1
|
Yu S, Yu JT, Pan C. Advances in the synthesis of functionalized tetrahydropyridazines from hydrazones. Org Biomol Chem 2024; 22:7753-7766. [PMID: 39206967 DOI: 10.1039/d4ob01147c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The tetrahydropyridazine motif is widely present in plenty of natural products and biologically active molecules. Easily prepared from the condensation of carbonyls with hydrazines, hydrazones are versatile synthetic building blocks that are frequently used in organic synthesis. Hydrazones are also utilized in the synthesis of nitrogen-containing molecules, especially nitrogen-containing heterocycles. The presence of the CN-N unit in the product makes hydrazones ideal substrates for the synthesis of tetrahydropyridazine derivatives. Here, in this review, we summarize the recent progress in the construction of variously substituted tetrahydropyridazines from different hydrazone derivatives together with mechanism discussions.
Collapse
Affiliation(s)
- Sheng Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| |
Collapse
|
2
|
Liu L, Xiang C, Pan C, Yu JT. Photocatalytic synthesis of polyfluoroalkylated dihydropyrazoles and tetrahydropyridazines. Chem Commun (Camb) 2024; 60:10764-10767. [PMID: 39248658 DOI: 10.1039/d4cc03384a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
A photocatalytic trifluoromethylation/cyclization reaction of N-allyl and N-homoallyl aldehyde hydrazones with trifluoromethyl thianthrenium triflate was developed for the synthesis of trifluoromethylated dihydropyrazoles and tetrahydropyridazines. Besides, PhI(O2CCHF2)2 was employed to realize the construction of difluoromethylated dihydropyrazoles and tetrahydropyridazines. These protocols exhibit a broad substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Lingli Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Chengli Xiang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
3
|
Claraz A. Harnessing the versatility of hydrazones through electrosynthetic oxidative transformations. Beilstein J Org Chem 2024; 20:1988-2004. [PMID: 39161708 PMCID: PMC11331547 DOI: 10.3762/bjoc.20.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Hydrazones are important structural motifs in organic synthesis, providing a useful molecular platform for the construction of valuable compounds. Electrooxidative transformations of hydrazones constitute an attractive opportunity to take advantage of the versatility of these reagents. By directly harnessing the electrical current to perform the oxidative process, a large panel of organic molecules can be accessed from readily available hydrazones under mild, safe and oxidant-free reaction conditions. This review presents a comprehensive overview of oxidative electrosynthetic transformations of hydrazones. It includes the construction of azacycles, the C(sp2)-H functionalization of aldehyde-derived hydrazones and the access to diazo compounds as either synthetic intermediates or products. A special attention is paid to the reaction mechanism with the aim to encourage further development in this field.
Collapse
Affiliation(s)
- Aurélie Claraz
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
4
|
Yan J, Retailleau P, Tran C, Hamze A. Leveraging in situ N-tosylhydrazones as diazo surrogates for efficient access to pyrazolo-[1,5- c]quinazolinone derivatives. Org Biomol Chem 2024; 22:5816-5821. [PMID: 38946432 DOI: 10.1039/d4ob00950a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
We developed a transition metal-free methodology for the construction of pyrazoloquinazolinone derivatives. The strategy involves a one-pot reaction wherein the N-tosylhydrazone and its corresponding diazo derivative are generated in situ, followed by an intramolecular 1,3-dipolar cycloaddition-ring expansion to provide the pyrazolo-[1,5-c]quinazolinone motif. This approach enables straightforward access to a diverse range of highly functionalized N-heterocyclic compounds in good yields (up to 92%).
Collapse
Affiliation(s)
- Jun Yan
- Department of Chemistry and Medicinal Chemistry, Université Paris-Saclay, CNRS, BioCIS, 91400 Orsay, France.
| | - Pascal Retailleau
- Department of Chemistry and Natural Products, ICSN, Université Paris-Saclay, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Christine Tran
- Department of Chemistry and Medicinal Chemistry, Université Paris-Saclay, CNRS, BioCIS, 91400 Orsay, France.
| | - Abdallah Hamze
- Department of Chemistry and Medicinal Chemistry, Université Paris-Saclay, CNRS, BioCIS, 91400 Orsay, France.
| |
Collapse
|
5
|
Barhoumi A, Ryachi K, Belghiti ME, Chafi M, Tounsi A, Syed A, Idrissi ME, Wong LS, Zeroual A. Chromatography Scrutiny, Molecular Docking, Clarifying the Selectivities and the Mechanism of [3 + 2] Cycloloaddition Reaction between Linallol and Chlorobenzene-Nitrile-oxide. J Fluoresc 2024; 34:1913-1929. [PMID: 37668770 DOI: 10.1007/s10895-023-03411-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
Employing the Molecular Electron Density Theory, [3 + 2] cycloaddition processes between 4-chlorobenzenenitrileoxide and linalool, have been applied using the DFT/B3LYP/6-311(d,p) method, activation, reaction energies and the reactivity indices are calculated. In an investigation of conceptual DFT indices, LIL-1 will contribute to this reaction as a nucleophile, whilst NOX-2 will participate as an electrophile. This cyclization is regio, chemo and stereospecific, as demonstrated by the reaction and activation energies, in clear agreement with the experiment's results, in addition, ELF analysis revealed that the mechanism for this cycloaddition occurs in two steps. Furthermore, a docking study was conducted on the products studied, and the interaction with the protein protease COVID-19 (PDB ID: 6LU7), our results indicate that the presence of the -OH group increases the affinity of these products, moreover, adsorption study by chromatography was made on silica gel as support; our outcome reveals that the -OH group creates an intramolecular hydrogen bond in the product P2, while in the product P3 will create a hydrogen bond with the silica gel which makes the two products P2 and P3 are very easy to separate by chromatography, this result is in excellent agreement with the Rf retention value. The study might provide a fundamental for developing natural anti-viral compound in promoting human health.
