1
|
Deng X, Wang J, Yu S, Tan S, Yu T, Xu Q, Chen N, Zhang S, Zhang M, Hu K, Xiao Z. Advances in the treatment of atherosclerosis with ligand-modified nanocarriers. EXPLORATION (BEIJING, CHINA) 2024; 4:20230090. [PMID: 38939861 PMCID: PMC11189587 DOI: 10.1002/exp.20230090] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/08/2023] [Indexed: 06/29/2024]
Abstract
Atherosclerosis, a chronic disease associated with metabolism, poses a significant risk to human well-being. Currently, existing treatments for atherosclerosis lack sufficient efficiency, while the utilization of surface-modified nanoparticles holds the potential to deliver highly effective therapeutic outcomes. These nanoparticles can target and bind to specific receptors that are abnormally over-expressed in atherosclerotic conditions. This paper reviews recent research (2018-present) advances in various ligand-modified nanoparticle systems targeting atherosclerosis by specifically targeting signature molecules in the hope of precise treatment at the molecular level and concludes with a discussion of the challenges and prospects in this field. The intention of this review is to inspire novel concepts for the design and advancement of targeted nanomedicines tailored specifically for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiujiao Deng
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
- Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Jinghao Wang
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Shanshan Yu
- Department of PharmacyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Suiyi Tan
- Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Tingting Yu
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Qiaxin Xu
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Nenghua Chen
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ming‐Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical, ScienceNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical, ScienceNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical TranslationJinan UniversityGuangzhouChina
| |
Collapse
|
2
|
Udriște AS, Burdușel AC, Niculescu AG, Rădulescu M, Balaure PC, Grumezescu AM. Organic Nanoparticles in Progressing Cardiovascular Disease Treatment and Diagnosis. Polymers (Basel) 2024; 16:1421. [PMID: 38794614 PMCID: PMC11125450 DOI: 10.3390/polym16101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Cardiovascular diseases (CVDs), the world's most prominent cause of mortality, continue to be challenging conditions for patients, physicians, and researchers alike. CVDs comprise a wide range of illnesses affecting the heart, blood vessels, and the blood that flows through and between them. Advances in nanomedicine, a discipline focused on improving patient outcomes through revolutionary treatments, imaging agents, and ex vivo diagnostics, have created enthusiasm for overcoming limitations in CVDs' therapeutic and diagnostic landscapes. Nanomedicine can be involved in clinical purposes for CVD through the augmentation of cardiac or heart-related biomaterials, which can be functionally, mechanically, immunologically, and electrically improved by incorporating nanomaterials; vasculature applications, which involve systemically injected nanotherapeutics and imaging nanodiagnostics, nano-enabled biomaterials, or tissue-nanoengineered solutions; and enhancement of sensitivity and/or specificity of ex vivo diagnostic devices for patient samples. Therefore, this review discusses the latest studies based on applying organic nanoparticles in cardiovascular illness, including drug-conjugated polymers, lipid nanoparticles, and micelles. Following the revised information, it can be concluded that organic nanoparticles may be the most appropriate type of treatment for cardiovascular diseases due to their biocompatibility and capacity to integrate various drugs.
Collapse
Affiliation(s)
- Alexandru Scafa Udriște
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Alexandra Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (A.M.G.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, National University of Science and Technology Politehnica Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania;
| | - Paul Cătălin Balaure
- Department of Organic Chemistry, National University of Science and Technology Politehnica Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
3
|
Wang J, Lu B, Yin G, Liu L, Yang P, Huang N, Zhao A. Design and Fabrication of Environmentally Responsive Nanoparticles for the Diagnosis and Treatment of Atherosclerosis. ACS Biomater Sci Eng 2024; 10:1190-1206. [PMID: 38343186 DOI: 10.1021/acsbiomaterials.3c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Cardiovascular disease poses a significant threat to human health in today's society. A major contributor to cardiovascular disease is atherosclerosis (AS). The development of plaque in the affected areas involves a complex pathological environment, and the disease progresses rapidly. Nanotechnology, combined with emerging diagnostic and treatment methods, offers the potential for the management of this condition. This paper presents the latest advancements in environment-intelligent responsive controlled-release nanoparticles designed specifically for the pathological environment of AS, which includes characteristics such as low pH, high reactive oxygen species levels, high shear stress, and multienzymes. Additionally, the paper summarizes the applications and features of nanotechnology in interventional therapy for AS, including percutaneous transluminal coronary angioplasty and drug-eluting stents. Furthermore, the application of nanotechnology in the diagnosis of AS shows promising real-time, accurate, and continuous effects. Lastly, the paper explores the future prospects of nanotechnology, highlighting the tremendous potential in the diagnosis and treatment of atherosclerotic diseases, especially with the ongoing development in nano gas, quantum dots, and Metal-Organic Frameworks materials.
