1
|
Das S, Rahaman SA, Pradhan K, Jana R. Organophotoredox-Catalyzed Synthesis of Unnatural α/β Amino Acids and Peptides via Deaminative Three-Component Coupling. Org Lett 2024; 26:6955-6960. [PMID: 39137018 DOI: 10.1021/acs.orglett.4c02152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Herein, we disclose an expedient visible-light-mediated, organophotoredox-catalyzed multicomponent synthesis of unnatural amino acids using a Katritzky salt, glyoxal derivatives, and substituted anilines. Mechanistically, an alkyl radical is generated from the Katritzky salt via a deaminative process that undergoes addition to the in situ-generated imine to furnish α-amino acids in a moderate diastereoisomeric ratio. For the first time, we have demonstrated this deaminative protocol to access substituted β-amino acids from α-amino acid-derived Katritzky salts. Furthermore, α-amino amides are also generated from the corresponding 2-oxoacetamide derivatives.
Collapse
Affiliation(s)
- Subhodeep Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Sk Abdur Rahaman
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Kangkan Pradhan
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
2
|
Majekodunmi T, Britton D, Montclare JK. Engineered Proteins and Materials Utilizing Residue-Specific Noncanonical Amino Acid Incorporation. Chem Rev 2024; 124:9113-9135. [PMID: 39008623 PMCID: PMC11327963 DOI: 10.1021/acs.chemrev.3c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The incorporation of noncanonical amino acids into proteins and protein-based materials has significantly expanded the repertoire of available protein structures and chemistries. Through residue-specific incorporation, protein properties can be globally modified, resulting in the creation of novel proteins and materials with diverse and tailored characteristics. In this review, we highlight recent advancements in residue-specific incorporation techniques as well as the applications of the engineered proteins and materials. Specifically, we discuss their utility in bio-orthogonal noncanonical amino acid tagging (BONCAT), fluorescent noncanonical amino acid tagging (FUNCAT), threonine-derived noncanonical amino acid tagging (THRONCAT), cross-linking, fluorination, and enzyme engineering. This review underscores the importance of noncanonical amino acid incorporation as a tool for the development of tailored protein properties to meet diverse research and industrial needs.
Collapse
Affiliation(s)
- Temiloluwa Majekodunmi
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
- Department of Chemistry, New York University, New York, New York 10012, United States
- Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States
- Department of Radiology, New York University Langone Health, New York, New York 10016, United States
| |
Collapse
|
3
|
Zhang R, Zhang C, Tan J, He Y, Zhuo D, Zhang J, Luo Z, Li Q, Yao J, Ke C, Tang C, Ye Y, He S, Sheng X, Liao C. Enzymatic Synthesis of Noncanonical α-Amino Acids Containing γ-Tertiary Alcohols. Angew Chem Int Ed Engl 2024; 63:e202318550. [PMID: 38155101 DOI: 10.1002/anie.202318550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Noncanonical amino acids (ncAAs) containing tertiary alcohols are valuable as precursors of natural products and active pharmaceutical ingredients. However, the assembly of such ncAA scaffolds from simple material by C-C bond formation remains a challenging task due to the presence of multiple stereocenters and large steric hindrance. In this study, we present a novel solution to this problem through highly selective enzymatic decarboxylative aldol addition. This method allows for the streamlined assembly of multifunctionalized ncAAs with γ-tertiary alcohols from readily available materials, such as L -aspartatic acid and isatins, vicinal diones and keto esters. The modularity of electrophiles furnished four classes of ncAAs with decent efficiency as well as excellent site and stereocontrol. Computational modeling was employed to gain detailed insight into the catalytic mechanism and to provide a rationale for the observed selectivities. The method offers a single-step approach to producing multifunctionalized ncAAs, which can be directly utilized in peptide synthesis and bioactivity assessment.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chenghua Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637100, P. R. China
| | - Jiamu Tan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yifan He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Zhuo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingxuan Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenzhen Luo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiaoqiao Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiaying Yao
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Changqiang Ke
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chunping Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shijun He
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cangsong Liao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Rodríguez-Flórez LV, González-Marcos M, García-Mingüens E, Retamosa MDG, Kawase M, Selva E, Sansano JM. Phosphine Catalyzed Michael-Type Additions: The Synthesis of Glutamic Acid Derivatives from Arylidene- α-amino Esters. Molecules 2024; 29:342. [PMID: 38257255 PMCID: PMC10820836 DOI: 10.3390/molecules29020342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
The reaction of arylidene-α-amino esters with electrophilic alkenes to yield Michael-type addition compounds is optimized using several phosphines as organocatalysts. The transformation is very complicated due to the generation of several final compounds, including those derived from the 1,3-dipolar cycloadditions. For this reason, the selection of the reaction conditions is a very complex task and the slow addition of the acrylic system is very important to complete the process. The study of the variation in the structural components of the starting imino ester is performed as well as the expansion of other electron-poor alkenes. The crude products have a purity higher than 90% in most cases without any purification. A plausible mechanism is detailed based on the bibliography and the experimental results. The synthesis of pyroglutamate entities, after the reduction of the imino group and cyclization, is performed in high yields. In addition, the hydrolysis of the imino group, under acidic media, represents a direct access to glutamate surrogates.