Collapse
Affiliation(s)
- Ali Barhoumi
- Molecular Modelling and Spectroscopy Research Team, Faculty of Science, Chouaïb Doukkali University, P.O. Box 20, 24000, El Jadida, Morocco
| | - Kamal Ryachi
- Agro-Industrial, Environmental and Ecological Processes Team, Faculty of Science and Techniques of Beni Mellal, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Mohammed Elalaoui Belghiti
- Laboratory of Physical Chemistry of Materials, Ben M'Sick Faculty of Sciences, Hassan II University, Casablanca, Morocco
- Laboratory of Nernest Technology, 163 Willington Street, Sherbrooke, QC J1H5C7, Canada
| | - Mohammed Chafi
- LIPE, Higher School of Technology, Hassan II University, Casablanca, Morocco
| | - Abdessamad Tounsi
- Agro-Industrial, Environmental and Ecological Processes Team, Faculty of Science and Techniques of Beni Mellal, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohammed El Idrissi
- Team of Chemical Processes and Applied Materials, Faculty Polydisciplinary, Sultan Moulay Slimane University, Beni-Mellal, Morocco.
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Abdellah Zeroual
- Molecular Modelling and Spectroscopy Research Team, Faculty of Science, Chouaïb Doukkali University, P.O. Box 20, 24000, El Jadida, Morocco
| |
Collapse
|
6
|
Das A, Justin Thomas KR. Generation and Application of Aryl Radicals Under Photoinduced Conditions. Chemistry 2024; 30:e202400193. [PMID: 38546345 DOI: 10.1002/chem.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Indexed: 04/26/2024]
Abstract
Photoinduced aryl radical generation is a powerful strategy in organic synthesis that facilitates the formation of diverse carbon-carbon and carbon-heteroatom bonds. The synthetic applications of photoinduced aryl radical formation in the synthesis of complex organic compounds, including natural products, physiologically significant molecules, and functional materials, have received immense attention. An overview of current developments in photoinduced aryl radical production methods and their uses in organic synthesis is given in this article. A generalized idea of how to choose the reagents and approach for the generation of aryl radicals is described, along with photoinduced techniques and associated mechanistic insights. Overall, this article offers a critical assessment of the mechanistic results as well as the selection of reaction parameters for specific reagents in the context of radical cascades, cross-coupling reactions, aryl radical functionalization, and selective C-H functionalization of aryl substrates.
Collapse
Affiliation(s)
- Anupam Das
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - K R Justin Thomas
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
7
|
Noël F, El Kaïm L, Masson G, Claraz A. Electrocatalytic dehydrogenative and defluorinative coupling between aldehyde-derived N, N-dialkylhydrazones and fluoromalonates: synthesis of 2-pyrazolines. Org Biomol Chem 2024; 22:4269-4273. [PMID: 38742988 DOI: 10.1039/d4ob00588k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
An electrocatalytic synthesis of 2-pyrazolines via dehydrogenative and defluorinative cross-coupling reactions between (hetero)arylaldehyde-derived N,N-dialkylhydrazones and fluoromalonates is disclosed. Salient features of this work include (i) readily available starting materials, (ii) practical reaction conditions, and (ii) a formal oxidative (4 + 1)-cycloaddition via triple C-H bond functionalization. Cyclic voltammetry analyses support the electrocatalytic formation of an α-fluoromalonyl radical.
Collapse
Affiliation(s)
- Florent Noël
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Laurent El Kaïm
- Laboratoire de Synthèse Organique (LSO-UMR 76523), CNRS, Ecole Polytechnique, ENSTA-Paris, Institut Polytechnique de Paris, 828 Bd des Maréchaux, 91128 Palaiseau Cedex, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
- HitCat, Seqens-CNRS Joint Laboratory, Seqens'Lab, Porcheville, France
| | - Aurélie Claraz
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
8
|
Liu L, Wu Y, Xiang C, Yu JT, Pan C. Photo-induced phosphorylation/cyclization of N-homoallyl and N-allyl aldehyde hydrazones to access phosphorylated tetrahydropyridazines and dihydropyrazoles. Chem Commun (Camb) 2024; 60:4687-4690. [PMID: 38592732 DOI: 10.1039/d4cc00608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
A photocatalytic radical carbophosphorylation/cyclization of N-homoallyl aldehyde hydrazones with phosphine oxides was developed under metal-free conditions, achieving phosphorylated tetrahydropyridazines in yields up to 95%. Phosphorylated dihydropyrazoles were also constructed, by reacting N-allyl aldehyde hydrazones with phosphine oxides under the same conditions.
