1
|
Yamada K, Mukaimine A, Nakamura A, Kusakari Y, Pradipta AR, Chang TC, Tanaka K. Chemistry-driven translocation of glycosylated proteins in mice. Nat Commun 2024; 15:7409. [PMID: 39358337 PMCID: PMC11446924 DOI: 10.1038/s41467-024-51342-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 08/06/2024] [Indexed: 10/04/2024] Open
Abstract
Cell surface glycans form various "glycan patterns" consisting of different types of glycan molecules, thus enabling strong and selective cell-to-cell recognition. We previously conjugated different N-glycans to human serum albumin to construct glycoalbumins mimicking natural glycan patterns that could selectively recognize target cells or control excretion pathways in mice. Here, we develop an innovative glycoalbumin capable of undergoing transformation and remodeling of its glycan pattern in vivo, which induces its translocation from the initial target to a second one. Replacing α(2,3)-sialylated N-glycans on glycoalbumin with galactosylated glycans induces the translocation of the glycoalbumin from blood or tumors to the intestine in mice. Such "in vivo glycan pattern remodeling" strategy can be used as a drug delivery system to promote excretion of a drug or medical radionuclide from the tumor after treatment, thereby preventing prolonged exposure leading to adverse effects. Alternatively, this study provides a potential strategy for using a single glycoalbumin for the simultaneous treatment of multiple diseases in a patient.
Collapse
Affiliation(s)
- Kenshiro Yamada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Akari Mukaimine
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Akiko Nakamura
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Yuriko Kusakari
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Ambara R Pradipta
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Tsung-Che Chang
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan.
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | - Katsunori Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan.
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Yamazaki S, Matsuda Y. Tag‐Free Enzymatic Modification for Antibody−Drug Conjugate Production. ChemistrySelect 2022. [DOI: 10.1002/slct.202203753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Yutaka Matsuda
- Ajinomoto Bio-Pharma Services 11040 Roselle Street San Diego CA 92121 United States
| |
Collapse
|
4
|
Homo- and Heterogeneous Glycoconjugates on the Basis of N-Glycans and Human Serum Albumin: Synthesis and Biological Evaluation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041285. [PMID: 35209074 PMCID: PMC8877828 DOI: 10.3390/molecules27041285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022]
Abstract
Neoglycoconjugates mimicking natural compounds and possessing a variety of biological functions are very successful tools for researchers to understand the general mechanisms of many biological processes in living organisms. These substances are characterized by high biotolerance and specificity, with low toxicity. Due to the difficult isolation of individual glycoclusters from biological objects, special interest has been directed toward synthetic analogs. This review is mainly focused on the one-pot, double-click methodology (containing alkyne–azide click cycloaddition with the following 6π-azaelectrocyclization reactions) used in the synthesis of N-glycoconjugates. Homogeneous (including one type of biantennary N-glycan fragments) and heterogeneous (containing two to four types of biantennary N-glycan fragments) glycoclusters on albumin were synthesized via this strategy. A series of cell-, tissue- and animal-based experiments proved glycoclusters to be a very promising class of targeted delivery systems. Depending on the oligosaccharide units combined in the cluster, their amount, and arrangement relative to one another, conjugates can recognize various cells, including cancer cells, with high selectivity. These results open new perspectives for affected tissue visualization and treatment.
Collapse
|
5
|
Nasibullin I, Smirnov I, Ahmadi P, Vong K, Kurbangalieva A, Tanaka K. Synthetic prodrug design enables biocatalytic activation in mice to elicit tumor growth suppression. Nat Commun 2022; 13:39. [PMID: 35013295 PMCID: PMC8748823 DOI: 10.1038/s41467-021-27804-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022] Open
Abstract
Considering the intrinsic toxicities of transition metals, their incorporation into drug therapies must operate at minimal amounts while ensuring adequate catalytic activity within complex biological systems. As a way to address this issue, this study investigates the design of synthetic prodrugs that are not only tuned to be harmless, but can be robustly transformed in vivo to reach therapeutically relevant levels. To accomplish this, retrosynthetic prodrug design highlights the potential of naphthylcombretastatin-based prodrugs, which form highly active cytostatic agents via sequential ring-closing metathesis and aromatization. Structural adjustments will also be done to improve aspects related to catalytic reactivity, intrinsic bioactivity, and hydrolytic stability. The developed prodrug therapy is found to possess excellent anticancer activities in cell-based assays. Furthermore, in vivo activation by intravenously administered glycosylated artificial metalloenzymes can also induce significant reduction of implanted tumor growth in mice.