Collapse
Affiliation(s)
- Lesly V. Rodríguez-Flórez
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| | - María González-Marcos
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| | - Eduardo García-Mingüens
- Medalchemy, S. L. Ancha de Castelar, 46-48, entlo. A. San Vicente del Raspeig, 03690 Alicante, Spain
| | - María de Gracia Retamosa
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| | - Misa Kawase
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| | - Elisabet Selva
- Medalchemy, S. L. Ancha de Castelar, 46-48, entlo. A. San Vicente del Raspeig, 03690 Alicante, Spain
| | - José M. Sansano
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| |
Collapse
|
5
|
Bauer T, Hakim YZ, Morawska P. Recent Advances in the Enantioselective Radical Reactions. Molecules 2023; 28:6252. [PMID: 37687085 PMCID: PMC10489153 DOI: 10.3390/molecules28176252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The review covers research published since 2017 and is focused on enantioselective synthesis using radical reactions. It describes recent approaches to the asymmetric synthesis of chiral molecules based on the application of the metal catalysis, dual metal and organocatalysis and finally, pure organocatalysis including enzyme catalysis. This review focuses on the synthetic aspects of the methodology and tries to show which compounds can be obtained in enantiomerically enriched forms.
Collapse
Affiliation(s)
- Tomasz Bauer
- Faculty of Chemistry, University of Warsaw, L Pasteura 1, PL-02-093 Warsaw, Poland; (Y.Z.H.); (P.M.)
| | | | | |
Collapse
|
6
|
Stockhammer L, Craik R, Monkowius U, Cordes DB, Smith AD, Waser M. Isothiourea-Catalyzed Enantioselective Functionalisation of Glycine Schiff Base Aryl Esters via 1,6- and 1,4-Additions. CHEMISTRYEUROPE 2023; 1:e202300015. [PMID: 38882579 PMCID: PMC7616101 DOI: 10.1002/ceur.202300015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 06/18/2024]
Abstract
The enantioselective α-functionalisation of glycine Schiff base aryl esters through isothiourea catalysis is successfully demonstrated for 1,6-additions to para-quinone methides (21 examples, up to 95:5 dr and 96:4 er) and 1,4-additions to methylene substituted dicarbonyl or disulfonyl Michael acceptors (17 examples, up to 98:2 er). This nucleophilic organocatalysis approach gives access to a range of α-functionalised α-amino acid derivatives and further transformations of the activated aryl ester group provide a straightforward entry to advanced amino acid-based esters, amides or thioesters.