Collapse
Affiliation(s)
- Jingyue Wang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Bingyang Lu
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ge Yin
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Li Liu
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ping Yang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Nan Huang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ansha Zhao
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| |
Collapse
|
4
|
Trac N, Chen Z, Oh HS, Jones L, Huang Y, Giblin J, Gross M, Sta Maria NS, Jacobs RE, Chung EJ. MRI Detection of Lymph Node Metastasis through Molecular Targeting of C-C Chemokine Receptor Type 2 and Monocyte Hitchhiking. ACS NANO 2024; 18:2091-2104. [PMID: 38212302 DOI: 10.1021/acsnano.3c09201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Biopsy is the clinical standard for diagnosing lymph node (LN) metastasis, but it is invasive and poses significant risk to patient health. Magnetic resonance imaging (MRI) has been utilized as a noninvasive alternative but is limited by low sensitivity, with only ∼35% of LN metastases detected, as clinical contrast agents cannot discriminate between healthy and metastatic LNs due to nonspecific accumulation. Nanoparticles targeted to the C-C chemokine receptor 2 (CCR2), a biomarker highly expressed in metastatic LNs, have the potential to guide the delivery of contrast agents, improving the sensitivity of MRI. Additionally, cancer cells in metastatic LNs produce monocyte chemotactic protein 1 (MCP1), which binds to CCR2+ inflammatory monocytes and stimulates their migration. Thus, the molecular targeting of CCR2 may enable nanoparticle hitchhiking onto monocytes, providing an additional mechanism for metastatic LN targeting and early detection. Hence, we developed micelles incorporating gadolinium (Gd) and peptides derived from the CCR2-binding motif of MCP1 (MCP1-Gd) and evaluated the potential of MCP1-Gd to detect LN metastasis. When incubated with migrating monocytes in vitro, MCP1-Gd transport across lymphatic endothelium increased 2-fold relative to nontargeting controls. After administration into mouse models with initial LN metastasis and recurrent LN metastasis, MCP1-Gd detected metastatic LNs by increasing MRI signal by 30-50% relative to healthy LNs. Furthermore, LN targeting was dependent on monocyte hitchhiking, as monocyte depletion decreased accumulation by >70%. Herein, we present a nanoparticle contrast agent for MRI detection of LN metastasis mediated by CCR2-targeting and demonstrate the potential of monocyte hitchhiking for enhanced nanoparticle delivery.
Collapse
Affiliation(s)
- Noah Trac
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Zixi Chen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Hyun-Seok Oh
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Leila Jones
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Yi Huang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Joshua Giblin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Mitchell Gross
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, California 90064, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Naomi S Sta Maria
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute and Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Russell E Jacobs
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute and Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Department of Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Department of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
5
|
Attia MF, Akasov R, Elbaz NM, Owens TC, Curtis EC, Panda S, Santos-Oliveira R, Alexis F, Kievit FM, Whitehead DC. Radiopaque Iodosilane-Coated Lipid Hybrid Nanoparticle Contrast Agent for Dual-Modality Ultrasound and X-ray Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54389-54400. [PMID: 36449986 DOI: 10.1021/acsami.2c09104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Here, we report the synthesis of robust hybrid iodinated silica-lipid nanoemulsions (HSLNEs) for use as a contrast agent for ultrasound and X-ray applications. We engineered iodinated silica nanoparticles (SNPs), lipid nanoemulsions, and a series of HSLNEs by a low-energy spontaneous nanoemulsification process. The formation of a silica shell requires sonication to hydrolyze and polymerize/condensate the iodomethyltrimethoxysilane at the oil/water interface of the nanoemulsion droplets. The resulting nanoemulsions (NEs) exhibited a homogeneous spherical morphology under transmission electron microscopy. The particles had diameters ranging from 20 to 120 nm with both negative and positive surface charges in the absence and presence of cetyltrimethylammonium bromide (CTAB), respectively. Unlike CTAB-coated nanoformulations, the CTAB-free NEs showed excellent biocompatibility in murine RAW macrophages and human U87-MG cell lines in vitro. The maximum tolerated dose assessment was evaluated to verify their safety profiles in vivo. In vitro X-ray and ultrasound imaging and in vivo computed tomography were used to monitor both iodinated SNPs and HSLNEs, validating their significant contrast-enhancing properties and suggesting their potential as dual-modality clinical agents in the future.