Collapse
Affiliation(s)
- Igor Nasibullin
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Ivan Smirnov
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya street, Kazan, 420008, Russia
| | - Peni Ahmadi
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Kenward Vong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Almira Kurbangalieva
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya street, Kazan, 420008, Russia
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya street, Kazan, 420008, Russia.
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan.
| |
Collapse
|
6
|
Ahmadi P, Muguruma K, Chang TC, Tamura S, Tsubokura K, Egawa Y, Suzuki T, Dohmae N, Nakao Y, Tanaka K. In vivo metal-catalyzed SeCT therapy by a proapoptotic peptide. Chem Sci 2021; 12:12266-12273. [PMID: 34603656 PMCID: PMC8480321 DOI: 10.1039/d1sc01784e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023] Open
Abstract
Selective cell tagging (SeCT) therapy is a strategy for labeling a targeted cell with certain chemical moieties via a catalytic chemical transformation in order to elicit a therapeutic effect. Herein, we report a cancer therapy based on targeted cell surface tagging with proapoptotic peptides (Ac-GGKLFG-X; X = reactive group) that induce apoptosis when attached to the cell surface. Using either Au-catalyzed amidation or Ru-catalyzed alkylation, these proapoptotic peptides showed excellent therapeutic effects both in vitro and in vivo. In particular, co-treatment with proapoptotic peptide and the carrier-Ru complex significantly and synergistically inhibited tumor growth and prolonged survival rate of tumor-bearing mice after only a single injection. This is the first report of Ru catalyst application in vivo, and this approach could be used in SeCT for cancer therapy.
Collapse
Affiliation(s)
- Peni Ahmadi
- Biofunctional Synthetic Chemistry, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Kyohei Muguruma
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 2-12-1 Ookayama Meguro Tokyo 152-8552 Japan
| | - Tsung-Che Chang
- Biofunctional Synthetic Chemistry, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Satoru Tamura
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University Yahaba Iwate 028-3694 Japan
| | - Kazuki Tsubokura
- Biofunctional Synthetic Chemistry, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yasuko Egawa
- Biofunctional Synthetic Chemistry, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yoichi Nakao
- School of Advanced Science and Engineering, Department of Chemistry and Biochemistry, Waseda University 3-4-1 Okubo Shinjuku Tokyo 169-8555 Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 2-12-1 Ookayama Meguro Tokyo 152-8552 Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University 18 Kremlyovskaya Street Kazan 420008 Russia
| |
Collapse
|
7
|
In vivo organic synthesis by metal catalysts. Bioorg Med Chem 2021; 46:116353. [PMID: 34419820 DOI: 10.1016/j.bmc.2021.116353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 11/21/2022]
Abstract
The metal-catalyzed reactions have given various chemical modifications that could not be achieved through basic organic chemistry reactions. In the past decade, many metal-mediated catalytic systems have carried out different transformations in cellulo, such as decaging of fluorophores, drug release, and protein conjugation. However, translating abiotic metal catalysts for organic synthesis in vivo, including bacteria, zebrafish, or mice, could encounter numerous challenges regarding their biocompatibility, stability, and reactivity in the complicated biological environment. In this review, we categorize and summarize the relevant advances in this research field by emphasizing the system's framework, the design of each transformation, and the mode of action. These studies disclose the massive potential of the emerging field and the significant applications in synthetic biology.