Collapse
Affiliation(s)
- Lotte Stockhammer
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz (Austria)
| | - Rebecca Craik
- EaStCHEM, School of Chemistry, University of St Andrews, KY16 9ST St Andrews, Fife, (UK)
| | - Uwe Monkowius
- School of Education, Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz (Austria)
| | - David B. Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, KY16 9ST St Andrews, Fife, (UK)
| | - Andrew D. Smith
- EaStCHEM, School of Chemistry, University of St Andrews, KY16 9ST St Andrews, Fife, (UK)
| | - Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz (Austria)
| |
Collapse
|
7
|
Dong Y, Meng X, Gnawali G, Chang M, Wang W. Photoredox Catalytic Installation of an Alkyl/Aryl Side Chain and Deuterium into ( S)-Methyleneoxazolidinone: Synthesis of Enantioenriched α-Deuterated α-Amino Acid Derivatives. Org Lett 2023. [PMID: 37326373 DOI: 10.1021/acs.orglett.3c01760] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A photoredox catalytic asymmetric method has been established for the installation of both aliphatic and aromatic side chains and the introduction of deuterium into the chiral methyleneoxazolidinone simultaneously. Efficient coupling of readily available boronic acids with the chiral auxiliary delivers structurally diverse α-deuterated α-amino acid derivatives with a high level of diastereoselectivity and deuteration.
Collapse
Affiliation(s)
- Yue Dong
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Xiang Meng
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Giri Gnawali
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Mengyang Chang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Wei Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
8
|
Qi X, Jambu S, Ji Y, Belyk KM, Panigrahi NR, Arora PS, Strotman NA, Diao T. Late-Stage Modification of Oligopeptides by Nickel-Catalyzed Stereoselective Radical Addition to Dehydroalanine. Angew Chem Int Ed Engl 2022; 61:e202213315. [PMID: 36175367 PMCID: PMC9773866 DOI: 10.1002/anie.202213315] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 12/24/2022]
Abstract
Radical addition to dehydroalanine (Dha) represents an appealing, modular strategy to access non-canonical peptide analogues for drug discovery. Prior studies on radical addition to the Dha residue of peptides and proteins have demonstrated outstanding functional group compatibility, but the lack of stereoselectivity has limited the synthetic utility of this approach. Herein, we address this challenge by employing chiral nickel catalysts to control the stereoselectivity of radical addition to Dha on oligopeptides. The conditions accommodate a variety of primary and secondary electrophiles to introduce polyethylene glycol, biotin, halo-tag, and hydrophobic and hydrophilic side chains to the peptide. The reaction features catalyst control to largely override substrate-based control of stereochemical outcome for modification of short peptides. We anticipate that the discovery of chiral nickel complexes that confer catalyst control will allow rapid, late-stage modification of peptides featuring nonnatural sidechains.
Collapse
Affiliation(s)
- Xiaoxu Qi
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Subramanian Jambu
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Yining Ji
- Department of Process Research and Development, Institution Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, USA
| | - Kevin M Belyk
- Department of Process Research and Development, Institution Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, USA
| | - Nihar R Panigrahi
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Paramjit S Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Neil A Strotman
- Department of Process Research and Development, Institution Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, USA
| | - Tianning Diao
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| |
Collapse
|
9
|
Gary S, Bloom S. Peptide Carbocycles: From -SS- to -CC- via a Late-Stage "Snip-and-Stitch". ACS CENTRAL SCIENCE 2022; 8:1537-1547. [PMID: 36439308 PMCID: PMC9686213 DOI: 10.1021/acscentsci.2c00456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 05/28/2023]
Abstract
One way to improve the therapeutic potential of peptides is through cyclization. This is commonly done using a disulfide bond between two cysteine residues in the peptide. However, disulfide bonds are susceptible to reductive cleavage, and this can deactivate the peptide and endanger endogenous proteins through covalent modification. Substituting disulfide bonds with more chemically robust carbon-based linkers has proven to be an effective strategy to better develop cyclic peptides as drugs, but finding the optimal carbon replacement is synthetically laborious. We report a new late-stage platform wherein a single disulfide bond in a cyclic peptide can serve as the progenitor for any number of new carbon-rich groups, derived from organodiiodides, using a Zn:Cu couple and a hydrosilane. We show that this platform can furnish entirely new carbocyclic scaffolds with enhanced permeability and structural integrity and that the stereochemistry of the new cycles can be biased by a judicious choice in silane.
