chitose 066-8655, Japan
| | - Hiromi Kimura-Suda
- Chitose Institute of Science and Technology, 758-65 Bibi, Chitose 066-8655, Japan
| | - Hirofumi Yoshikawa
- Department of Material Science, School of Engineering, Kwansei Gakuin University, Gakuen 2-1, Sanda 669-1337, Japan
| | - Takeshi Shimizu
- Chemistry and Biochemistry Division, Department of Integrated Engineering, National Institute of Technology, Yonago College, 4448 Hikona-cho, Yonago 683-8502, Japan (Y.N.)
| | - Naoki Tanifuji
- Chemistry and Biochemistry Division, Department of Integrated Engineering, National Institute of Technology, Yonago College, 4448 Hikona-cho, Yonago 683-8502, Japan (Y.N.)
| |
Collapse
|
14
|
Tang F, Feng YS, Yang W, Xu HJ. Synergistic Photoredox and Iron Catalyzed 1,2-Thiosulfonylation of Alkenes with Thiophenols and Sulfonyl Chlorides. Org Lett 2024; 26:236-240. [PMID: 38149800 DOI: 10.1021/acs.orglett.3c03900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Herein, a three-component 1,2-thiosulfonylation of alkenes with thiophenols and sulfonyl chlorides via synergistic photoredox and iron catalysis is described. Compared with previous studies, this protocol avoids tedious pre-synthesis of thiosulfonates and employs more readily accessible sulfonyl chlorides as a sulfonation reagent. Moreover, the reaction exhibits high compatibility with styrenes and unactivated alkenes as well as diverse sulfonyl chlorides, especially sulfamoyl chlorides. Preliminary mechanism investigations reveal that a radical pathway is involved in the catalytic cycle.
Collapse
Affiliation(s)
- Fei Tang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yi-Si Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wenqing Yang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hua-Jian Xu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
15
|
Taniguchi N, Hyodo M, Pan LW, Ryu I. Photocatalytic C(sp 3)-H thiolation by a double S H2 strategy using thiosulfonates. Chem Commun (Camb) 2023. [PMID: 38018244 DOI: 10.1039/d3cc05149h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Site-selective C(sp3)-H thiolation using thiosulfonates has been achieved using the decatungstate anion as a photocatalyst. Using the protocol, a variety of thiolated compounds were synthesized in good yields. The transformation consists of a cascade of double SH2 reactions, HAT and ArS group transfer, and PCET (proton-coupled electron transfer) of the leaving arylsulfonyl radical to arylsulfinic acid thus allowing the catalyst, W10O324-, to be recovered.
Collapse
Affiliation(s)
- Nobukazu Taniguchi
- Faculty of Liberal Arts, Sciences and Global Education, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan.
| | - Mamoru Hyodo
- Institute for Research Promotion, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan.
| | - Lin-Wei Pan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Ilhyong Ryu
- Institute for Research Promotion, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan.
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
| |
Collapse
|
16
|
Kumar P, Bhalla A. Isothiocyanates ( in situ) and sulfonyl chlorides in water for N-functionalization of bicyclic amidines: access to N-alkylated γ-/ω-lactam derivatized thiourea and sulfonamides. Org Biomol Chem 2023; 21:8868-8874. [PMID: 37888837 DOI: 10.1039/d3ob01584j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Herein, we showcase the potential of isothiocyanates generated in situ and aryl sulfonyl chlorides as electrophiles in water for N-functionalization of bicyclic amidines (DBN and DBU). This strategy provides complementary access to a range of thiouredosulfides, sulfonamides, aroylthioureas and amides derivativatized with distal γ- and ω-lactams. A novel sulfonyl chloride mediated formation of β-uredo sulfides has been achieved from β-isothiocyanato sulfides, removing the requirement for the harsh synthesis of unstable isocyanates. Mechanistic studies suggest a radical mechanism for the difunctionalization of alkenes, the efficacy of H2O in the ring opening of bicyclic amidines, and an oxygen source along with sulfonyl chloride as desulfurization agents for thiourea to afford urea derivatives.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Chemistry and Centre of Advance Studies in Chemistry, Panjab University, Chandigarh, 160014, UT, India.
| | - Aman Bhalla
- Department of Chemistry and Centre of Advance Studies in Chemistry, Panjab University, Chandigarh, 160014, UT, India.