Collapse
|
8
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
9
|
|
10
|
Vong K, Tahara T, Urano S, Nasibullin I, Tsubokura K, Nakao Y, Kurbangalieva A, Onoe H, Watanabe Y, Tanaka K. Disrupting tumor onset and growth via selective cell tagging (SeCT) therapy. SCIENCE ADVANCES 2021; 7:7/17/eabg4038. [PMID: 33893089 PMCID: PMC8064634 DOI: 10.1126/sciadv.abg4038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/08/2021] [Indexed: 05/16/2023]
Abstract
This study presents the early framework of selective cell tagging (SeCT) therapy, which is the concept of preferentially labeling specific cells in vivo with chemical moieties that can elicit a therapeutic response. Using glycosylated artificial metalloenzyme (GArM)-based protein labeling, this study reports two separate functional strategies. In one approach, early tumor onset can be suppressed by tagging cancer cells in living mice with an integrin-blocking cyclic-Arg-Gly-Asp (cRGD) moiety, thereby disrupting cell adhesion onto the extracellular matrix. In another approach, tumor growth in mice can be reduced by tagging with a cytotoxic doxorubicin moiety. Subsequent cell death occurs following internalization and drug release. Overall, experiments have shown that mouse populations receiving the mixture of SeCT labeling reagents exhibited a significant delay/reduction in tumor onset and growth compared with controls. Highlighting its adaptability, this work represents a foundational step for further development of SeCT therapy and its potential therapeutic applications.
Collapse
Affiliation(s)
- Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Tsuyoshi Tahara
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Sayaka Urano
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Igor Nasibullin
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Kazuki Tsubokura
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- School of Advanced Science and Engineering, Department of Chemistry and Biochemistry, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Yoichi Nakao
- School of Advanced Science and Engineering, Department of Chemistry and Biochemistry, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Almira Kurbangalieva
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Hirotaka Onoe
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasuyoshi Watanabe
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
11
|
Shirakawa A, Manabe Y, Fukase K. Recent Advances in the Chemical Biology of N-Glycans. Molecules 2021; 26:molecules26041040. [PMID: 33669465 PMCID: PMC7920464 DOI: 10.3390/molecules26041040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022] Open
Abstract
Asparagine-linked N-glycans on proteins have diverse structures, and their functions vary according to their structures. In recent years, it has become possible to obtain high quantities of N-glycans via isolation and chemical/enzymatic/chemoenzymatic synthesis. This has allowed for progress in the elucidation of N-glycan functions at the molecular level. Interaction analyses with lectins by glycan arrays or nuclear magnetic resonance (NMR) using various N-glycans have revealed the molecular basis for the recognition of complex structures of N-glycans. Preparation of proteins modified with homogeneous N-glycans revealed the influence of N-glycan modifications on protein functions. Furthermore, N-glycans have potential applications in drug development. This review discusses recent advances in the chemical biology of N-glycans.
Collapse
Affiliation(s)
- Asuka Shirakawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Correspondence: (Y.M.); (K.F.); Tel.: +81-6-6850-5391 (Y.M.); +81-6-6850-5388 (K.F.)
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Correspondence: (Y.M.); (K.F.); Tel.: +81-6-6850-5391 (Y.M.); +81-6-6850-5388 (K.F.)
| |
Collapse
|
12
|
Tanaka K, Vong K. The Journey to In Vivo Synthetic Chemistry: From Azaelectrocyclization to Artificial Metalloenzymes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Katsunori Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| | - Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| |
Collapse
|
13
|
Smirnov I, Sibgatullina R, Urano S, Tahara T, Ahmadi P, Watanabe Y, Pradipta AR, Kurbangalieva A, Tanaka K. A Strategy for Tumor Targeting by Higher-Order Glycan Pattern Recognition: Synthesis and In Vitro and In Vivo Properties of Glycoalbumins Conjugated with Four Different N-Glycan Molecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004831. [PMID: 33079456 DOI: 10.1002/smll.202004831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Natural glycoconjugates that form glycocalyx play important roles in various biological processes based on cell surface recognition through pattern recognition mechanisms. This work represents a new synthesis-based screening strategy to efficiently target the cancer cells by higher-order glycan pattern recognition in both cells and intact animals (mice). The use of the very fast, selective, and effective RIKEN click reaction (6π-azaelectrocyclization of unsaturated imines) allows to synthesize and screen various structurally well-defined glycoalbumins containing two and eventually four different N-glycan structures in a very short time. The importance of glycan pattern recognition is exemplified in both cell- and mouse-based experiments. The use of pattern recognition mechanisms for cell targeting represents a novel and promising strategy for the development of diagnostic, prophylactic, and therapeutic agents for various diseases including cancers.