Collapse
Affiliation(s)
- Lingli Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Yechun Wu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Chengli Xiang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| |
Collapse
|
9
|
Silva RC, De Freitas A, Vicente B, Midlej V, Dos Santos MS. Exploring novel pyrazole-nitroimidazole hybrids: Synthesis and antiprotozoal activity against the human pathogen trichomonas vaginalis. Bioorg Med Chem 2024; 102:117679. [PMID: 38461555 DOI: 10.1016/j.bmc.2024.117679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Trichomoniasis, a prevalent sexually transmitted infection (STI) caused by the protozoan Trichomonas vaginalis, has gained increased significance globally. Its relevance has grown in recent years due to its association with a heightened risk of acquiring and transmitting the human immunodeficiency virus (HIV) and other STIs. In addition, many publications have revealed a potential link between trichomoniasis and certain cancers. Metronidazole (MTZ), a nitroimidazole compound developed over 50 years ago, remains the first-choice drug for treatment. However, reports of genotoxicity and side effects underscore the necessity for new compounds to address this pressing global health concern. In this study, we synthesized ten pyrazole-nitroimidazoles 1(a-j) and 4-nitro-1-(hydroxyethyl)-1H-imidazole 2, an analog of metronidazole (MTZ), and assessed their trichomonacidal and cytotoxic effects. All compounds 1(a-j) and 2 exhibited IC50 values ≤ 20 μM and ≤ 41 μM, after 24 h and 48 h, respectively. Compounds 1d (IC50 5.3 μM), 1e (IC50 4.8 μM), and 1i (IC50 5.2 μM) exhibited potencies equivalent to MTZ (IC50 4.9 μM), the reference drug, after 24 h. Notably, compound 1i showed high anti-trichomonas activity after 24 h (IC50 5.2 μM) and 48 h (IC50 2.1 μM). Additionally, all compounds demonstrated either non-cytotoxic to HeLa cells (CC50 > 100 μM) or low cytotoxicity (CC50 between 69 and 100 μM). These findings suggest that pyrazole-nitroimidazole derivatives represent a promising heterocyclic system, serving as a potential lead for further optimization in trichomoniasis chemotherapy.
Collapse
Affiliation(s)
- Rafaela Corrêa Silva
- Laboratório de Síntese de Sistemas Heterocíclicos (LaSSH), Institute of Physics and Chemistry, Federal University of Itajubá, 1303 BPS Avenue, Pinheirinho, Itajubá-MG, 37500-903, Brazil
| | - Anna De Freitas
- Laboratório de Biologia Estrutural (LBE), Oswaldo Cruz Institute, Fiocruz, 4365 Brasil Avenue, Manguinhos, Rio de Janeiro-RJ, 21040-900, Brazil; Programa de Pós-graduação em Biologia Parasitária, Oswaldo Cruz Institute- Fiocruz, Brazil
| | - Bruno Vicente
- Laboratório de Biologia Estrutural (LBE), Oswaldo Cruz Institute, Fiocruz, 4365 Brasil Avenue, Manguinhos, Rio de Janeiro-RJ, 21040-900, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular, Oswaldo Cruz Institute-Fiocruz, Brazil
| | - Victor Midlej
- Laboratório de Biologia Estrutural (LBE), Oswaldo Cruz Institute, Fiocruz, 4365 Brasil Avenue, Manguinhos, Rio de Janeiro-RJ, 21040-900, Brazil
| | - Maurício Silva Dos Santos
- Laboratório de Síntese de Sistemas Heterocíclicos (LaSSH), Institute of Physics and Chemistry, Federal University of Itajubá, 1303 BPS Avenue, Pinheirinho, Itajubá-MG, 37500-903, Brazil.
| |
Collapse
|
10
|
Jain A, Kumari A, Metre RK, Rana NK. Diastereoselective synthesis of trans-2,3-dihydroindoles via formal [4 + 1] annulation reactions of a sulfonium ylide. Org Biomol Chem 2024; 22:621-632. [PMID: 38165688 DOI: 10.1039/d3ob01793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
We have established an in situ generated sulfonium-ylide mediated annulation to construct 2,3-disubstituted-2,3-dihydroindoles. The [4 + 1] annulation approach relied on Michael addition/substitution reactions. These reactions were carried out at ambient temperature to deliver dihydroindoles with excellent yields and diastereoselectivities. Moreover, the versatility of this approach allows for the introduction of various functional groups, enabling further diversification of the dihydroindoles. Also, the cascade approach was broadened to synthesize dihydrobenzofurans.
Collapse
Affiliation(s)
- Anshul Jain
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342030, India.
| | - Akanksha Kumari
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342030, India.
| | - Ramesh K Metre
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342030, India.
| | - Nirmal K Rana
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342030, India.
| |
Collapse
|
11
|
Wu Y, Wu X, Liu L, Yu JT, Pan C. Photocatalytic Carbosulfonylation/Cyclization of N-Homoallyl and N-Allyl Aldehyde Hydrazones toward Sulfonylated Tetrahydropyridazines and Dihydropyrazoles. Org Lett 2024; 26:122-126. [PMID: 38160407 DOI: 10.1021/acs.orglett.3c03733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
N'-Benzylidene-N-homoallylacetohydrazides were designed and synthesized as novel skeletons for the construction of functionalized tetrahydropyridazines. A series of aryl- and alkylsulfonylated tetrahydropyridazines were obtained in yields of up to 94% employing sulfonyl chlorides as the sulfonyl radical sources under visible-light irradiation. Besides, sulfonylated dihydropyrazoles were also produced from N-allyl-N'-benzylideneacetohydrazides. Mechanistic investigations indicated that both energy transfer and single electron transfer processes were involved in accomplishing the radical 6/5-endo-trig cyclization to the C═N bond.