| |
Collapse
|
17
|
Doraghi F, Aledavoud SP, Ghanbarlou M, Larijani B, Mahdavi M. N-Sulfenylsuccinimide/phthalimide: an alternative sulfenylating reagent in organic transformations. Beilstein J Org Chem 2023; 19:1471-1502. [PMID: 37799175 PMCID: PMC10548256 DOI: 10.3762/bjoc.19.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023] Open
Abstract
In the field of organosulfur chemistry, sulfenylating agents are an important key in C-S bond formation strategies. Among various organosulfur precursors, N-sulfenylsuccinimide/phthalimide derivatives have shown highly electrophilic reactivity for the asymmetric synthesis of many organic compounds. Hence, in this review article, we focus on the application of these alternative sulfenylating reagents in organic transformations.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Pegah Aledavoud
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghanbarlou
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Chandra A, Yadav N, Payra S, Parida KN. Oxidation of Thiols with IBX or DMP: One-Pot Access to Thiosulfonates or 2-Iodobenzoates and Applications in Functional Group Transformations. Org Lett 2023; 25:6256-6261. [PMID: 37602744 DOI: 10.1021/acs.orglett.3c02017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
o-Iodoxybenzoic acid (IBX) and Dess-Martin periodinane (DMP) are employed for thiol to thiosulfonate conversion at rt. DMP is better than IBX in terms of reaction rate, conversion, and required equivalents. IBX-mediated oxidation of benzyl thiols produced thiosulfonates, whereas DMP afforded O-benzyl esters. The one-pot conversion of a thiol to an ester is unprecedented; this atom-economic transformation has potential for functional group transformations (FGTs), e.g., an alcohol and an aldehyde are accessed from benzyl thiol.
Collapse
Affiliation(s)
- Ajeet Chandra
- Department of Chemistry, Indian Institute of Technology (IIT) Bombay, Mumbai 400 076, India
| | - Navin Yadav
- Department of Chemistry, IIT Kanpur, Kanpur 208016, India
| | - Soumen Payra
- Department of Chemistry, IIT Kanpur, Kanpur 208016, India
| | | |
Collapse
|
19
|
Jiang YF, Zhu WC, Liu XY, Tian SY, Han JH, Rao W, Shen SS, Sheng D, Wang SY. Synthesis of 1,3-Dibenzenesulfonylpolysulfane (DBSPS) and Its Application in the Preparation of Aryl Thiosulfonates from Boronic Acids. Org Lett 2023; 25:1776-1781. [PMID: 36867002 DOI: 10.1021/acs.orglett.3c00526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Herein, we provide a novel method for the synthesis of 1,3-dibenzenesulfonylpolysulfane (DBSPS), which further reacts with boronic acids to afford thiosulfonates. Commercially available boron compounds greatly expanded the range of thiosulfonates. Experimental and theoretical mechanistic investigations suggested that DBSPS could provide both thiosulfone fragments and dithiosulfone fragments, but the generated aryl dithiosulfonates were unstable and decomposed into thiosulfonates.
Collapse
Affiliation(s)
- Yi-Fan Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Wei-Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xin-Yu Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Shi-Yin Tian
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jia-Hui Han
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99, Xuefu Road, Huqiu District, Suzhou 215009, P. R. China
| | - Daopeng Sheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
20
|
Cu-catalysed enantioselective radical heteroatomic S-O cross-coupling. Nat Chem 2023; 15:395-404. [PMID: 36575341 DOI: 10.1038/s41557-022-01102-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/27/2022] [Indexed: 12/29/2022]
Abstract
The transition-metal-catalysed cross-coupling reaction has established itself as one of the most reliable and practical synthetic tools for the efficient construction of carbon-carbon/heteroatom (p-block elements other than carbon) bonds in both racemic and enantioselective manners. In contrast, development of the corresponding heteroatom-heteroatom cross-couplings has so far remained elusive, probably due to the under-investigated and often challenging heteroatom-heteroatom reductive elimination. Here we demonstrate the use of single-electron reductive elimination as a strategy for developing enantioselective S-O coupling under Cu catalysis, based on both experimental and theoretical results. The reaction manifests its synthetic potential by the ready preparation of challenging chiral alcohols featuring congested stereocentres, the expedient valorization of the biomass-derived feedstock glycerol, and the remarkable catalytic 4,6-desymmetrization of inositol. These results demonstrate the potential of enantioselective radical heteroatomic cross-coupling as a general chiral heteroatom-heteroatom formation strategy.
