1
|
Marcks JC, Onizhuk M, Wang YX, Zhu Y, Jin Y, Soloway BS, Fukami M, Delegan N, Heremans FJ, Clerk AA, Galli G, Awschalom DD. Quantum Spin Probe of Single Charge Dynamics. PHYSICAL REVIEW LETTERS 2024; 133:130802. [PMID: 39392984 DOI: 10.1103/physrevlett.133.130802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 10/13/2024]
Abstract
Electronic defects in semiconductors form the basis for emerging quantum technologies, but many defect centers are difficult to access at the single-particle level. A method for probing optically inactive spin defects would reveal semiconductor physics at the atomic scale and advance the study of new quantum systems. We exploit the intrinsic correlation between the charge and spin states of defect centers to measure the charge populations and dynamics of single substitutional nitrogen spin defects in diamond. By probing their steady-state spin population, read out at the single-defect level with a nearby nitrogen vacancy center, we directly measure the defect ionization-corroborated by first-principles calculations-an effect we do not have access to with traditional coherence-based quantum sensing.
Collapse
Affiliation(s)
- Jonathan C Marcks
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Q-NEXT, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | | | | | | | | | | | | | - Nazar Delegan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Q-NEXT, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - F Joseph Heremans
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Q-NEXT, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | | | - Giulia Galli
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | - David D Awschalom
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Q-NEXT, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
2
|
Wong J, Onizhuk M, Nagura J, Thind AS, Bindra JK, Wicker C, Grant GD, Zhang Y, Niklas J, Poluektov OG, Klie RF, Zhang J, Galli G, Heremans FJ, Awschalom DD, Alivisatos AP. Coherent Erbium Spin Defects in Colloidal Nanocrystal Hosts. ACS NANO 2024; 18:19110-19123. [PMID: 38980975 DOI: 10.1021/acsnano.4c04083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
We demonstrate nearly a microsecond of spin coherence in Er3+ ions doped in cerium dioxide nanocrystal hosts, despite a large gyromagnetic ratio and nanometric proximity of the spin defect to the nanocrystal surface. The long spin coherence is enabled by reducing the dopant density below the instantaneous diffusion limit in a nuclear spin-free host material, reaching the limit of a single erbium spin defect per nanocrystal. We observe a large Orbach energy in a highly symmetric cubic site, further protecting the coherence in a qubit that would otherwise rapidly decohere. Spatially correlated electron spectroscopy measurements reveal the presence of Ce3+ at the nanocrystal surface, which likely acts as extraneous paramagnetic spin noise. Even with these factors, defect-embedded nanocrystal hosts show tremendous promise for quantum sensing and quantum communication applications, with multiple avenues, including core-shell fabrication, redox tuning of oxygen vacancies, and organic surfactant modification, available to further enhance their spin coherence and functionality in the future.
Collapse
Affiliation(s)
- Joeson Wong
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Mykyta Onizhuk
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jonah Nagura
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Arashdeep Singh Thind
- Department of Physics, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Jasleen K Bindra
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Christina Wicker
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory D Grant
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Yuxuan Zhang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Robert F Klie
- Department of Physics, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Jiefei Zhang
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Giulia Galli
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - F Joseph Heremans
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David D Awschalom
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - A Paul Alivisatos
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
3
|
Onizhuk M, Wang YX, Nagura J, Clerk AA, Galli G. Understanding Central Spin Decoherence Due to Interacting Dissipative Spin Baths. PHYSICAL REVIEW LETTERS 2024; 132:250401. [PMID: 38996232 DOI: 10.1103/physrevlett.132.250401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 07/14/2024]
Abstract
We propose a new approach to simulate the decoherence of a central spin coupled to an interacting dissipative spin bath with cluster-correlation expansion techniques. We benchmark the approach on generic 1D and 2D spin baths and find excellent agreement with numerically exact simulations. Our calculations show a complex interplay between dissipation and coherent spin exchange, leading to increased central spin coherence in the presence of fast dissipation. Finally, we model near-surface nitrogen-vacancy centers in diamond and show that accounting for bath dissipation is crucial to understanding their decoherence. Our method can be applied to a variety of systems and provides a powerful tool to investigate spin dynamics in dissipative environments.
Collapse
Affiliation(s)
| | | | | | | | - Giulia Galli
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
4
|
Davidsson J, Onizhuk M, Vorwerk C, Galli G. Discovery of atomic clock-like spin defects in simple oxides from first principles. Nat Commun 2024; 15:4812. [PMID: 38844443 PMCID: PMC11156963 DOI: 10.1038/s41467-024-49057-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
Virtually noiseless due to the scarcity of spinful nuclei in the lattice, simple oxides hold promise as hosts of solid-state spin qubits. However, no suitable spin defect has yet been found in these systems. Using high-throughput first-principles calculations, we predict spin defects in calcium oxide with electronic properties remarkably similar to those of the NV center in diamond. These defects are charged complexes where a dopant atom - Sb, Bi, or I - occupies the volume vacated by adjacent cation and anion vacancies. The predicted zero phonon line shows that the Bi complex emits in the telecommunication range, and the computed many-body energy levels suggest a viable optical cycle required for qubit initialization. Notably, the high-spin nucleus of each dopant strongly couples to the electron spin, leading to many controllable quantum levels and the emergence of atomic clock-like transitions that are well protected from environmental noise. Specifically, the Hanh-echo coherence time increases beyond seconds at the clock-like transition in the defect with 209Bi. Our results pave the way to designing quantum states with long coherence times in simple oxides, making them attractive platforms for quantum technologies.