Collapse
Affiliation(s)
- Yechun Wu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Xian Wu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Lingli Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Changduo Pan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
12
|
Xia Y, Tang M, Zhang Q, Yu W. Dearomatization of Pyridines: Stereoselective Synthesis of Functionalized [1,2,4]Triazolo[4,3- a]pyridines. Org Lett 2023; 25:9087-9091. [PMID: 38112501 DOI: 10.1021/acs.orglett.3c03060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The stereoselective preparation of functionalized [1,2,4]triazolo[4,3-a]pyridines from N-tosylhydrazones and pyridines was developed through the dearomatization of pyridines. The current transformation features good step- and atom-economy, high diastereoselectivity, and the efficient formation of four new carbon-heteroatom bonds in the corresponding product tetrahydro pyridines.
Collapse
Affiliation(s)
- Yiwen Xia
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Meng Tang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Qian Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wentao Yu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
13
|
Sun S, Zhang Q, Zi W. Palladium-Catalyzed Enantioselective Hydrohydrazonation of 1,3-Dienes. Org Lett 2023; 25:8397-8401. [PMID: 37983182 DOI: 10.1021/acs.orglett.3c02729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
We presented a method for synthesizing allylic chiral hydrazones from 1,4-disubstituted 1,3-dienes and hydrazones through a (R)-DTBM-Segphos-Pd(0)-catalyzed hydrohydrazonation reaction. This transformation has a wide range of substrates and good functional group tolerance. The desired products were obtained in medium to high yield and good regio- and enantioselectivity. Synthetic transformation of the products into various nitrogen-containing chiral compounds was demonstrated.
Collapse
Affiliation(s)
- Shaozi Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qinglong Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300071, China
| |
Collapse
|
14
|
Budnikov AS, Krylov IB, Shevchenko MI, Segida OO, Lastovko AV, Alekseenko AL, Ilovaisky AI, Nikishin GI, Terent’ev AO. C-O Coupling of Hydrazones with Diacetyliminoxyl Radical Leading to Azo Oxime Ethers-Novel Antifungal Agents. Molecules 2023; 28:7863. [PMID: 38067592 PMCID: PMC10707749 DOI: 10.3390/molecules28237863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Selective oxidative C-O coupling of hydrazones with diacetyliminoxyl is demonstrated, in which diacetyliminoxyl plays a dual role. It is an oxidant (hydrogen atom acceptor) and an O-partner for the oxidative coupling. The reaction is completed within 15-30 min at room temperature, is compatible with a broad scope of hydrazones, provides high yields in most cases, and requires no additives, which makes it robust and practical. The proposed reaction leads to the novel structural family of azo compounds, azo oxime ethers, which were discovered to be highly potent fungicides against a broad spectrum of phytopathogenic fungi (Venturia inaequalis, Rhizoctonia solani, Fusarium oxysporum, Fusarium moniliforme, Bipolaris sorokiniana, Sclerotinia sclerotiorum).
Collapse
Affiliation(s)
- Alexander S. Budnikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia; (A.S.B.); (M.I.S.); (O.O.S.); (A.I.I.)
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia
| | - Igor B. Krylov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia; (A.S.B.); (M.I.S.); (O.O.S.); (A.I.I.)
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Mikhail I. Shevchenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia; (A.S.B.); (M.I.S.); (O.O.S.); (A.I.I.)
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Oleg O. Segida
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia; (A.S.B.); (M.I.S.); (O.O.S.); (A.I.I.)
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia
| | - Andrey V. Lastovko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia; (A.S.B.); (M.I.S.); (O.O.S.); (A.I.I.)
| | - Anna L. Alekseenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia; (A.S.B.); (M.I.S.); (O.O.S.); (A.I.I.)
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Alexey I. Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia; (A.S.B.); (M.I.S.); (O.O.S.); (A.I.I.)
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia
| | - Gennady I. Nikishin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia; (A.S.B.); (M.I.S.); (O.O.S.); (A.I.I.)
| | - Alexander O. Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia; (A.S.B.); (M.I.S.); (O.O.S.); (A.I.I.)
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| |
Collapse
|
15
|
Dongxu Z. Trifluoromethylated hydrazones and acylhydrazones as potent nitrogen-containing fluorinated building blocks. Beilstein J Org Chem 2023; 19:1741-1754. [PMID: 38025086 PMCID: PMC10667715 DOI: 10.3762/bjoc.19.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Nitrogen-containing organofluorine derivatives, which are prepared using fluorinated building blocks, are among the most important active fragments in various pharmaceutical and agrochemical products. This review focuses on the reactivity, synthesis, and applications of fluoromethylated hydrazones and acylhydrazones. It summarizes recent methodologies that have been used for the synthesis of various nitrogen-containing organofluorine compounds.