Collapse
Affiliation(s)
- Mohamed F Attia
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599, United States
| | - Roman Akasov
- Federal Scientific Research Centre "Crystallography and Photonics" of RAS, 59 Leninsky Avenue, Moscow119333, Russia
- I.M. Sechenov First Moscow State Medical University, Trubetskaya Street 8-2, Moscow119991, Russia
| | - Nancy M Elbaz
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina27599, United States
| | - Tyler C Owens
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599, United States
| | - Evan C Curtis
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska68583-0900, United States
| | - Soham Panda
- Department of Chemistry, Clemson University, Clemson, South Carolina29634, United States
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Argonauta Nuclear Reactor Center, Rio de Janeiro21941906, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Zona Oeste State University, Rio de Janeiro23070-200, Brazil
| | - Frank Alexis
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Quito170901, Ecuador
| | - Forrest M Kievit
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska68583-0900, United States
| | - Daniel C Whitehead
- Department of Chemistry, Clemson University, Clemson, South Carolina29634, United States
| |
Collapse
|
6
|
Tu S, He W, Han J, Wu A, Ren W. Advances in imaging and treatment of atherosclerosis based on organic nanoparticles. APL Bioeng 2022; 6:041501. [PMCID: PMC9726224 DOI: 10.1063/5.0127835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/31/2022] [Indexed: 12/09/2022] Open
Abstract
Atherosclerosis, a systemic chronic inflammatory disease, can lead to thrombosis and vascular occlusion, thereby inducing a series of serious vascular diseases. Currently, distinguishing unstable plaques early and achieving more effective treatment are the two main clinical concerns in atherosclerosis. Organic nanoparticles have great potential in atherosclerotic imaging and treatment, showing superior biocompatibility, drug-loading capacity, and synthesis. This article illustrates the process of atherosclerosis onset and the key targeted cells, then systematically summarizes recent progress made in organic nanoparticle-based imaging of different types of targeted cells and therapeutic methods for atherosclerosis, including optical and acoustic-induced therapy, drug delivery, gene therapy, and immunotherapy. Finally, we discuss the major impediments that need to be addressed in future clinical practice. We believe this article will help readers to develop a comprehensive and in-depth understanding of organic nanoparticle-based atherosclerotic imaging and treatment, thus advancing further development of anti-atherosclerosis therapies.
Collapse
Affiliation(s)
| | - Wenming He
- Department of Cardiology, The Affiliated Hospital of Medical School, Ningbo University, 247 Renmin Road, Jiangbei District, Ningbo, Zhejiang Province 315020, China,Authors to whom correspondence should be addressed:; ; and
| | | | - Aiguo Wu
- Authors to whom correspondence should be addressed:; ; and
| | - Wenzhi Ren
- Authors to whom correspondence should be addressed:; ; and
| |
Collapse
|
7
|
Patel N, Chin DD, Magee GA, Chung EJ. Therapeutic Response of miR-145 Micelles on Patient-Derived Vascular Smooth Muscle Cells. Front Digit Health 2022; 4:836579. [PMID: 35783597 PMCID: PMC9240309 DOI: 10.3389/fdgth.2022.836579] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/20/2022] [Indexed: 11/23/2022] Open
Abstract
During atherosclerosis, vascular smooth muscle cells (VSMCs) undergo a phenotypic transition from a healthy contractile state into pathological phenotypes including a proliferative and migratory, synthetic phenotype and osteochondrogenic-like phenotype that exacerbate plaques. Thus, inhibiting the transition of healthy, quiescent VSMCs to atherogenic cell types has the potential to mitigate atherosclerosis. To that end, previously, we reported that delivery of microRNA-145 (miR-145, a potent gatekeeper of the contractile VSMC phenotype) using nanoparticle micelles limited atherosclerotic plaque growth in murine models of atherosclerosis. Building on this preclinical data and toward clinical application, in this study, we tested the therapeutic viability of miR-145 micelles on patient-derived VSMCs and evaluated their effects based on disease severity. We collected vascular tissues from 11 patients with healthy, moderate, or severe stages of atherosclerosis that were discarded following vascular surgery or organ transplant, and isolated VSMCs from these tissues. We found that with increasing disease severity, patient-derived VSMCs had decreasing levels of contractile markers (miR-145, ACTA2, MYH11) and increasing levels of synthetic markers (KLF4, KLF5, and ELK1). Treatment with miR-145 micelles showed that an increase in disease severity correlated with a more robust response to therapy in VSMCs. Notably, miR-145 micelle therapy rescued contractile marker expression to baseline contractile levels in VSMCs derived from the most severely diseased tissues. As such, we demonstrate the use of miR-145 micelles across different stages of atherosclerosis disease and present further evidence of the translatability of miR-145 micelle treatment for atherosclerosis.