Collapse
Affiliation(s)
- Ivan Smirnov
- Biofunctional Chemistry Laboratory, Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya street, Kazan, 420008, Russia
| | - Regina Sibgatullina
- Biofunctional Chemistry Laboratory, Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya street, Kazan, 420008, Russia
| | - Sayaka Urano
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tsuyoshi Tahara
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Peni Ahmadi
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yasuyoshi Watanabe
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Ambara R Pradipta
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Almira Kurbangalieva
- Biofunctional Chemistry Laboratory, Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya street, Kazan, 420008, Russia
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
14
|
Vong K, Yamamoto T, Tanaka K. Artificial Glycoproteins as a Scaffold for Targeted Drug Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906890. [PMID: 32068952 DOI: 10.1002/smll.201906890] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Akin to a cellular "fingerprint," the glycocalyx is a glycan-enriched cellular coating that plays a crucial role in mediating cell-to-cell interactions. To gain a better understanding of the factors that govern in vivo recognition, artificial glycoproteins were initially created to probe changes made to the accumulation and biodistribution of specific glycan assemblies through biomimicry. As a result, the organ-specific accumulation for a variety of glycoproteins decorated with simple and/or complex glycans was identified. Additionally, binding trends with regard to cancer cell selectivity were also investigated. To exploit the knowledge gained from these studies, numerous groups thus became engaged in developing targeted drug methodologies based on the use of artificial glycoproteins. This has either been done through adopting the glycoprotein scaffold as a drug carrier, or to directly glycosylate therapeutic proteins/enzymes to localize their biological activity. The principle aim of this Review is to present the foundational research that has driven artificial glycoprotein-based targeting and subsequent adaptations with potential therapeutic applications.
Collapse
Affiliation(s)
- Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Tomoya Yamamoto
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russian Federation
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| |
Collapse
|
15
|
González-Cuesta M, Ortiz Mellet C, García Fernández JM. Carbohydrate supramolecular chemistry: beyond the multivalent effect. Chem Commun (Camb) 2020; 56:5207-5222. [DOI: 10.1039/d0cc01135e] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
(Hetero)multivalency acts as a multichannel switch that shapes the supramolecular properties of carbohydrates in an intrinsically multifactorial biological context.
Collapse
Affiliation(s)
- Manuel González-Cuesta
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- Sevilla 41012
- Spain
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- Sevilla 41012
- Spain
| | | |
Collapse
|
16
|
TANAKA K, VONG K. Unlocking the therapeutic potential of artificial metalloenzymes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:79-94. [PMID: 32161212 PMCID: PMC7167364 DOI: 10.2183/pjab.96.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In order to harness the functionality of metals, nature has evolved over billions of years to utilize metalloproteins as key components in numerous cellular processes. Despite this, transition metals such as ruthenium, palladium, iridium, and gold are largely absent from naturally occurring metalloproteins, likely due to their scarcity as precious metals. To mimic the evolutionary process of nature, the field of artificial metalloenzymes (ArMs) was born as a way to benefit from the unique chemoselectivity and orthogonality of transition metals in a biological setting. In its current state, numerous examples have successfully incorporated transition metals into a variety of protein scaffolds. Using these ArMs, many examples of new-to-nature reactions have been carried out, some of which have shown substantial biocompatibility. Given the rapid rate at which this field is growing, this review aims to highlight some important studies that have begun to take the next step within this field; namely the development of ArM-centered drug therapies or biotechnological tools.