Collapse
Affiliation(s)
- Samuel Gary
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas66045, United States
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas66045, United States
| |
Collapse
|
10
|
Ji P, Chen J, Meng X, Gao F, Dong Y, Xu H, Wang W. Design of Photoredox-Catalyzed Giese-Type Reaction for the Synthesis of Chiral Quaternary α-Aryl Amino Acid Derivatives via Clayden Rearrangement. J Org Chem 2022; 87:14706-14714. [PMID: 36264622 DOI: 10.1021/acs.joc.2c02029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chiral quaternary α-aryl amino acids are biologically valued but synthetically challenging building blocks. Herein, we report a strategy for the synthesis of molecular architectures by unifying a photoredox catalytic asymmetric Giese-type reaction and Clayden rearrangement. A new class of chiral Karady-Beckwith dehydroalanines is designed and serves as a versatile handle for the photoredox-mediated highly stereoselective Giese-type reaction with feedstock carboxylic acids and tertiary amines. Subsequent Clayden rearrangement delivers chiral quaternary α-aryl amino acid derivatives with high stereoselectivity. The versatile approach offers a reliable source for the assembly of highly demanding chiral building blocks.
Collapse
Affiliation(s)
- Peng Ji
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0207, United States
| | - Jing Chen
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0207, United States
| | - Xiang Meng
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0207, United States
| | - Feng Gao
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0207, United States
| | - Yue Dong
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0207, United States
| | - Hang Xu
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0207, United States
| | - Wei Wang
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0207, United States
| |
Collapse
|
11
|
Babawale F, Murugesan K, Narobe R, König B. Synthesis of Unnatural α-Amino Acid Derivatives via Photoredox Activation of Inert C(sp 3)-H Bonds. Org Lett 2022; 24:4793-4797. [PMID: 35749614 DOI: 10.1021/acs.orglett.2c01822] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of unnatural, tertiary amino acids is a challenging task. While decarboxylation-radical addition has been an important strategy for their formation, the use of alkyl radicals from C(sp3)-H bonds has not been fully explored. Herein, we report a photocatalytic protocol for the synthesis of unnatural α-amino esters employing abundant alkanes and imines retaining full atom economy. When this method is applied, several amino acid derivatives are synthesized in moderate to good yields.
Collapse
Affiliation(s)
- Florence Babawale
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Kathiravan Murugesan
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Rok Narobe
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
12
|
Gugkaeva Z, Panova M, Smolyakov A, Medvedev M, Tsaloev A, Godovikov I, Maleev VI, Larionov V. Asymmetric Metal‐Templated Route to Amino Acids with 3‐Spiropyrrolidine Oxindole Core via a 1,3‐Dipolar Addition of Azomethine Ylides to a Chiral Dehydroalanine Ni(II) Complex. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Zalina Gugkaeva
- A N Nesmeyanov Institute of Organoelement Compounds RAS RUSSIAN FEDERATION
| | - Maria Panova
- Zelinsky Institute of Organic Chemistry RAS RUSSIAN FEDERATION
| | | | | | - Alan Tsaloev
- Chemical Diversity Research Institute RUSSIAN FEDERATION
| | - Ivan Godovikov
- A N Nesmeyanov Institute of Organoelement Compounds RAS RUSSIAN FEDERATION
| | - Victor I. Maleev
- A.N. Nesmeyanov Institute of Oranoelement Cmpds. RUSSIAN FEDERATION
| | - Vladimir Larionov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) RUSSIAN FEDERATION
| |
Collapse
|
13
|
Chilamari M, Immel JR, Chen PH, Alghafli BM, Bloom S. Flavin Metallaphotoredox Catalysis: Synergistic Synthesis in Water. ACS Catal 2022; 12:4175-4181. [DOI: 10.1021/acscatal.2c00773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Jacob R. Immel
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Pei-Hsuan Chen
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Bayan M. Alghafli
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
14
|
Zhong W, Xu W, Yang Q, Kato T, Liu Y, Maruoka K. A new approach for the copper-catalyzed functionalization of alkyl hydroperoxides with organosilicon compounds via in-situ-generated alkylsilyl peroxides. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Li B, Geoghegan B, Weinert HM, Wölper C, Cutsail III G, Schulz S. Synthesis and redox activity of carbene-coordinated group 13 metal radicals. Chem Commun (Camb) 2022; 58:4372-4375. [DOI: 10.1039/d2cc00216g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbenes are known to stabilize main group element compounds with unusual electronic properties. Herein, we report the synthesis of carbene-stabilized group 13 metal radicals (cAAC)MX2(IPr) (M = Al, X =...