Collapse
Affiliation(s)
- Neil Patel
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Deborah D. Chin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Gregory A. Magee
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, United States
- Department of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Eun Ji Chung
| |
Collapse
|
8
|
Chyu KY, Zhao X, Zhou J, Dimayuga PC, Lio NW, Cercek B, Trac NT, Chung EJ, Shah PK. Immunization using ApoB-100 peptide-linked nanoparticles reduces atherosclerosis. JCI Insight 2022; 7:149741. [PMID: 35536648 PMCID: PMC9220835 DOI: 10.1172/jci.insight.149741] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Active immunization with the apolipoprotein B-100 (ApoB-100) peptide P210 reduces experimental atherosclerosis. To advance this immunization strategy to future clinical testing, we explored the possibility of delivering P210 as an antigen using nanoparticles, given this approach has been used clinically. We first characterized the responses of T cells to P210 using PBMCs from patients with atherosclerotic cardiovascular disease (ASCVD). We then investigated the use of P210 in self-assembling peptide amphiphile micelles (P210-PAMs) as a vaccine formulation to reduce atherosclerosis in B6.129P2-Apoetm1Unc/J (ApoE–/–) mice and P210’s potential mechanisms of action. We also generated and characterized a humanized mouse model with chimeric HLA-A*02:01/Kb in ApoE–/– background to test the efficacy of P210-PAM immunization as a bridge to future clinical testing. P210 provoked T cell activation and memory response in PBMCs of patients with ASCVD. Dendritic cell uptake of P210-PAM and its costaining with MHC-I molecules supported its use as a vaccine formulation. In ApoE–/– mice, immunization with P210-PAMs dampened P210-specific CD4+ T cell proliferative response and CD8+ T cell cytolytic response, modulated macrophage phenotype, and significantly reduced aortic atherosclerosis. Potential clinical relevance of P210-PAM immunization was demonstrated by reduced atherosclerosis in the humanized ApoE–/– mouse model. Our data support experimental and translational use of P210-PAM as a potential vaccine candidate against human ASCVD.
Collapse
Affiliation(s)
- Kuang-Yuh Chyu
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Heart Institute, Los Angeles, United States of America
| | - Xiaoning Zhao
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Heart Institute, Los Angeles, United States of America
| | - Jianchang Zhou
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Heart Institute, Los Angeles, United States of America
| | - Paul C Dimayuga
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Heart Institute, Los Angeles, United States of America
| | - Nicole Wm Lio
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Heart Institute, Los Angeles, United States of America
| | - Bojan Cercek
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Heart Institute, Los Angeles, United States of America
| | - Noah T Trac
- Department of Biomedical Engineering, University of Southern California, Los Angeles, United States of America
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, United States of America
| | - Prediman K Shah
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Heart Institute, Los Angeles, United States of America
| |
Collapse
|
9
|
Merlin JPJ, Li X. Role of Nanotechnology and Their Perspectives in the Treatment of Kidney Diseases. Front Genet 2022; 12:817974. [PMID: 35069707 PMCID: PMC8766413 DOI: 10.3389/fgene.2021.817974] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are differing in particle size, charge, shape, and compatibility of targeting ligands, which are linked to improved pharmacologic characteristics, targetability, and bioavailability. Researchers are now tasked with developing a solution for enhanced renal treatment that is free of side effects and delivers the medicine to the active spot. A growing number of nano-based medication delivery devices are being used to treat renal disorders. Kidney disease management and treatment are currently causing a substantial global burden. Renal problems are multistep processes involving the accumulation of a wide range of molecular and genetic alterations that have been related to a variety of kidney diseases. Renal filtration is a key channel for drug elimination in the kidney, as well as a burgeoning topic of nanomedicine. Although the use of nanotechnology in the treatment of renal illnesses is still in its early phases, it offers a lot of potentials. In this review, we summarized the properties of the kidney and characteristics of drug delivery systems, which affect a drug’s ability should focus on the kidney and highlight the possibilities, problems, and opportunities.