Collapse
Affiliation(s)
- Zhang Dongxu
- Department of Fire Protection Engineering, China Fire and Rescue Institute, Beijing 102202, P. R. of China
| |
Collapse
|
16
|
Rosa FA, Jacomini AP, Vieira da Silva MJ, Pianoski KE, Poletto J, Francisco CB, de Souza Fernandes C, Martinelli V, Pontes RM, Back DF, Moura S, Basso EA. Controlled Pyrazole-Hydrazone Annulation: Regiodivergent Synthesis of 1 H- and 2 H-Pyrazolo[3,4- d]pyridazinones. J Org Chem 2023. [PMID: 37463494 DOI: 10.1021/acs.joc.3c01117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
An efficient and controlled site-selective annulation of 3,5-diethoxycarbonyl 4-hydrazonyl pyrazoles is described. The relative proportion of the products is affected by hydrazone intermediate configuration, reaction temperature, and Lewis acid employed. At a temperature of 110-120 °C, the reaction preferentially afforded 1H-pyrazolo[3,4-d]pyridazin-7(6H)-ones, whereas using Yb(OTf)3 in MeCN reflux, 2H-pyrazolo[3,4-d]pyridazin-7(6H)-ones were favored. Computational investigations were performed to clarify the mechanism and the origin of the regiodivergence.
Collapse
Affiliation(s)
- Fernanda Andreia Rosa
- Chemistry Departament, State University of Maringa, Maringa, Parana 87020-900, Brazil
| | | | | | | | - Julia Poletto
- Chemistry Departament, State University of Maringa, Maringa, Parana 87020-900, Brazil
| | | | | | - Vinicius Martinelli
- Chemistry Departament, State University of Maringa, Maringa, Parana 87020-900, Brazil
| | | | - Davi Fernando Back
- Chemistry Departament, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul 97110-970, Brazil
| | - Sidnei Moura
- Biotechnology Departament, University of Caxias do Sul, Caxias do Sul, Rio Grande do Sul 295070-560, Brazil
| | - Ernani Abicht Basso
- Chemistry Departament, State University of Maringa, Maringa, Parana 87020-900, Brazil
| |
Collapse
|
17
|
Continuous Flow Photochemical Synthesis of 3-Methyl-4-arylmethylene Isoxazole-5(4H)-ones through Organic Photoredox Catalysis and Investigation of Their Larvicidal Activity. Catalysts 2023. [DOI: 10.3390/catal13030518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Isoxazole-5(4H)-ones are heteropentacycle compounds found in several bioactive molecules with pharmaceutical and agrochemical properties. A well-known multicomponent reaction between β-ketoester, hydroxylamine, and aromatic aldehydes leads to 3-methyl-4-arylmethylene isoxazole-5(4H)-ones, in mild conditions. The initial purpose of this work was to investigate whether the reaction might be induced by light, as described in previous works. Remarkable results were obtained using a high-power lamp, reducing reaction times compared to methodologies that used heating or catalysis. Since there are many examples of successful continuous flow heterocycle synthesis, including photochemical reactions, the study evolved to run the reaction in flow conditions and scale up the synthesis of isoxazolones using a photochemical reactor set-up. Eight different compounds were obtained, and among them, three showed larvicidal activity on immature forms of Aedes aegypti in tests that investigated its growth inhibitory character. Mechanistic investigations indicate that the reactions occur through organic photoredox catalysis.
Collapse
|
18
|
Rana G, Kar A, Kundal S, Musib D, Jana U. DDQ/Fe(NO 3) 3-Catalyzed Aerobic Synthesis of 3-Acyl Indoles and an In Silico Study for the Binding Affinity of N-Tosyl-3-acyl Indoles toward RdRp against SARS-CoV-2. J Org Chem 2023; 88:838-851. [PMID: 36622749 DOI: 10.1021/acs.joc.2c02009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the present study, we herein report a DDQ-catalyzed new protocol for the synthesis of substituted 3-acylindoles. Being a potential system for virtual hydrogen storage, introduction of catalytic DDQ in combination with Fe(NO3)3·9H2O and molecular oxygen as co-catalysts offers a regioselective oxo-functionalization of C-3 alkyl-/aryllidine indolines even with scale-up investigations. Intermediate isolation, their spectroscopic characterization, and the density functional theory calculations indicate that the method involves dehydrogenative allylic hydroxylation and 1,3-functional group isomerization/aromatization followed by terminal oxidation to afford 3-acylindoles quantitatively with very high regioselectivity. This method is very general for a large number of substrates with varieties of functional groups tolerance emerging high-yield outcome. Moreover, molecular docking studies were performed for some selected ligands with an RNA-dependent RNA polymerase complex (RdRp complex) of SARS-CoV-2 to illustrate the binding potential of those ligands. The docking results revealed that few of the ligands possess the potential to inhibit the RdRp of SARS-Cov-2 with binding energies (-6.7 to -8.19 kcal/mol), which are comparably higher with respect to the reported binding energies of the conventional re-purposed drugs such as Remdesivir, Ribavirin, and so forth (-4 to -7 kcal/mol).