Collapse
|
16
|
Niu R, He Y, Lin JB. Catalytic asymmetric synthesis of α-stereogenic carboxylic acids: recent advances. Org Biomol Chem 2021; 20:37-54. [PMID: 34854454 DOI: 10.1039/d1ob02038b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chiral carboxylic acids bearing an α-stereogenic center constitute the backbone of many natural products and therapeutic reagents as well as privileged chiral ligands and catalysts. Hence, it is not surprising that a large number of elegant catalytic asymmetric strategies have been developed toward the efficient synthesis of α-chiral carboxylic acids, such as α-hydroxy acids and α-amino acids. In this review, the recent advances in asymmetric synthesis of α-stereogenic free carboxylic acids via organocatalysis and transition metal catalysis are summarized (mainly from 2010 to 2020). The content is organized by the reaction type of the carboxyl source involved, including asymmetric functionalization of substituted carboxylic acids, cyclic anhydrides, α-keto acids, substituted α,β-unsaturated acids and so on. We hope that this review will motivate further interest in catalytic asymmetric synthesis of chiral α-substituted carboxylic acids.
Collapse
Affiliation(s)
- Rui Niu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China.
| | - Yi He
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China.
| | - Jun-Bing Lin
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China.
| |
Collapse
|
17
|
Han J, Lyutenko NV, Sorochinsky AE, Okawara A, Konno H, White S, Soloshonok VA. Tailor-Made Amino Acids in Pharmaceutical Industry: Synthetic Approaches to Aza-Tryptophan Derivatives. Chemistry 2021; 27:17510-17528. [PMID: 34913215 DOI: 10.1002/chem.202102485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/24/2021] [Indexed: 12/22/2022]
Abstract
Over the recent years there has been a noticeable upsurge of interest in aza-analogs of tryptophan which are isosteric to the latter and found numerous applications in medicinal, bioorganic chemistry, and peptide research. In the present review article, five aza-tryptophan derivatives are profiled, including aza-substitution in the positions 2, on the five-membered ring, as well as in positions 4, 5, 6, and 7 on the six-membered ring. A detailed and comprehensive literature overview of the synthetic methods for the preparation of these aza-tryptophans is presented and general facets of the biological properties and most promising applications are discussed.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Nataliya V Lyutenko
- Department of Fine Organic Synthesis V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, The National Academy of Sciences of Ukraine, 1 Murmanska str., Kyiv, 02094, Ukraine
| | - Alexander E Sorochinsky
- Department of Fine Organic Synthesis V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, The National Academy of Sciences of Ukraine, 1 Murmanska str., Kyiv, 02094, Ukraine
| | - Ayaka Okawara
- Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroyuki Konno
- Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Sarah White
- Oakwood Chemical, Inc., 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Vadim A Soloshonok
- Department of Organic Chemistry I Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain
| |
Collapse
|
18
|
Visible-light-mediated catalyst-free synthesis of unnatural α-amino acids and peptide macrocycles. Nat Commun 2021; 12:6873. [PMID: 34824205 PMCID: PMC8617070 DOI: 10.1038/s41467-021-27086-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 10/14/2021] [Indexed: 01/13/2023] Open
Abstract
The visible light induced, photocatalysts or photoabsorbing EDA complexes mediated cleavage of pyridinium C-N bond were reported in the past years. Here, we report an ionic compound promote homolytic cleavage of pyridinium C-N bond by exploiting the photonic energy from visible light. This finding is successfully applied in deaminative hydroalkylation of a series of alkenes including naturally occurring dehydroalanine, which provides an efficient way to prepare β-alkyl substituted unnatural amino acids under mild and photocatalyst-free conditions. Importantly, by using this protocol, the deaminative cyclization of peptide backbone N-terminals is realized. Furthermore, the use of Et3N or PPh3 as reductants and H2O as hydrogen atom source is a practical advantage. We anticipate that our protocol will be useful in peptide synthesis and modern peptide drug discovery.