Collapse
Affiliation(s)
- J P Jose Merlin
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
10
|
Patel N, Chin DD, Chung EJ. Exosomes in Atherosclerosis, a Double-Edged Sword: Their Role in Disease Pathogenesis and Their Potential as Novel Therapeutics. AAPS JOURNAL 2021; 23:95. [PMID: 34312734 DOI: 10.1208/s12248-021-00621-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 12/23/2022]
Abstract
Cardiovascular disease (CAD) due to atherosclerosis is a major cause of death worldwide. The development of atherosclerosis involves intercellular communication facilitated by exosomes secreted from vascular endothelial cells (VECs), vascular smooth muscle cells (VSMCs), immune cells, and platelets. In this review, we summarize the current understanding of exosome biogenesis and uptake, and discuss atherogenic and atheroprotective functions of exosomes secreted from these cell types. In addition, we examine the potential of enhancing the therapeutic and targeting ability of exosomes exhibiting atheroprotective function by drug loading and surface modification with targeting ligands. We conclude with current challenges associated with exosome engineering for therapeutic use.
Collapse
Affiliation(s)
- Neil Patel
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, DRB 140, California, Los Angeles, 90089, USA
| | - Deborah D Chin
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, DRB 140, California, Los Angeles, 90089, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, DRB 140, California, Los Angeles, 90089, USA. .,Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, California, Los Angeles, 90033, USA. .,Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, California, Los Angeles, 90089, USA. .,Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, California, Los Angeles, 90033, USA.
| |
Collapse
|
11
|
Cheng M, Liu Q, Liu W, Yuan F, Feng J, Jin Y, Tu L. Engineering micelles for the treatment and diagnosis of atherosclerosis. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Chin DD, Poon C, Wang J, Joo J, Ong V, Jiang Z, Cheng K, Plotkin A, Magee GA, Chung EJ. miR-145 micelles mitigate atherosclerosis by modulating vascular smooth muscle cell phenotype. Biomaterials 2021; 273:120810. [PMID: 33892346 PMCID: PMC8152375 DOI: 10.1016/j.biomaterials.2021.120810] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/14/2022]
Abstract
In atherosclerosis, resident vascular smooth muscle cells (VSMCs) in the blood vessels become highly plastic and undergo phenotypic switching from the quiescent, contractile phenotype to the migratory and proliferative, synthetic phenotype. Additionally, recent VSMC lineage-tracing mouse models of atherosclerosis have found that VSMCs transdifferentiate into macrophage-like and osteochondrogenic cells and make up to 70% of cells found in atherosclerotic plaques. Given VSMC phenotypic switching is regulated by microRNA-145 (miR-145), we hypothesized that nanoparticle-mediated delivery of miR-145 to VSMCs has the potential to mitigate atherosclerosis development by inhibiting plaque-propagating cell types derived from VSMCs. To test our hypothesis, we synthesized miR-145 micelles targeting the C-C chemokine receptor-2 (CCR2), which is highly expressed on synthetic VSMCs. When miR-145 micelles were incubated with human aortic VSMCs in vitro, >90% miR-145 micelles escaped the lysosomal pathway in 4 hours and released the miR cargo under cytosolic levels of glutathione, an endogenous reducing agent. As such, miR-145 micelles rescued atheroprotective contractile markers, myocardin, α-SMA, and calponin, in synthetic VSMCs in vitro. In early-stage atherosclerotic ApoE-/- mice, one dose of miR-145 micelles prevented lesion growth by 49% and sustained an increased level of miR-145 expression after 2 weeks post-treatment. Additionally, miR-145 micelles inhibited 35% and 43% plaque growth compared to free miR-145 and PBS, respectively, in mid-stage atherosclerotic ApoE-/- mice. Collectively, we present a novel therapeutic strategy and cell target for atherosclerosis, and present miR-145 micelles as a viable nanotherapeutic that can intervene atherosclerosis progression at both early and later stages of disease.