Collapse
Affiliation(s)
- Katsunori TANAKA
- Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
- A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia
- Baton Zone Program, RIKEN, Wako, Saitama, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
- Correspondence should be addressed: K. Tanaka, Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan (e-mail: )
| | - Kenward VONG
- Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
| |
Collapse
|
17
|
An artificial metalloenzyme biosensor can detect ethylene gas in fruits and Arabidopsis leaves. Nat Commun 2019; 10:5746. [PMID: 31848337 PMCID: PMC6917813 DOI: 10.1038/s41467-019-13758-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/20/2019] [Indexed: 11/25/2022] Open
Abstract
Enzyme biosensors are useful tools that can monitor rapid changes in metabolite levels in real-time. However, current approaches are largely constrained to metabolites within a limited chemical space. With the rising development of artificial metalloenzymes (ArM), a unique opportunity exists to design biosensors from the ground-up for metabolites that are difficult to detect using current technologies. Here we present the design and development of the ArM ethylene probe (AEP), where an albumin scaffold is used to solubilize and protect a quenched ruthenium catalyst. In the presence of the phytohormone ethylene, cross metathesis can occur to produce fluorescence. The probe can be used to detect both exogenous- and endogenous-induced changes to ethylene biosynthesis in fruits and leaves. Overall, this work represents an example of an ArM biosensor, designed specifically for the spatial and temporal detection of a biological metabolite previously not accessible using enzyme biosensors. Existing methods to detect ethylene in plant tissue typically require gas chromatography or use ethylene-dependent gene expression as a proxy. Here Vong et al. show that an artificial metalloenzyme-based ethylene probe can be used to detect ethylene in plants with improved spatiotemporal resolution.
Collapse
|
18
|
Nakamura K, Tsubokura K, Kurbangalieva A, Nakao Y, Murase T, Shimoda T, Tanaka K. Efficient route to RIKEN click probes for glycoconjugation. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1578886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Kayo Nakamura
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Japan
| | - Kazuki Tsubokura
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
- Graduate School of Advanced Science and Engineering, Department of Chemistry and Biochemistry, Waseda University, Shinjuku-ku, Japan
| | - Almira Kurbangalieva
- Biofunctional Chemistry Laboratory, Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russian
| | - Yoichi Nakao
- Graduate School of Advanced Science and Engineering, Department of Chemistry and Biochemistry, Waseda University, Shinjuku-ku, Japan
| | - Takefumi Murase
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Japan
- GlyTech, Inc, Shimogyo-ku, Japan
| | - Taiji Shimoda
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Japan
- GlyTech, Inc, Shimogyo-ku, Japan
| | - Katsunori Tanaka
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Japan
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
- Biofunctional Chemistry Laboratory, Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russian
| |
Collapse
|
19
|
Ogura A, Tanaka K. Next-generation Glycocluster for Achieving Pattern Recognition in Living System. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research
| |
Collapse
|
20
|
Tanaka K, Nomura S. Renovation of Glycomolecules for Molecular Imaging Studies: Low-Affinity Glycan Ligands can be Used for Selective Cell Imaging? HETEROCYCLES 2019. [DOI: 10.3987/rev-18-sr(f)3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Fujiki K, Kanayama Y, Yano S, Sato N, Yokokita T, Ahmadi P, Watanabe Y, Haba H, Tanaka K. 211At-labeled immunoconjugate via a one-pot three-component double click strategy: practical access to α-emission cancer radiotherapeutics. Chem Sci 2018; 10:1936-1944. [PMID: 30881623 PMCID: PMC6385556 DOI: 10.1039/c8sc04747b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/19/2018] [Indexed: 01/04/2023] Open
Abstract
α-Emission radiotherapeutics has potential to be one of most effective cancer therapeutics. Herein, we report a facile synthesis of an 211At-labeled immunoconjugate for use as an α-emission molecular targeting therapy. We synthesized a tetrazine probe modified with closo-decaborate(2-), a prosthetic group that forms a bioavailable stable complex with 211At. Our one-pot three-component double-click labeling method was used to attach decaborate to trastuzumab (anti-HER2 antibody) using decaborate-tetrazine and TCO-aldehyde probes without reducing the antibody binding affinity. Labeling the decaborate-attached trastuzumab with 211At produced in the cyclotron at the RIKEN Nishina Center, at which highly radioactive 211At can be produced, readily furnished the 211At-labeled trastuzumab with a maximum specific activity of 15 MBq μg-1 and retention of the native binding affinity. Intratumor injection of the 211At-labeled trastuzumab in BALB/c nude mice implanted with HER2-expressing epidermoid cancer cells yielded efficient accumulation at the targeted tumor site as well as effective suppression of tumor growth.