Collapse
|
19
|
Liu A, Han J, Nakano A, Konno H, Moriwaki H, Abe H, Izawa K, Soloshonok VA. New pharmaceuticals approved by FDA in 2020: Small-molecule drugs derived from amino acids and related compounds. Chirality 2021; 34:86-103. [PMID: 34713503 DOI: 10.1002/chir.23376] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/09/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022]
Abstract
Amino acids (AAs) play an important role in the modern health industry as key synthetic precursors for pharmaceuticals, biomaterials, biosensors, and drug delivery systems. Currently, over 30% of small-molecule drugs contain residues of tailor-made AAs or derived from them amino-alcohols and di-amines. In this review article, we profile 12 AA-derived new pharmaceuticals approved by the FDA in 2020. These newly introduced drugs include Tazverik (epithelioid sarcoma), Gemtesa (overactive bladder), Zeposia (multiple sclerosis), Byfavo (induction and maintenance of procedural sedation), Cu 64 dotatate, and Gallium 68 PSMA-11 (both PET imaging), Rimegepant (acute migraine), Zepzelca (lung cancer), Remdesivir (COVID-19), Amisulpride (nausea and vomiting), Setmelanotide (obesity), and Lonafarnib (progeria syndrome). For each compound, we describe the spectrum of biological activity, medicinal chemistry discovery, and synthetic preparation.
Collapse
Affiliation(s)
- Aiyao Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Arina Nakano
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | | | | | | | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
20
|
Venugopal N, Moser J, Vojtíčková M, Císařová I, König B, Jahn U. Single Electron Transfer‐Induced Selective α‐Oxygenation of Glycine Derivatives. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Navyasree Venugopal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Johannes Moser
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Faculty of Chemistry and Pharmacy University of Regensburg Universitätsstr. 31 93040 Regensburg Germany
| | - Margaréta Vojtíčková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry Faculty of Science Charles University Hlavova 8 12843 Prague 2 Czech Republic
| | - Burkhard König
- Faculty of Chemistry and Pharmacy University of Regensburg Universitätsstr. 31 93040 Regensburg Germany
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| |
Collapse
|
21
|
Hsiao YT, Beadle J, Pascoe C, Annadate R, Vederas JC. Decarboxylative Radical Addition to Methylideneoxazolidinones for Stereocontrolled Synthesis of Selectively Protected Diamino Diacids. Org Lett 2021; 23:7270-7273. [PMID: 34491060 DOI: 10.1021/acs.orglett.1c02684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Syntheses of stereochemically pure and selectively protected diamino diacids can be achieved by redox decarboxylation of distal N-hydroxyphthalimide esters of protected aspartic, glutamic or α-aminoadipic acids via radical addition to methylideneoxazolidinones. The products are useful for solid-supported syntheses of robust bioactive carbocyclic peptide analogs. Yields of reactive primary radical addition are superior to those of more stabilized radicals, and the reaction fails if the alkylideneoxazolidinone has a methyl substituent on its terminus (i.e., 13a/13b).
Collapse
Affiliation(s)
- Yu-Ting Hsiao
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Jonathan Beadle
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Cameron Pascoe
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Ritesh Annadate
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| |
Collapse
|
22
|
Merkens K, Aguilar Troyano FJ, Anwar K, Gómez-Suárez A. Synthesis of γ-Oxo-α-amino Acids via Radical Acylation with Carboxylic Acids. J Org Chem 2021; 86:8448-8456. [PMID: 34060842 DOI: 10.1021/acs.joc.0c02951] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Herein we present a highly efficient, light-mediated, deoxygenative protocol to access γ-oxo-α-amino acid derivatives. This radical methodology employs photoredox catalysis, in combination with triphenylphosphine, to generate acyl radicals from readily available (hetero)aromatic and vinylic carboxylic acids. This approach allows for the straightforward synthesis of γ-oxo-α-amino acids bearing a wide range of functional groups (e.g., Cl, CN, furan, thiophene, Bpin) in synthetically useful yields (∼60% average yield). To further highlight the utility of the methodology, several deprotection and derivatization reactions were carried out.