Collapse
Affiliation(s)
- Deborah D Chin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Christopher Poon
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Johan Joo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Victor Ong
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Zhangjingyi Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Kayley Cheng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Anastasia Plotkin
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States
| | - Gregory A Magee
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States; Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, United States; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States; Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, United States.
| |
Collapse
|
13
|
Trac N, Chung EJ. Overcoming physiological barriers by nanoparticles for intravenous drug delivery to the lymph nodes. Exp Biol Med (Maywood) 2021; 246:2358-2371. [PMID: 33957802 DOI: 10.1177/15353702211010762] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The lymph nodes are major sites of cancer metastasis and immune activity, and thus represent important clinical targets. Although not as well-studied compared to subcutaneous administration, intravenous drug delivery is advantageous for lymph node delivery as it is commonly practiced in the clinic and has the potential to deliver therapeutics systemically to all lymph nodes. However, rapid clearance by the mononuclear phagocyte system, tight junctions of the blood vascular endothelium, and the collagenous matrix of the interstitium can limit the efficiency of lymph node drug delivery, which has prompted research into the design of nanoparticle-based drug delivery systems. In this mini review, we describe the physiological and biological barriers to lymph node targeting, how they inform nanoparticle design, and discuss the future outlook of lymph node targeting.
Collapse
Affiliation(s)
- Noah Trac
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.,Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, Los Angeles, CA 90033, USA.,Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.,Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
14
|
Wang J, Chin D, Poon C, Mancino V, Pham J, Li H, Ho PY, Hallows KR, Chung EJ. Oral delivery of metformin by chitosan nanoparticles for polycystic kidney disease. J Control Release 2021; 329:1198-1209. [PMID: 33127449 PMCID: PMC7904655 DOI: 10.1016/j.jconrel.2020.10.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022]
Abstract
Nanoparticle drug delivery has many advantages over small molecule therapeutics, including reducing off-target side effects and increasing drug potency. However, many nanoparticles are administered parenterally, which is challenging for chronic diseases such as polycystic kidney disease (PKD), the most common hereditary disease worldwide in which patients need continuous treatment over decades. To address this clinical need, we present the development of nanoparticles synthesized from chitosan, a widely available polymer chosen for its ability to improve oral bioavailability. Specifically, we optimized the synthesis parameters of chitosan nanoparticles and demonstrate mucoadhesion and permeation across an intestinal barrier model in vitro. Furthermore, when administered orally to mice, ex vivo imaging of rhodamine-loaded chitosan nanoparticles showed significantly higher accumulation in the intestines compared to the free model drug, as well as 1.3 times higher serum area under the curve (AUC), demonstrating controlled release and improved serum delivery over 24 h. To test its utility for chronic diseases such as PKD, we loaded the candidate PKD drug, metformin, into chitosan nanoparticles, and upon oral administration to a PKD murine model (Pkd1fl/fl;Pax8-rtTA;Tet-O cre), a lower cyst burden was observed compared to free metformin, and was well tolerated upon repeated dosages. Blood urea nitrogen (BUN) and creatinine levels were similar to untreated mice, demonstrating kidney and biocompatibility health. Our study builds upon previous chitosan-based drug delivery approaches, and demonstrates a novel, oral nanoformulation for PKD.