Collapse
Affiliation(s)
- Joel Davidsson
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden.
| | - Mykyta Onizhuk
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
| | - Christian Vorwerk
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Giulia Galli
- Pritzker School of Molecular Engineering and Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA.
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, 60439, USA.
| |
Collapse
|
5
|
Ali S, Nilsson FA, Manti S, Bertoldo F, Mortensen JJ, Thygesen KS. High-Throughput Search for Triplet Point Defects with Narrow Emission Lines in 2D Materials. ACS NANO 2023; 17:21105-21115. [PMID: 37889165 DOI: 10.1021/acsnano.3c04774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
We employ a first-principles computational workflow to screen for optically accessible, high-spin point defects in wide band gap, two-dimensional (2D) crystals. Starting from an initial set of 5388 point defects, comprising both native and extrinsic, single and double defects in ten previously synthesized 2D host materials, we identify 596 defects with a triplet ground state. For these defects, we calculate the defect formation energy, hyperfine (HF) coupling, and zero-field splitting (ZFS) tensors. For 39 triplet transitions exhibiting particularly low Huang-Rhys factors, we calculate the full photoluminescence (PL) spectrum. Our approach reveals many spin defects with narrow PL line shapes and emission frequencies covering a broad spectral range. Most of the defects are hosted in hexagonal BN (hBN), which we ascribe to its high stiffness, but some are also found in MgI2, MoS2, MgBr2 and CaI2. As specific examples, we propose the defects vSMoS0 and NiSMoS0 in MoS2 as interesting candidates with potential applications to magnetic field sensors and quantum information technology.
Collapse
Affiliation(s)
- Sajid Ali
- CAMD, Computational Atomic-Scale Materials Design, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Fredrik Andreas Nilsson
- CAMD, Computational Atomic-Scale Materials Design, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Simone Manti
- CAMD, Computational Atomic-Scale Materials Design, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- INFN, Laboratori Nazionali di Frascati, Via E. Fermi 54, I-00044 Roma, Italy
| | - Fabian Bertoldo
- CAMD, Computational Atomic-Scale Materials Design, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jens Jørgen Mortensen
- CAMD, Computational Atomic-Scale Materials Design, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kristian Sommer Thygesen
- CAMD, Computational Atomic-Scale Materials Design, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Xiong Y, Bourgois C, Sheremetyeva N, Chen W, Dahliah D, Song H, Zheng J, Griffin SM, Sipahigil A, Hautier G. High-throughput identification of spin-photon interfaces in silicon. SCIENCE ADVANCES 2023; 9:eadh8617. [PMID: 37792930 PMCID: PMC10550234 DOI: 10.1126/sciadv.adh8617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023]
Abstract
Color centers in host semiconductors are prime candidates as spin-photon interfaces for quantum applications. Finding an optimal spin-photon interface in silicon would move quantum information technologies toward a mature semiconducting host. However, the space of possible charged defects is vast, making the identification of candidates from experiments alone extremely challenging. Here, we use high-throughput first-principles computational screening to identify spin-photon interfaces among more than 1000 charged defects in silicon. The use of a single-shot hybrid functional approach is critical in enabling the screening of many quantum defects with a reasonable accuracy. We identify three promising spin-photon interfaces as potential bright emitters in the telecom band: [Formula: see text], [Formula: see text], and [Formula: see text]. These candidates are excited through defect-bound excitons, stressing the importance of such defects in silicon for telecom band operations. Our work paves the way to further large-scale computational screening for quantum defects in semiconductors.
Collapse
Affiliation(s)
- Yihuang Xiong
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Céline Bourgois
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain, Chemin des Étoiles 8, Louvain-la-Neuve B-1348, Belgium
| | | | - Wei Chen
- Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain, Chemin des Étoiles 8, Louvain-la-Neuve B-1348, Belgium
| | - Diana Dahliah
- Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain, Chemin des Étoiles 8, Louvain-la-Neuve B-1348, Belgium
- Department of Physics, Ah-Najah National University, Nablus, Palestine
| | - Hanbin Song
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jiongzhi Zheng
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Sinéad M. Griffin
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alp Sipahigil
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Geoffroy Hautier
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
7
|
Long-lived electronic spin qubits in single-walled carbon nanotubes. Nat Commun 2023; 14:848. [PMID: 36792597 PMCID: PMC9932135 DOI: 10.1038/s41467-023-36031-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/12/2023] [Indexed: 02/17/2023] Open
Abstract
Electron spins in solid-state systems offer the promise of spin-based information processing devices. Single-walled carbon nanotubes (SWCNTs), an all-carbon one-dimensional material whose spin-free environment and weak spin-orbit coupling promise long spin coherence times, offer a diverse degree of freedom for extended range of functionality not available to bulk systems. A key requirement limiting spin qubit implementation in SWCNTs is disciplined confinement of isolated spins. Here, we report the creation of highly confined electron spins in SWCNTs via a bottom-up approach. The record long coherence time of 8.2 µs and spin-lattice relaxation time of 13 ms of these electronic spin qubits allow demonstration of quantum control operation manifested as Rabi oscillation. Investigation of the decoherence mechanism reveals an intrinsic coherence time of tens of milliseconds. These findings evident that combining molecular approaches with inorganic crystalline systems provides a powerful route for reproducible and scalable quantum materials suitable for qubit applications.
Collapse
|