Collapse
Affiliation(s)
- Kay Merkens
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | | | - Khadijah Anwar
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Adrián Gómez-Suárez
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| |
Collapse
|
23
|
Gugkaeva ZT, Smol'yakov AF, Maleev VI, Larionov VA. A general asymmetric synthesis of artificial aliphatic and perfluoroalkylated α-amino acids by Luche's cross-electrophile coupling reaction. Org Biomol Chem 2021; 19:5327-5332. [PMID: 34042928 DOI: 10.1039/d1ob00805f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aliphatic artificial α-amino acids (α-AAs) have attracted great interest in biochemistry and pharmacy. In this context, we developed a promising practical protocol for the asymmetric synthesis of these α-AAs through the selective and efficient intermolecular cross-electrophile coupling of Belokon's chiral dehydroalanine Ni(ii) complex with different alkyl and perfluoroalkyl iodides mediated by a dual Zn/Cu system. The reaction afforded diastereomeric complexes with dr up to 21.3 : 1 in 24-95% yields (19 examples). Exemplarily, three enantiomerically pure aliphatic α-AAs were obtained through acidic decomposition of (S,S)-diastereomers of Ni(ii) complexes. Importantly, the chiral auxiliary ligand (S)-BPB ((S)-2-(N-benzylprolyl)aminobenzophenone) was easily recycled by simple filtration after acidic complex decomposition and reused for the synthesis of the initial dehydroalanine Ni(ii) complex.
Collapse
Affiliation(s)
- Zalina T Gugkaeva
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation.
| | - Alexander F Smol'yakov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation. and Plekhanov Russian University of Economics, Stremyanny per. 36, 117997 Moscow, Russian Federation
| | - Victor I Maleev
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation.
| | - Vladimir A Larionov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation. and Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russian Federation
| |
Collapse
|
24
|
Han J, Konno H, Sato T, Soloshonok VA, Izawa K. Tailor-made amino acids in the design of small-molecule blockbuster drugs. Eur J Med Chem 2021; 220:113448. [PMID: 33906050 DOI: 10.1016/j.ejmech.2021.113448] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
The role of amino acids (AAs) in modern health industry is well-appreciated. Residues of individual AAs, or their chemical modifications, such as diamines and amino alcohols, are frequently found in the structures of modern pharmaceuticals. The goal of this review article, is to emphasize that, currently, tailor-made AAs serve as key structural features in many most successful pharmaceuticals, so-called blockbuster drugs. In the present article, we profile 14 small-molecule drugs, underscoring the breadth of structural variety of AAs applications in numerous therapeutic areas. For each compound, we provide spectrum of biological activity, medicinal chemistry discovery, and synthetic approaches.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Tatsunori Sato
- Hamari Chemicals Ltd., 1-19-40, Nankokita, Suminoe-ku, Osaka, 559-0034, Japan
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain.
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-19-40, Nankokita, Suminoe-ku, Osaka, 559-0034, Japan.
| |
Collapse
|
25
|
Shatskiy A, Axelsson A, Stepanova EV, Liu JQ, Temerdashev AZ, Kore BP, Blomkvist B, Gardner JM, Dinér P, Kärkäs MD. Stereoselective synthesis of unnatural α-amino acid derivatives through photoredox catalysis. Chem Sci 2021; 12:5430-5437. [PMID: 34168785 PMCID: PMC8179686 DOI: 10.1039/d1sc00658d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
A protocol for stereoselective C-radical addition to a chiral glyoxylate-derived N-sulfinyl imine was developed through visible light-promoted photoredox catalysis, providing a convenient method for the synthesis of unnatural α-amino acids. The developed protocol allows the use of ubiquitous carboxylic acids as radical precursors without prior derivatization. The protocol utilizes near-stoichiometric amounts of the imine and the acid radical precursor in combination with a catalytic amount of an organic acridinium-based photocatalyst. Alternative mechanisms for the developed transformation are discussed and corroborated by experimental and computational studies.