Collapse
Affiliation(s)
- Gopal Rana
- Department of Chemistry, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Abhishek Kar
- Department of Chemistry, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Sandip Kundal
- Department of Chemistry, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Dulal Musib
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal 795004, Manipur, India
| | - Umasish Jana
- Department of Chemistry, Jadavpur University, Kolkata 700 032, West Bengal, India
| |
Collapse
|
19
|
Adam MSS, Abdel-Rahman OS, Makhlouf MM. Metal ion induced changes in the structure of Schiff base hydrazone chelates and their reactivity effect on catalytic benzyl alcohol oxidation and biological assays. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Pal CK, Jena AK. Ce-catalyzed regioselective synthesis of pyrazoles from 1,2-diols via tandem oxidation and C-C/C-N bond formation. Org Biomol Chem 2022; 21:59-64. [PMID: 36441186 DOI: 10.1039/d2ob01996e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel and efficient cerium-catalyzed tandem oxidation and intermolecular ring cyclization of vicinal diols with hydrazones has been achieved for the regioselective synthesis of pyrazole derivatives. The corresponding 1,3-di- and 1,3,5-trisubstituted pyrazoles were obtained in moderate to excellent yields. The reaction has the advantages of mild conditions, easily available starting materials, broad substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Chandan Kumar Pal
- Department of Chemistry, Maharaja Sriram Chandra Bhanja Deo University (Erstwhile North Orissa University), Baripada - 757 003, Odisha, India.
| | - Ashis Kumar Jena
- Department of Chemistry, Maharaja Sriram Chandra Bhanja Deo University (Erstwhile North Orissa University), Baripada - 757 003, Odisha, India.
| |
Collapse
|
21
|
Kishore PS, Gujjarappa R, Putta VPRK, Polina S, Singh V, Malakar CC, Pujar PP. Potassium
tert
‐Butoxide‐Mediated Synthesis of 2‐Aminoquinolines from Alkylnitriles and 2‐Aminobenzaldehyde Derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202204238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Raghuram Gujjarappa
- Department of Chemistry National Institute of Technology Manipur, Langol Imphal 795004 Manipur India
| | | | - Saibabu Polina
- Department of Chemistry CHRIST (Deemed to be University) Bangalore 560029 India
| | - Virender Singh
- Department of Chemistry Central University of Punjab Bathinda 151001 Punjab India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur, Langol Imphal 795004 Manipur India
| | | |
Collapse
|
22
|
Trifluoromethoxylation/trifluoromethylthiolation/trifluoromethylselenolation strategy for the construction of heterocycles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Bhaskaran RP, Sreelekha MK, Babu BP. Metal‐free Synthesis of Trisubstituted Pyrazoles by the Reaction Between Hydrazones and Activated Olefins. ChemistrySelect 2022. [DOI: 10.1002/slct.202202773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Rasmi P. Bhaskaran
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore INDIA – 575025
| | - Mariswamy K. Sreelekha
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore INDIA – 575025
| | - Beneesh P. Babu
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore INDIA – 575025
| |
Collapse
|
24
|
Electrodeposition of cobalt-iron bimetal phosphide on Ni foam as a bifunctional electrocatalyst for efficient overall water splitting. J Colloid Interface Sci 2022; 622:250-260. [DOI: 10.1016/j.jcis.2022.04.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 01/13/2023]
|
25
|
4-Amino-3-(1-{[amino(3-methyl-2-oxido-1,2,5-oxadiazol-4-yl)methylene]hydrazinylidene}ethyl)-1,2,5-oxadiazole 2-Oxide. MOLBANK 2022. [DOI: 10.3390/m1425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Functionally substituted 1,2,5-oxadiazole 2-oxides (furoxans) are important pharmaceutical scaffolds used for the preparation of various pharmacologically active substances. Furoxans bearing hydrazone functionality are considered as promising drug candidates for the treatment of neglected diseases. However, pharmacologically oriented hydrazones derived from (furoxanyl)amidrazones and acetylfuroxans have remained unknown so far. In this communication, a simple method for the synthesis of 4-amino-3-(1-{[amino(3-methyl-2-oxido-1,2,5-oxadiazol-4-yl)methylene]hydrazinylidene}ethyl)-1,2,5-oxadiazole 2-oxide is described. The structure of the synthesized compound was established by elemental analysis, high-resolution mass spectrometry, 1H, 13C NMR and IR spectroscopy.