Collapse
|
21
|
Liu H, Li G, Peng Z, Zhang S, Zhou X, Liu Q, Wang J, Liu Y, Jia T. Tagging Peptides with a Redox Responsive Fluorescent Probe Enabled by Photoredox Difunctionalization of Phenylacetylenes with Sulfinates and Disulfides. JACS AU 2022; 2:2821-2829. [PMID: 36590269 PMCID: PMC9795567 DOI: 10.1021/jacsau.2c00577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/07/2022] [Indexed: 05/09/2023]
Abstract
Herein, we describe a photoredox three-component atom-transfer radical addition (ATRA) reaction of aryl alkynes directly with dialkyl disulfides and alkylsulfinates, circumventing the utilization of chemically unstable and synthetically challenging S-alkyl alkylthiosulfonates as viable addition partners. A vast array of (E)-β-alkylsulfonylvinyl alkylsulfides was prepared with great regio- and stereoselectivity. Moreover, this powerful tactic could be employed to tag cysteine residues of complex polypeptides in solution or on resin merging with solid phase peptide synthesis (SPPS) techniques. A sulfonyl-derived redox responsive fluorescent probe could be conveniently introduced on the peptide, which displays green fluorescence in cells while showing blue fluorescence in medium. The photophysical investigations reveal that the red shift of the emission fluorescence is attested to reduction of carbonyl group to the corresponding hydroxyl moiety. Interestingly, the fluorescence change of tagged peptide could be reverted in cells by treatment of H2O2, arising from the reoxidation of hydroxyl group back to ketone by the elevated level of reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Hong Liu
- Research
Center for Chemical Biology and Omics Analysis, Department of Chemistry,
and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
| | - Guolin Li
- Research
Center for Chemical Biology and Omics Analysis, Department of Chemistry,
and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
- Department
of Pharmaceutical Engineering, College of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an, Shanxi 710069, P. R. China
| | - Zhiyuan Peng
- Research
Center for Chemical Biology and Omics Analysis, Department of Chemistry,
and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
| | - Shishuo Zhang
- Research
Center for Chemical Biology and Omics Analysis, Department of Chemistry,
and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
| | - Xin Zhou
- Research
Center for Chemical Biology and Omics Analysis, Department of Chemistry,
and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
- Department
of Pharmaceutical Engineering, College of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an, Shanxi 710069, P. R. China
| | - Qingchao Liu
- Department
of Pharmaceutical Engineering, College of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an, Shanxi 710069, P. R. China
| | - Junfeng Wang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong
Key Laboratory of Marine Materia Medica/Innovation Academy of South
China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xinggang Road, Guangzhou 510301, P. R. China
| | - Yonghong Liu
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong
Key Laboratory of Marine Materia Medica/Innovation Academy of South
China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xinggang Road, Guangzhou 510301, P. R. China
- E-mail:
| | - Tiezheng Jia
- Research
Center for Chemical Biology and Omics Analysis, Department of Chemistry,
and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
- State
Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94
Weijin Road, Tianjin 300071, P. R. China
- E-mail:
| |
Collapse
|
22
|
Jia X, Ma X, Feng W, Zhang JQ, Zhao Y, Guo B, Tang L, Yang YY. DBU-Catalyzed Aerobic CDC Reaction of Thiophenols. J Org Chem 2022; 87:16492-16505. [PMID: 36473149 DOI: 10.1021/acs.joc.2c02207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A convenient method was developed for the preparation of thiolated compounds via a DBU-catalyzed aerobic cross-dehydrogenative coupling (CDC) reaction. The established protocol is environmentally friendly and operationally simple. Substrates like (hetero)aryl acetates, (hetero)aryl ketones, and indoles could be transformed into the corresponding thiolated products in moderate to high yields and further applied in the preparation of bioactive compounds in a prefunctionalization-free manner.