Collapse
Affiliation(s)
- Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Deborah Chin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Christopher Poon
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Valeria Mancino
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jessica Pham
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hui Li
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pei-Yin Ho
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kenneth R Hallows
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA; Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Bridge Institute, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Tripathy N, Wang J, Tung M, Conway C, Chung EJ. Transdermal Delivery of Kidney-Targeting Nanoparticles Using Dissolvable Microneedles. Cell Mol Bioeng 2020; 13:475-486. [PMID: 33184578 PMCID: PMC7596160 DOI: 10.1007/s12195-020-00622-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Chronic kidney disease (CKD) affects approximately 13% of the world's population and will lead to dialysis or kidney transplantation. Unfortunately, clinically available drugs for CKD show limited efficacy and toxic extrarenal side effects. Hence, there is a need to develop targeted delivery systems with enhanced kidney specificity that can also be combined with a patient-compliant administration route for such patients that need extended treatment. Towards this goal, kidney-targeted nanoparticles administered through transdermal microneedles (KNP/MN) is explored in this study. METHODS A KNP/MN patch was developed by incorporating folate-conjugated micelle nanoparticles into polyvinyl alcohol MN patches. Rhodamine B (RhB) was encapsulated into KNP as a model drug and evaluated for biocompatibility and binding with human renal epithelial cells. For MN, skin penetration efficiency was assessed using a Parafilm model, and penetration was imaged via scanning electron microscopy. In vivo, KNP/MN patches were applied on the backs of C57BL/6 wild type mice and biodistribution, organ morphology, and kidney function assessed. RESULTS KNP showed high biocompatibility and folate-dependent binding in vitro, validating KNP's targeting to folate receptors in vitro. Upon transdermal administration in vivo, KNP/MN patches dissolved within 30 min. At varying time points up to 48 h post-KNP/MN administration, higher accumulation of KNP was found in kidneys compared with MN that consisted of the non-targeting, control-NP. Histological evaluation demonstrated no signs of tissue damage, and kidney function markers, serum blood urea nitrogen and urine creatinine, were found to be within normal ranges, indicating preservation of kidney health. CONCLUSIONS Our studies show potential of KNP/MN patches as a non-invasive, self-administrable platform to direct therapies to the kidneys.
Collapse
Affiliation(s)
- Nirmalya Tripathy
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA USA
| | - Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA USA
| | - Madelynn Tung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA USA
| | - Claire Conway
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA USA
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA USA
- Department of Medicine, Division of Nephrology and Hypertension, University of Southern California, Los Angeles, CA USA
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, University of Southern California, Los Angeles, CA USA
| |
Collapse
|
16
|
Huang Y, Jiang K, Zhang X, Chung EJ. The effect of size, charge, and peptide ligand length on kidney targeting by small, organic nanoparticles. Bioeng Transl Med 2020; 5:e10173. [PMID: 33005739 PMCID: PMC7510478 DOI: 10.1002/btm2.10173] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) affects 15% of the US adult population. However, most clinically available drugs for CKD show low bioavailability to the kidneys and non-specific uptake by other organs which results in adverse side effects. Hence, a targeted, drug delivery strategy to enhance kidney drug delivery is highly desired. Recently, our group developed small, organic nanoparticles called peptide amphiphile micelles (PAM) functionalized with the zwitterionic peptide ligand, (KKEEE)3K, that passage through the glomerular filtration barrier for kidney accumulation. Despite high bioavailability to the kidneys, these micelles also accumulated in the liver to a similar extent. To further optimize the physicochemical properties and develop design rules for kidney-targeting micelles, we synthesized a library of PAMs of varying size, charge, and peptide repeats. Specifically, variations of the original (KKEEE)3K peptide including (KKEEE)2K, (KKEEE)K, (EEKKK)3E, (EEKKK)2E, (EEKKK)E, KKKKK, and EEEEE were functionalized onto nanoparticles, and peptide surface density and PEG linker molecular weight were altered. After characterization with transmission electron microscopy (TEM) and dynamic light scattering (DLS), nanoparticles were intravenously administered into wildtype mice, and biodistribution was assessed through ex vivo imaging. All micelles localized to the kidneys, but nanoparticles that are positively-charged, close to the renal filtration size cut-off, and consisted of additional zwitterionic peptide sequences generally showed higher renal accumulation. Upon immunohistochemistry, micelles were confirmed to bind to the multiligand receptor, megalin, and histological analyses showed no tissue damage. Our study provides insight into the design of micelle carriers for kidney targeting and their potential for future therapeutic application.
Collapse
Affiliation(s)
- Yi Huang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kairui Jiang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Xuting Zhang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Eun Ji Chung
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Medicine, Division of Nephrology and HypertensionUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Surgery, Division of Vascular Surgery and Endovascular TherapyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|