1
|
Cinca-Fernando P, Ascaso-Alegre C, Sevilla E, Martínez-Júlvez M, Mangas-Sánchez J, Ferreira P. Discovery, characterization, and synthetic potential of two novel bacterial aryl-alcohol oxidases. Appl Microbiol Biotechnol 2024; 108:498. [PMID: 39470785 PMCID: PMC11522167 DOI: 10.1007/s00253-024-13314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 11/01/2024]
Abstract
The search for novel synthetic tools to prepare industrial chemicals in a safer and greener manner is a continuing challenge in synthetic chemistry. In this manuscript, we report the discovery, characterization, and synthetic potential of two novel aryl-alcohol oxidases from bacteria which are able to oxidize a variety of aliphatic and aromatic alcohols with efficiencies up to 4970 min-1 mM-1. Both enzymes have shown a reasonable thermostability (thermal melting temperature values of 50.9 and 48.6 °C for ShAAO and SdAAO, respectively). Crystal structures revealed an unusual wide-open entrance to the active-site pockets compared to that previously described for traditional fungal aryl-alcohol oxidases, which could be associated with differences observed in substrate scope, catalytic efficiency, and other functional properties. Preparative-scale reactions and the ability to operate at high substrate loadings also demonstrate the potential of these enzymes in synthetic chemistry with total turnover numbers > 38000. Moreover, their availability as soluble and active recombinant proteins enabled their use as cell-free extracts which further highlights their potential for the large-scale production of carbonyl compounds. KEY POINTS: • Identification and characterization of two novel bacterial aryl-alcohol oxidases • Crystal structures reveal wide-open active-site pockets, impacting substrate scope • Total turnover numbers and cell-free extracts demonstrate the synthetic potential.
Collapse
Affiliation(s)
- Paula Cinca-Fernando
- Department of Biochemistry and Molecular and Cellular Biology and Institute of Biocomputation and Physics of Complex Systems (BIFI, GBsC-CSIC Joint Unit), University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Christian Ascaso-Alegre
- Department of Organic Chemistry, University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Emma Sevilla
- Department of Biochemistry and Molecular and Cellular Biology and Institute of Biocomputation and Physics of Complex Systems (BIFI, GBsC-CSIC Joint Unit), University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Marta Martínez-Júlvez
- Department of Biochemistry and Molecular and Cellular Biology and Institute of Biocomputation and Physics of Complex Systems (BIFI, GBsC-CSIC Joint Unit), University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Juan Mangas-Sánchez
- Department of Organic and Inorganic Chemistry, IUQOEM, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain.
| | - Patricia Ferreira
- Department of Biochemistry and Molecular and Cellular Biology and Institute of Biocomputation and Physics of Complex Systems (BIFI, GBsC-CSIC Joint Unit), University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| |
Collapse
|
2
|
Schober L, Dobiašová H, Jurkaš V, Parmeggiani F, Rudroff F, Winkler M. Enzymatic reactions towards aldehydes: An overview. FLAVOUR FRAG J 2023; 38:221-242. [PMID: 38505272 PMCID: PMC10947199 DOI: 10.1002/ffj.3739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/21/2024]
Abstract
Many aldehydes are volatile compounds with distinct and characteristic olfactory properties. The aldehydic functional group is reactive and, as such, an invaluable chemical multi-tool to make all sorts of products. Owing to the reactivity, the selective synthesis of aldehydic is a challenging task. Nature has evolved a number of enzymatic reactions to produce aldehydes, and this review provides an overview of aldehyde-forming reactions in biological systems and beyond. Whereas some of these biotransformations are still in their infancy in terms of synthetic applicability, others are developed to an extent that allows their implementation as industrial biocatalysts.