Collapse
Affiliation(s)
- Xuemin Jia
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Xiao Ma
- Department of Pharmacy, Guiyang Maternal and Child Health Care Hospital, 550003 Guiyang, P. R. China
| | - Wei Feng
- BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian, 518083 Shenzhen, China
| | - Ji-Quan Zhang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Yonglong Zhao
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550004 Guiyang, P. R. China
| | - Lei Tang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Yuan-Yong Yang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| |
Collapse
|
23
|
Beletskaya IP, Ananikov VP. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chem Rev 2022; 122:16110-16293. [DOI: 10.1021/acs.chemrev.1c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina P. Beletskaya
- Chemistry Department, Lomonosov Moscow State University, Vorob’evy gory, Moscow 119899, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
24
|
Zhang Y, Liu W, Xu Y, Liu Y, Peng J, Wang M, Bai Y, Lu H, Shi Z, Shao X. S-(Methyl- d3) Arylsulfonothioates: A Family of Robust, Shelf-Stable, and Easily Scalable Reagents for Direct Trideuteromethylthiolation. Org Lett 2022; 24:6794-6799. [DOI: 10.1021/acs.orglett.2c02680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Wen Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Yuenian Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Yong Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Jiajian Peng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, P.R. China
| | - Ying Bai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Hua Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, P.R. China
| | - Xinxin Shao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| |
Collapse
|
25
|
Yang CL, Gao XJ, Jiang XY, Shi Z, Hao EJ, Dong ZB. Synthesis of Unsymmetric Thiosulfonates Starting from N-Substituted O-Thiocarbamates: Easy Access to the S-SO 2 Bond. J Org Chem 2022; 87:11656-11668. [PMID: 35959946 DOI: 10.1021/acs.joc.2c01301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using phenyliodine diacetate as an oxidant and nickel acetate as a promoter, a wide range of unsymmetric thiosulfonates could be furnished easily in moderate to excellent yields starting from N-substituted O-thiocarbamates and sodium sulfinates. This protocol features mild conditions, short reaction times, and high atomic utilization, which can provide an alternative method for the synthesis of unsymmetric thiosulfonates. In addition, the reaction could be scaled up on a gram scale, showing potential application value in industry.
Collapse
Affiliation(s)
- Cheng-Li Yang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xue-Jie Gao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xin-Yi Jiang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhen Shi
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
| | - Er-Jun Hao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.,Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.,Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.,Engineering Research Center of Phosphorus Resources Development and Utilization, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
26
|
Kuciński K, Gruszczyński M, Hreczycho G. Ru‐catalyzed Formation of Thiosilanes and Selenosilanes using Dichalcogenides as a User‐Friendly Alternative to Thiols and Selenols. ChemCatChem 2022. [DOI: 10.1002/cctc.202200961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Krzysztof Kuciński
- Adam Mickiewicz University in Poznań Faculty of Chemistry Umultowska 89b 61-614 Poznań POLAND
| | - Marcin Gruszczyński
- Adam Mickiewicz University Faculty of Chemistry: Uniwersytet im Adama Mickiewicza w Poznaniu Wydzial Chemii Faculty of Chemistry POLAND
| | - Grzegorz Hreczycho
- Adam Mickiewicz University Faculty of Chemistry: Uniwersytet im Adama Mickiewicza w Poznaniu Wydzial Chemii Faculty of Chemistry POLAND
| |
Collapse
|
27
|
Wang X, Meng J, Zhao D, Tang S, Sun K. Synthesis and applications of thiosulfonates and selenosulfonates as free-radical reagents. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Jeelani A, Muthu S, Ramesh P, Irfan A. Experimental spectroscopic, molecular structure, electronic solvation, biological prediction and topological analysis of 2, 4, 6-tri (propan-2-yl) benzenesulfonyl chloride: An antidepressant agent. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Xu JX, Wang LC, Wu XF. Palladium-Catalyzed Desulfonative Carbonylation of Thiosulfonates: Elimination of SO 2 and Insertion of CO. Org Lett 2022; 24:4820-4824. [PMID: 35739644 DOI: 10.1021/acs.orglett.2c01951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A palladium-catalyzed desulfonative carbonylation of thiosulfonates has been explored. Without any additive, a series of S-aryl/alkyl benzenesulfonothioates were successfully transformed to thioesters in moderate to excellent yields by SO2 extrusion and CO insertion under the pressure of 1 bar of CO. The solvent dimethylacetamide (DMAc) facilitated this desulfonative carbonylation due to its high absorbing ability of SO2.