Collapse
|
26
|
Wang X, Meng J, Zhao D, Tang S, Sun K. Synthesis and applications of thiosulfonates and selenosulfonates as free-radical reagents. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Yu Y, Zheng P, Tan J, Liu S, Zhao YH, Yue M, Tang Z. Synthesis and Fluorescence Properties of Novel Pyrazolo-Isoquinoline Compounds. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s107036322207026x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Maurya RA, Borkotoky L. Recent Advances on α‐Azidoketones and Esters in the Synthesis of N‐Heterocycles. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ram Awatar Maurya
- CSIR - North East Institute of Science and Technology Chemical Sciences Jorhat 785006 Jorhat INDIA
| | - Lodsna Borkotoky
- North East Institute of Science and Technology CSIR Chemical Sciences and Technology Division INDIA
| |
Collapse
|
29
|
Synthesis, X-ray Structure and Biological Studies of New Self-Assembled Cu(II) Complexes Derived from s-triazine Schiff Base Ligand. Molecules 2022; 27:molecules27092989. [PMID: 35566339 PMCID: PMC9106035 DOI: 10.3390/molecules27092989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
The two ligands 2-(1-(2-(4,6-dimorpholino-1,3,5-triazin-2-yl)hydrazono)ethyl)aniline (DMAT) and 2-(1-(2-(4,6-dimorpholino-1,3,5-triazin-2-yl)hydrazono)ethyl)phenol (DMOHT) were used to synthesize three heteroleptic Cu(II) complexes via a self-assembly technique. The structure of the newly synthesized complexes was characterized using elemental analysis, FTIR and X-ray photoelectron spectroscopy (XPS) to be [Cu(DMAT)(H2O)(NO3)]NO3.C2H5OH (1), [Cu(DMOT)(CH3COO)] (2) and [Cu(DMOT)(NO3)] (3). X-ray single-crystal structure of complex 1 revealed a hexa-coordinated Cu(II) ion with one DMAT as a neutral tridentate NNN-chelate, one bidentate nitrate group and one water molecule. In the case of complex 2, the Cu(II) is tetra-coordinated with one DMOT as an anionic tridentate NNO-chelate and one monodentate acetate group. The antimicrobial, antioxidant and anticancer activities of the studied compounds were examined. Complex 1 had the best anticancer activity against the lung carcinoma A-549 cell line (IC50 = 5.94 ± 0.58 µM) when compared to cis-platin (25.01 ± 2.29 µM). The selectivity index (SI) of complex 1 was the highest (6.34) when compared with the free ligands (1.3–1.8), and complexes 2 (0.72) and 3 (2.97). The results suggested that, among those compounds studied, complex 1 is the most promising anticancer agent against the lung carcinoma A-549 cell line. In addition, complex 1 had the highest antioxidant activity (IC50 = 13.34 ± 0.58 µg/mL) which was found to be comparable to the standard ascorbic acid (IC50 = 10.62 ± 0.84 µg/mL). Additionally, complex 2 showedbroad-spectrum antimicrobial action against the microbes studied. The results revealed it to possess the strongest action of all the three complexes against B. subtilis. The MIC values found are 39.06, 39.06 and 78.125 mg/mL for complexes 1–3, respectively.
Collapse
|
30
|
Kotipalli R, Nagireddy A, Reddy MS. Palladium-catalyzed cyclizative cross coupling of ynone oximes with 2-haloaryl N-acrylamides for isoxazolyl indoline bis-heterocycles. Org Biomol Chem 2022; 20:2609-2614. [PMID: 35298580 DOI: 10.1039/d2ob00065b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-catalyzed cyclizative cross-coupling reactions have attracted enormous attention due to their unique cascade nature. We demonstrated, herein, a dual-cyclizative coupling of ynone oxime ethers with acrylamides for the synthesis of methylene-linked isoxazolyl 2-oxindoles. The cascade was triggered by a palladium(II)-catalyzed ynone oxime ether cyclization, which underwent a Heck-type coupling intercepted by an aryl iodide insertion. Control experiments were carried out to understand the mechanism.
Collapse
Affiliation(s)
- Ramesh Kotipalli
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India.
| | - Attunuri Nagireddy
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India.
| | - Maddi Sridhar Reddy
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India.
| |
Collapse
|
31
|
Dong L, Wang Y, Zhang W, Mo L, Zhang Z. Nickel supported on magnetic biochar as a highly efficient and recyclable heterogeneous catalyst for the one‐pot synthesis of spirooxindole‐dihydropyridines. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6667] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Li‐Na Dong
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| | - Ya‐Meng Wang
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| | - Wan‐Lu Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| | - Li‐Ping Mo
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| | - Zhan‐Hui Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| |
Collapse
|
32
|
Xiaoyong Z, Lili Y, Junfang G, Yue G, Yulong Z. 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU)-Promoted Nucleophilic Addition of Two Molecules of Nitroalkanes to Diazo Compounds: Synthesis of Highly Functionalized Hydrazones and Tetrahydropyridazines. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
He JQ, Yang ZX, Zhou XL, Li Y, Gao S, Shi L, Liang D. Exploring the regioselectivity of the cyanoalkylation of 3-aza-1,5-dienes: photoinduced synthesis of 3-cyanoalkyl-4-pyrrolin-2-ones. Org Chem Front 2022. [DOI: 10.1039/d2qo00918h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regioselective cyanoalkylalkenylation of 3-aza-1,5-dienes with oxime esters induced by visible light.
Collapse
Affiliation(s)
- Jia-Qin He
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Zhi-Xian Yang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Xue-Lu Zhou
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Yanni Li
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Shulin Gao
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Lou Shi
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Deqiang Liang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| |
Collapse
|
34
|
Liu B, Wang Z, Sun K, Tang S, Wang X. Silver-Mediated Radical Trifluoromethylthiolation Cyclization: Synthesis of CF 3S-Containing Benzimidazole[2,1- a]isoquinolines. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Xu J, Liu M, Hu Y, Wang L, Wang W, Wu Y, Guo H. Palladium-catalyzed allylic alkylation of hydrazones with hydroxy-tethered allyl carbonates: synthesis of functionalized hydrazones. Org Chem Front 2022. [DOI: 10.1039/d2qo01186g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pd-catalyzed allylic alkylation of hydroxy-tethered allyl carbonates and hydrazones worked well without an external base to afford various E configurations of functionalized hydrazones, which were successfully transformed into pyridazines.