Collapse
Affiliation(s)
- Lukas Schober
- Institute of Molecular BiotechnologyGraz University of TechnologyGrazAustria
| | - Hana Dobiašová
- Institute of Chemical and Environmental EngineeringSlovak University of TechnologyBratislavaSlovakia
| | - Valentina Jurkaš
- Institute of Molecular BiotechnologyGraz University of TechnologyGrazAustria
| | - Fabio Parmeggiani
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”Politecnico di MilanoMilanItaly
| | - Florian Rudroff
- Institute of Applied Synthetic ChemistryTU WienViennaAustria
| | - Margit Winkler
- Institute of Molecular BiotechnologyGraz University of TechnologyGrazAustria
- Area BiotransformationsAustrian Center of Industrial BiotechnologyGrazAustria
| |
Collapse
|
3
|
Wu B, Wang S, Ma Y, Yuan S, Hollmann F, Wang Y. Structure-Based Redesign of a Methanol Oxidase into an "Aryl Alcohol Oxidase" for Enzymatic Synthesis of Aromatic Flavor Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6406-6414. [PMID: 37040179 DOI: 10.1021/acs.jafc.3c01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Alcohol oxidases (AOxs) catalyze the aerobic oxidation of alcohols to the corresponding carbonyl products (aldehydes or ketones), producing only H2O2 as the byproduct. The majority of known AOxs, however, have a strong preference for small, primary alcohols, limiting their broad applicability, e.g., in the food industry. To broaden the product scope of AOxs, we performed structure-guided enzyme engineering of a methanol oxidase from Phanerochaete chrysosporium (PcAOx). The substrate preference was extended from methanol to a broad range of benzylic alcohols by modifying the substrate binding pocket. A mutant (PcAOx-EFMH) with four substitutions exhibited improved catalytic activity toward benzyl alcohols with increased conversion and kcat toward the benzyl alcohol from 11.3 to 88.9% and from 0.5 to 2.6 s-1, respectively. The molecular basis for the change of substrate selectivity was analyzed by molecular simulation.
Collapse
Affiliation(s)
- Bin Wu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Shiyu Wang
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- College of Chemical Science, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yunjian Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuguang Yuan
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
4
|
Hernik D, Szczepańska E, Brenna E, Patejuk K, Olejniczak T, Strzała T, Boratyński F. Trametes hirsuta as an Attractive Biocatalyst for the Preparative Scale Biotransformation of Isosafrole into Piperonal. Molecules 2023; 28:molecules28083643. [PMID: 37110877 PMCID: PMC10142777 DOI: 10.3390/molecules28083643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Piperonal is a compound of key industrial importance due to its attractive olfactory and biological properties. It has been shown that among the fifty-six various fungal strains tested, the ability to cleave the toxic isosafrole into piperonal through alkene cleavage is mainly found in strains of the genus Trametes. Further studies involving strains isolated directly from different environments (decaying wood, fungal fruiting bodies, and healthy plant tissues) allowed the selection of two Trametes strains, T. hirsuta Th2_2 and T. hirsuta d28, as the most effective biocatalysts for the oxidation of isosafrole. The preparative scale of biotransformation with these strains provided 124 mg (conv. 82%, isolated yield 62%) and 101 mg (conv. 69%, isolated yield 50.5%) of piperonal, respectively. Due to the toxic impact of isosafrole on cells, preparative scale processes with Trametes strains have not yet been successfully performed and described in the literature.
Collapse
Affiliation(s)
- Dawid Hernik
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Ewa Szczepańska
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Elisabetta Brenna
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta" Politecnico di Milano, Via Mancinelli 7, I-20131 Milan, Italy
| | - Katarzyna Patejuk
- Department of Plant Protection, Wroclaw University of Environmental and Life Sciences, Grunwald Square 24A, 50-363 Wrocław, Poland
| | - Teresa Olejniczak
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Tomasz Strzała
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, ul. Kozuchowska 7, 51-631 Wrocław, Poland
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
5
|
Bienzymatic Cascade Combining a Peroxygenase with an Oxidase for the Synthesis of Aromatic Aldehydes from Benzyl Alcohols. Catalysts 2023. [DOI: 10.3390/catal13010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aromatic aldehydes are important aromatic compounds for the flavour and fragrance industry. In this study, a parallel cascade combining aryl alcohol oxidase from Pleurotus eryngii (PeAAOx) and unspecific peroxygenase from the basidiomycete Agrocybe aegerita (AaeUPO) to convert aromatic primary alcohols into high-value aromatic aldehydes is proposed. Key influencing factors in the process of enzyme cascade catalysis, such as enzyme dosage, pH and temperature, were investigated. The universality of PeAAOx coupled with AaeUPO cascade catalysis for the synthesis of aromatic aldehyde flavour compounds from aromatic primary alcohols was evaluated. In a partially optimised system (comprising 30 μM PeAAOx, 2 μM AaeUPO at pH 7 and 40 °C) up to 84% conversion of 50 mM veratryl alcohol into veratryl aldehyde was achieved in a self-sufficient aerobic reaction. Promising turnover numbers of 2800 and 21,000 for PeAAOx and AaeUPO, respectively, point towards practical applicability.
Collapse
|
6
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2022. [DOI: 10.1039/d2np90034c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as hyjapone A from Hypericum japonicum.
Collapse
Affiliation(s)
- Robert A. Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK
| | | |
Collapse
|