Collapse
Affiliation(s)
- Jian-Xing Xu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023 Dalian, Liaoning, China
| | - Le-Cheng Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023 Dalian, Liaoning, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023 Dalian, Liaoning, China.,Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
30
|
Tao S, Huo A, Gao Y, Zhang X, Yang J, Du Y. PhICl2-Mediated Regioselective and Electrophilic Oxythio/Selenocyanation of o-(1-Alkynyl)benzoates: Access to Biologically Active S/SeCN-Containing Isocoumarins. Front Chem 2022; 10:859995. [PMID: 35665060 PMCID: PMC9158338 DOI: 10.3389/fchem.2022.859995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
The application of PhICl2/NH4SCN and PhICl2/KSeCN reagent systems to the synthesis of the biologically active S/SeCN-containing isocoumarins via a process involving thio/selenocyanation, enabled by thio/selenocyanogen chloride generated in situ, followed with an intramolecular lactonization was realized. Gram-scale synthesis, further derivatization to access C4 thio/selenocyanated Xyridin A and anti-tumor activities of the obtained products highlight the potential use of this method.
Collapse
Affiliation(s)
- Shanqing Tao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Aiwen Huo
- Hebei Key Laboratory of State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, China
| | - Yan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xiangyang Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Jingyue Yang
- Hebei Key Laboratory of State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, China
- *Correspondence: Yunfei Du, ; Jingyue Yang,
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- *Correspondence: Yunfei Du, ; Jingyue Yang,
| |
Collapse
|
31
|
Bi WZ, Zhang WJ, Li CY, Shao LH, Liu QP, Feng SX, Geng Y, Chen XL, Qu LB. Photoexcited sulfenylation of C(sp 3)-H bonds in amides using thiosulfonates. Org Biomol Chem 2022; 20:3902-3906. [PMID: 35502883 DOI: 10.1039/d2ob00557c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoexcited sulfenylation of C(sp3)-H bonds in amides is developed for the synthesis of sulfenyl amides using thiosulfonates as a sulfur source. In the presence of easily available and inexpensive Na2-eosin Y, TBHP and K2CO3, various sulfenyl amides can be obtained under the irradiation of blue light at room temperature.
Collapse
Affiliation(s)
- Wen-Zhu Bi
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wen-Jie Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Chen-Yu Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Lu-Hao Shao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Qing-Pu Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Su-Xiang Feng
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China. .,Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P. R. China, Zhengzhou, 450046, China
| | - Yang Geng
- Department of Pharmacy, Zhengzhou Railway Vocational and Technical College, Zhengzhou, 450046, China.
| | - Xiao-Lan Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450052, China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
32
|
Kato T, Lim B, Cheng Y, Pham AT, Maynard J, Moreau D, Poblador-Bahamonde AI, Sakai N, Matile S. Cyclic Thiosulfonates for Thiol-Mediated Uptake: Cascade Exchangers, Transporters, Inhibitors. JACS AU 2022; 2:839-852. [PMID: 35557769 PMCID: PMC9088311 DOI: 10.1021/jacsau.1c00573] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 05/16/2023]
Abstract
Thiol-mediated uptake is emerging as a powerful method to penetrate cells. Cyclic oligochalcogenides (COCs) have been identified as privileged scaffolds to enable and inhibit thiol-mediated uptake because they can act as dynamic covalent cascade exchangers, i.e., every exchange produces a new, covalently tethered exchanger. In this study, our focus is on the essentially unexplored COCs of higher oxidation levels. Quantitative characterization of the underlying dynamic covalent exchange cascades reveals that the initial ring opening of cyclic thiosulfonates (CTOs) proceeds at a high speed even at a low pH. The released sulfinates exchange with disulfides in aprotic but much less in protic environments. Hydrophobic domains were thus introduced to direct CTOs into hydrophobic pockets to enhance their reactivity. Equipped with such directing groups, fluorescently labeled CTOs entered the cytosol of living cells more efficiently than the popular asparagusic acid. Added as competitive agents, CTOs inhibit the uptake of various COC transporters and SARS-CoV-2 lentivectors. Orthogonal trends found with different transporters support the existence of multiple cellular partners to account for the diverse expressions of thiol-mediated uptake. Dominant self-inhibition and high activity of dimers imply selective and synergistic exchange in hydrophobic pockets as distinguishing characteristics of thiol-mediated uptake with CTOs. The best CTO dimers with hydrophobic directing groups inhibit the cellular entry of SARS-CoV-2 lentivectors with an IC50 significantly lower than the previous best CTO, below the 10 μM threshold and better than ebselen. Taken together, these results identify CTOs as an intriguing motif for use in cytosolic delivery, as inhibitors of lentivector entry, and for the evolution of dynamic covalent networks in the broadest sense, with reactivity-based selectivity of cascade exchange emerging as a distinguishing characteristic that deserves further attention.