Collapse
Affiliation(s)
- Andrey Shatskiy
- Division of Organic Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Anton Axelsson
- Division of Organic Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Elena V Stepanova
- Tomsk Polytechnic University Lenin Avenue 30 634050 Tomsk Russia
- Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences Leninsky Prospect 47 119991 Moscow Russia
| | - Jian-Quan Liu
- Division of Organic Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Azamat Z Temerdashev
- Department of Analytical Chemistry, Kuban State University Stavropolskaya St. 149 350040 Krasnodar Russia
| | - Bhushan P Kore
- Division of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Björn Blomkvist
- Division of Organic Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - James M Gardner
- Division of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Peter Dinér
- Division of Organic Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Markus D Kärkäs
- Division of Organic Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| |
Collapse
|
26
|
Le Du E, Garreau M, Waser J. Small peptide diversification through photoredox-catalyzed oxidative C-terminal modification. Chem Sci 2021; 12:2467-2473. [PMID: 34164012 PMCID: PMC8179259 DOI: 10.1039/d0sc06180h] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
A photoredox-catalyzed oxidative decarboxylative coupling of small peptides is reported, giving access to a variety of N,O-acetals. They were used as intermediates for the addition of phenols and indoles, leading to novel peptide scaffolds and bioconjugates. Amino acids with nucleophilic side chains, such as serine, threonine, tyrosine and tryptophan, could also be used as partners to access tri- and tetrapeptide derivatives with non-natural cross-linking.
Collapse
Affiliation(s)
- Eliott Le Du
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne Lausanne CH-1015 Switzerland
| | - Marion Garreau
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne Lausanne CH-1015 Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne Lausanne CH-1015 Switzerland
| |
Collapse
|
27
|
Wang N, Xu J, Mei H, Moriwaki H, Izawa K, Soloshonok VA, Han J. Electrochemical Approaches for Preparation of Tailor-Made Amino Acids. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Stoletova NV, Moshchenkov AD, Smol'yakov AF, Gugkaeva ZT, Maleev VI, Katayev D, Larionov VA. Asymmetric Synthesis of Perfluoroalkylated α‐Amino Acids through Generated Radicals Using a Chiral Ni(II) Complex. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nadezhda V. Stoletova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Vavilov Str. 28 RU-119991 Moscow Russian Federation
| | - Andrey D. Moshchenkov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Vavilov Str. 28 RU-119991 Moscow Russian Federation
- Higher Chemical College of the Russian Academy of Sciences Dmitry Mendeleev University of Chemical Technology of Russia Miusskaya sq. 9 RU-125047 Moscow Russian Federation
| | - Alexander F. Smol'yakov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Vavilov Str. 28 RU-119991 Moscow Russian Federation
| | - Zalina T. Gugkaeva
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Vavilov Str. 28 RU-119991 Moscow Russian Federation
| | - Victor I. Maleev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Vavilov Str. 28 RU-119991 Moscow Russian Federation
| | - Dmitry Katayev
- Department of Chemistry and Applied Biosciences Swiss Federal Institute of Technology ETH Zürich Vladimir-Prelog-Weg 2 CH-8093 Zürich Switzerland
| | - Vladimir A. Larionov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Vavilov Str. 28 RU-119991 Moscow Russian Federation
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya Str. 6 RU-117198 Moscow Russian Federation
| |
Collapse
|
29
|
Wang Y, Deng L, Zhang X, Mou Z, Niu D. A Radical Approach to Making Unnatural Amino Acids: Conversion of C−S Bonds in Cysteine Derivatives into C−C Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yingwei Wang
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Li‐Fan Deng
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Xia Zhang
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Ze‐Dong Mou
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Dawen Niu
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| |
Collapse
|
30
|
Wang Y, Deng LF, Zhang X, Mou ZD, Niu D. A Radical Approach to Making Unnatural Amino Acids: Conversion of C−S Bonds in Cysteine Derivatives into C−C Bonds. Angew Chem Int Ed Engl 2020; 60:2155-2159. [PMID: 33022829 DOI: 10.1002/anie.202012503] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/02/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Yingwei Wang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Li-Fan Deng
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Xia Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Ze-Dong Mou
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| |
Collapse
|