Collapse
Affiliation(s)
- Jiaqing Xu
- Department of Chemistry, Innovation Center of Pesticide Research, and Department of Nutrition and Health, China Agricultural University, Beijing 100193, P. R. China
| | - Min Liu
- Department of Chemistry, Innovation Center of Pesticide Research, and Department of Nutrition and Health, China Agricultural University, Beijing 100193, P. R. China
| | - Yimin Hu
- Department of Chemistry, Innovation Center of Pesticide Research, and Department of Nutrition and Health, China Agricultural University, Beijing 100193, P. R. China
| | - Lei Wang
- Nutrichem, Co., LTD, Beijing, China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hongchao Guo
- Department of Chemistry, Innovation Center of Pesticide Research, and Department of Nutrition and Health, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
36
|
Jiazhuang W, Liguo T, Shaoqi X, Tiebo X, Yubo J. Rh-Catalyzed gem-Difluoroallylation of N-Tosylhydrazones. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Guo S, Wang X, Zhao D, Zhang Z, Zhang G, Tang S, Sun K. Convenient Access to Ester‐Containing Quinolinones Through Sequential Radical Alkoxycarbonylation/Cyclization/Hydrolysis Process. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sa Guo
- Henan Normal University School of Chemistry and Chemical Engineering School of Chemistry CHINA
| | - Xin Wang
- Yantai University School of Chemistry CHINA
| | | | - Zhiguo Zhang
- Henan Normal University School of Chemistry and Chemical Engineering School of Chemistry CHINA
| | - Guisheng Zhang
- Henan Normal University School of Chemistry and Chemical Engineering School of Chemistry CHINA
| | - Shi Tang
- Jishou University School of Chemistry CHINA
| | - Kai Sun
- Yantai University College of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
38
|
Mironov ME, Borisov SA, Rybalova TV, Baev DS, Tolstikova TG, Shults EE. Synthesis of Anti-Inflammatory Spirostene-Pyrazole Conjugates by a Consecutive Multicomponent Reaction of Diosgenin with Oxalyl Chloride, Arylalkynes and Hydrazines or Hydrazones. Molecules 2021; 27:molecules27010162. [PMID: 35011399 PMCID: PMC8746855 DOI: 10.3390/molecules27010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Steroid sapogenin diosgenin is of significant interest due to its biological activity and synthetic application. A consecutive one-pot reaction of diosgenin, oxalyl chloride, arylacetylenes, and phenylhydrazine give rise to steroidal 1,3,5-trisubstituted pyrazoles (isolated yield 46–60%) when the Stephens–Castro reaction and heterocyclization steps were carried out by heating in benzene. When the cyclization step of alkyndione with phenylhydrazine was performed in 2-methoxyethanol at room temperature, steroidal α,β-alkynyl (E)- and (Z)-hydrazones were isolated along with 1,3,5-trisubstituted pyrazole and the isomeric 2,3,5-trisubstituted pyrazole. The consecutive reaction of diosgenin, oxalyl chloride, phenylacetylene and benzoic acid hydrazides efficiently forms steroidal 1-benzoyl-5-hydroxy-3-phenylpyrazolines. The structure of new compounds was unambiguously corroborated by comprehensive NMR spectroscopy, mass-spectrometry, and X-ray structure analyses. Performing the heterocyclization step of ynedione with hydrazine monohydrate in 2-methoxyethanol allowed the synthesis of 5-phenyl substituted steroidal pyrazole, which was found to exhibit high anti-inflammatory activity, comparable to that of diclofenac sodium, a commercial pain reliever. It was shown by molecular docking that the new derivatives are incorporated into the binding site of the protein Keap1 Kelch-domain by their alkynylhydrazone or pyrazole substituent with the formation of more non-covalent bonds and have higher affinity than the initial spirostene core.
Collapse
Affiliation(s)
- Maksim E. Mironov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentyev Ave., 9, 630090 Novosibirsk, Russia; (M.E.M.); (S.A.B.); (T.V.R.); (D.S.B.); (T.G.T.)
- Department of Natural Sciences, Novosibirsk State University, Piragova Str., 1, 630090 Novosibirsk, Russia
| | - Sergey A. Borisov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentyev Ave., 9, 630090 Novosibirsk, Russia; (M.E.M.); (S.A.B.); (T.V.R.); (D.S.B.); (T.G.T.)
| | - Tatyana V. Rybalova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentyev Ave., 9, 630090 Novosibirsk, Russia; (M.E.M.); (S.A.B.); (T.V.R.); (D.S.B.); (T.G.T.)
| | - Dmitry S. Baev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentyev Ave., 9, 630090 Novosibirsk, Russia; (M.E.M.); (S.A.B.); (T.V.R.); (D.S.B.); (T.G.T.)
| | - Tatyana G. Tolstikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentyev Ave., 9, 630090 Novosibirsk, Russia; (M.E.M.); (S.A.B.); (T.V.R.); (D.S.B.); (T.G.T.)
- Department of Natural Sciences, Novosibirsk State University, Piragova Str., 1, 630090 Novosibirsk, Russia
| | - Elvira E. Shults
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentyev Ave., 9, 630090 Novosibirsk, Russia; (M.E.M.); (S.A.B.); (T.V.R.); (D.S.B.); (T.G.T.)
- Correspondence: ; Tel.: +7-(383)-3308-533
| |
Collapse
|