Collapse
|
33
|
Hyslop PA, Chaney MO. Mechanism of GAPDH Redox Signaling by H 2O 2 Activation of a Two-Cysteine Switch. Int J Mol Sci 2022; 23:4604. [PMID: 35562998 PMCID: PMC9102624 DOI: 10.3390/ijms23094604] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Oxidation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by reactive oxygen species such as H2O2 activate pleiotropic signaling pathways is associated with pathophysiological cell fate decisions. Oxidized GAPDH binds chaperone proteins with translocation of the complex to the nucleus and mitochondria initiating autophagy and cellular apoptosis. In this study, we establish the mechanism by which H2O2-oxidized GAPDH subunits undergo a subunit conformational rearrangement. H2O2 oxidizes both the catalytic cysteine and a vicinal cysteine (four residues downstream) to their respective sulfenic acids. A 'two-cysteine switch' is activated, whereby the sulfenic acids irreversibly condense to an intrachain thiosulfinic ester resulting in a major metastable subunit conformational rearrangement. All four subunits of the homotetramer are uniformly and independently oxidized by H2O2, and the oxidized homotetramer is stabilized at low temperatures. Over time, subunits unfold forming disulfide-linked aggregates with the catalytic cysteine oxidized to a sulfinic acid, resulting from thiosulfinic ester hydrolysis via the highly reactive thiosulfonic ester intermediate. Molecular Dynamic Simulations provide additional mechanistic insights linking GAPDH subunit oxidation with generating a putative signaling conformer. The low-temperature stability of the H2O2-oxidized subunit conformer provides an operable framework to study mechanisms associated with gain-of-function activities of oxidized GAPDH to identify novel targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Paul A. Hyslop
- Arkley Research Labs, Arkley BioTek, LLC, 4444 Decatur Blvd., Indianapolis, IN 46241, USA
| | - Michael O. Chaney
- Eli Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA;
| |
Collapse
|
34
|
Pandey AK, Chand S, Sharma AK, Singh KN. Iodine Catalyzed Sulfenylation of Sodium Sulfinates using Arenediazonium Tetrafluoroborate/CS2 Combination. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anand Kumar Pandey
- Banaras Hindu University Faculty of Science Chemistry Institute of Science 221005 Varanasi INDIA
| | - Shiv Chand
- Banaras Hindu University Faculty of Science Chemistry Institute of Science 221005 Varanasi INDIA
| | - Anup Kumar Sharma
- Banaras Hindu University Faculty of Science Chemistry Institute of Science 221005 Varanasi INDIA
| | - Krishna Nand Singh
- Banaras Hindu University Department of Chemistry Faculty of Science 221005 Varanasi INDIA
| |
Collapse
|
35
|
Petit‐Cancelier F, Ruyet L, Couve‐Bonnaire S, Besset T. Distal Construction of a Carbon‐SCF
2
R Bond on Aliphatic Alcohols Enabled by 1,5‐Hydrogen‐Atom Transfer. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Louise Ruyet
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | | | - Tatiana Besset
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| |
Collapse
|
36
|
Azeredo JB, Penteado F, Nascimento V, Sancineto L, Braga AL, Lenardao EJ, Santi C. "Green Is the Color": An Update on Ecofriendly Aspects of Organoselenium Chemistry. Molecules 2022; 27:1597. [PMID: 35268698 PMCID: PMC8911681 DOI: 10.3390/molecules27051597] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Organoselenium compounds have been successfully applied in biological, medicinal and material sciences, as well as a powerful tool for modern organic synthesis, attracting the attention of the scientific community. This great success is mainly due to the breaking of paradigm demonstrated by innumerous works, that the selenium compounds were toxic and would have a potential impact on the environment. In this update review, we highlight the relevance of these compounds in several fields of research as well as the possibility to synthesize them through more environmentally sustainable methodologies, involving catalytic processes, flow chemistry, electrosynthesis, as well as by the use of alternative energy sources, including mechanochemical, photochemistry, sonochemical and microwave irradiation.
Collapse
Affiliation(s)
- Juliano B. Azeredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Uruguaiana, Uruguaiana 97501-970, RS, Brazil;
| | - Filipe Penteado
- Laboratório de Síntese Orgânica Limpa-LaSOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil; (F.P.); (E.J.L.)
| | - Vanessa Nascimento
- Laboratório SupraSelen, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, Universidade Federal Fluminense, Niteroi 24020-150, RJ, Brazil
| | - Luca Sancineto
- Group of Catalysis Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06100 Perugia, Italy;
| | - Antonio L. Braga
- Departamento de Química, Universidade Federal de Santa Catarina—UFSC, Florianopolis 88040-900, SC, Brazil;
| | - Eder João Lenardao
- Laboratório de Síntese Orgânica Limpa-LaSOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil; (F.P.); (E.J.L.)
| | - Claudio Santi
- Group of Catalysis Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06100 Perugia, Italy;
| |
Collapse
|
37
|
|
38
|
Zhang D, Hu L, Yang C, Li X, Teng M, Liu B, Huang G. Tetramethylammonium Iodide (TMAI)‐Promoted Sulfenylation/Annulation of Enaminones with Thiosulfonates. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- De‐Run Zhang
- School of Chemistry and Chemical Engineering Yunnan Normal University Kunming 650500 P. R. China
| | - Lin‐Ping Hu
- School of Chemistry and Chemical Engineering Yunnan Normal University Kunming 650500 P. R. China
| | - Cai‐Yun Yang
- School of Chemistry and Chemical Engineering Yunnan Normal University Kunming 650500 P. R. China
| | - Xia Li
- Department of Library Yunnan Normal University Kunming 650500 P. R. China
| | - Ming‐Yu Teng
- School of Chemistry and Chemical Engineering Yunnan Normal University Kunming 650500 P. R. China
| | - Bo Liu
- School of Chemistry and Chemical Engineering Yunnan Normal University Kunming 650500 P. R. China
| | - Guo‐Li Huang
- School of Chemistry and Chemical Engineering Yunnan Normal University Kunming 650500 P. R. China
| |
Collapse
|
39
|
Strehl J, Hilt G. Synthesis of Symmetrical and Unsymmetrical Thiosulfonates from Disulfides through Electrochemically Induced Disulfide Bond Metathesis and Site‐Selective Oxidation. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Julia Strehl
- Institut für Chemie Universität Oldenburg Carl-von-Ossietzky-Straße 9–11 26111 Oldenburg Germany
| | - Gerhard Hilt
- Institut für Chemie Universität Oldenburg Carl-von-Ossietzky-Straße 9–11 26111 Oldenburg Germany
| |
Collapse
|
40
|
Wei YF, Gao WC, Chang HH, Jiang X. Recent advances in thiolation via sulfur electrophiles. Org Chem Front 2022. [DOI: 10.1039/d2qo01447e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This review systematically summarizes the recent developments for constructing sulfur compounds from sulfur electrophiles, and the mechanism mainly involved thirranium ions, sulfur ylides, C–S cross coupling and electrophilic substitution.
Collapse
Affiliation(s)
- Ya-Feng Wei
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Wen-Chao Gao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hong-Hong Chang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xuefeng Jiang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
41
|
A novel phenylsulfenylation of unsaturated acids or alcohols by methyl phenyl sulfoxide and substoichiometric (COCl)2. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Hu L, Li J, Zhang Y, Feng X, Liu X. Enantioselective [1,2]-Stevens Rearrangement of Thiosulfonates to Construct Dithio-Substituted Quaternary Carbon Centers. Chem Sci 2022; 13:4103-4108. [PMID: 35440994 PMCID: PMC8985575 DOI: 10.1039/d2sc00419d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
An enantioselective [1,2] Stevens rearrangement was realized by using chiral guanidine and copper(i) complexes. Bis-sulfuration of α-diazocarbonyl compounds was developed through using thiosulfonates as the sulfenylating agent. It was undoubtedly an atom-economic process providing an efficient route to access novel chiral dithioketal derivatives, affording the corresponding products in good yields (up to 90% yield) and enantioselectivities (up to 96 : 4 er). A novel catalytic cycle was proposed to rationalize the reaction process and enantiocontrol. An asymmetric [1,2] Stevens rearrangement was realized via chiral guanidine and copper(i) complexes. A series of novel chiral dithioketal derivatives were obtained with good yields (up to 90% yield) and enantioselectivities (up to 96 : 4 er).![]()
Collapse
Affiliation(s)
- Linfeng Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Jinzhao Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Yongyan Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
43
|
Yu S, Chen Z, Chen Q, Lin S, He J, Tao G, Wang Z. Research Progress in Synthesis and Application of Thiosulfonates. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Tang X, Chen J, Tian J, Wen K, Gao Q, Shi J, Yao X, Wu T. A new method for C(sp2)-H sulfonylmethylation with glyoxylic acid and sodium sulfinates. Org Biomol Chem 2022; 20:1652-1655. [DOI: 10.1039/d2ob00029f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein describe a C4 sulfonylmethylation of pyrazol-5-amines with glyoxylic acid and sodium sulfinates. The reaction only needed to add water as the solvent, and it featured mild reaction condition,...
Collapse
|
45
|
Zhao J, Zhu J, Shen J, Zhang Y, Li W. Photocatalyzed Oxidative Cross-Coupling Reaction to Access Symmetrical/Unsymmetrical Thiosulfonates. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
46
|
Song T, Tung CH, Xu Z. Synthesis of α-trifluoromethyl sulfides through fluorosulfuration of gem-difluoroalkenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00391k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new fluoro-sulfuration of gem-difluoroalkenes is demonstrated that occurs through a nucleophilic fluorination and subsequent interrupted electrophilic sulfuration cascade.
Collapse
Affiliation(s)
- Tingting Song
- Key Lab of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, Shandong 250100, China
| | - Chen-Ho Tung
- Key Lab of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, Shandong 250100, China
| | - Zhenghu Xu
- Key Lab of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, Shandong 250100, China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| |
Collapse
|
47
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
48
|
Chen Y, Wang F, Liu BX, Rao WD, Wang SY. A Ni( ii)-catalyzed reductive cross-coupling reaction of oxalates and thiosulfonates/selenosulfonates. Org Chem Front 2022. [DOI: 10.1039/d1qo01614h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ni(ii)-catalyzed reductive cross-coupling reaction of oxalates and thiosulfonates/selenosulfonates to synthesize benzylic sulfides/selenides under mild conditions is developed.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Fei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Bo-Xi Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Wei-Dong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
49
|
Liu Y, Zhang N, Xu Y, Chen Y. Visible-Light-Induced Radical Cascade Reaction of 1-Allyl-2-ethynylbenzoimidazoles with Thiosulfonates to Assemble Thiosulfonylated Pyrrolo[1,2- a]benzimidazoles. J Org Chem 2021; 86:16882-16891. [PMID: 34739244 DOI: 10.1021/acs.joc.1c02082] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A visible-light-induced radical domino reaction of 1-allyl-2-ethynylbenzoimidazoles with thiosulfonates was developed, which generated the thiosulfonylated pyrrolo[1,2-a]benzimidazoles in moderate to good yields. This reaction proceeded under transition-metal-free conditions with good functional group tolerance and high regioselectivity. The possible pathway involved thiosulfonates were activated through the energy transfer route promoted by photocatalysis.
Collapse
Affiliation(s)
- Yan Liu
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Niuniu Zhang
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Yanli Xu
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Yanyan Chen
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China
| |
Collapse
|
50
|
Jannapu Reddy R, Waheed M, Haritha Kumari A, Rama Krishna G. Interrupted CuAAC‐Thiolation for the Construction of 1,2,3‐Triazole‐Fused Eight‐Membered Heterocycles from
O
‐/
N
‐Propargyl derived Benzyl Thiosulfonates with Organic Azides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science Osmania University Hyderabad 500 007 India
| | - Md. Waheed
- Department of Chemistry, University College of Science Osmania University Hyderabad 500 007 India
| | - Arram Haritha Kumari
- Department of Chemistry, University College of Science Osmania University Hyderabad 500 007 India
| | | |
Collapse
|