Collapse
Affiliation(s)
- Katsumasa Fujiki
- Biofunctional Synthetic Chemistry Laboratory , RIKEN Cluster for Pioneering Research , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan . .,GlycoTargeting Research Laboratory , RIKEN Baton Zone Program , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Yousuke Kanayama
- Laboratory for Pathophysiological and Health Science , RIKEN Center for Biosystems Dynamics Research , 6-7-3 Minatojima-minamimachi, Chuo-ku , Kobe , Hyogo 650-0047 , Japan
| | - Shinya Yano
- Nuclear Chemistry Research Team , RIKEN Nishina Center for Accelerator-Based Science , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Nozomi Sato
- Nuclear Chemistry Research Team , RIKEN Nishina Center for Accelerator-Based Science , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Takuya Yokokita
- Nuclear Chemistry Research Team , RIKEN Nishina Center for Accelerator-Based Science , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Peni Ahmadi
- Biofunctional Synthetic Chemistry Laboratory , RIKEN Cluster for Pioneering Research , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan .
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science , RIKEN Center for Biosystems Dynamics Research , 6-7-3 Minatojima-minamimachi, Chuo-ku , Kobe , Hyogo 650-0047 , Japan
| | - Hiromitsu Haba
- Nuclear Chemistry Research Team , RIKEN Nishina Center for Accelerator-Based Science , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory , RIKEN Cluster for Pioneering Research , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan . .,GlycoTargeting Research Laboratory , RIKEN Baton Zone Program , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan.,Biofunctional Chemistry Laboratory , A. Butlerov Institute of Chemistry , Kazan Federal University , 18 Kremlyovskaya Street , Kazan 420008 , Russia
| |
Collapse
|
22
|
Nakamoto Y, Pradipta AR, Mukai H, Zouda M, Watanabe Y, Kurbangalieva A, Ahmadi P, Manabe Y, Fukase K, Tanaka K. Expanding the Applicability of the Metal Labeling of Biomolecules by the RIKEN Click Reaction: A Case Study with Gallium-68 Positron Emission Tomography. Chembiochem 2018; 19:2055-2060. [DOI: 10.1002/cbic.201800335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Yuka Nakamoto
- Department of Chemistry; Graduate School of Science; Osaka University; 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Ambara R. Pradipta
- Biofunctional Synthetic Chemistry Laboratory; RIKEN Cluster for Pioneering Research; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Hidefumi Mukai
- Laboratory for Molecular Delivery and Imaging Technology; RIKEN Center for Biosystems Dynamics Research; 6-7-3 Minatojima-minamimachi Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Maki Zouda
- Laboratory for Molecular Delivery and Imaging Technology; RIKEN Center for Biosystems Dynamics Research; 6-7-3 Minatojima-minamimachi Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science; RIKEN Center for Biosystems Dynamics Research; 6-7-3 Minatojima-minamimachi Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Almira Kurbangalieva
- Biofunctional Chemistry Laboratory; Butlerov Institute of Chemistry; Kazan Federal University; 18 Kremlyovskaya Street Kazan 420008 Russia
| | - Peni Ahmadi
- Biofunctional Synthetic Chemistry Laboratory; RIKEN Cluster for Pioneering Research; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yoshiyuki Manabe
- Department of Chemistry; Graduate School of Science; Osaka University; 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Koichi Fukase
- Department of Chemistry; Graduate School of Science; Osaka University; 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory; RIKEN Cluster for Pioneering Research; 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Biofunctional Chemistry Laboratory; Butlerov Institute of Chemistry; Kazan Federal University; 18 Kremlyovskaya Street Kazan 420008 Russia
- GlycoTargeting Research Laboratory; RIKEN Baton Zone Program; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
23
|
Ogura A, Urano S, Tahara T, Nozaki S, Sibgatullina R, Vong K, Suzuki T, Dohmae N, Kurbangalieva A, Watanabe Y, Tanaka K. A viable strategy for screening the effects of glycan heterogeneity on target organ adhesion and biodistribution in live mice. Chem Commun (Camb) 2018; 54:8693-8696. [PMID: 29956701 DOI: 10.1039/c8cc01544a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This work represents the first broad study of testing diverse heterogenous glycoconjugates (7 different glycoalbumins) for their differential in vivo binding (11 different cancer cell types) in both cell- and animal-based studies. As a result, various changes in biodistribution, excretion, and even tumor adhesion were observed.
Collapse
Affiliation(s)
- Akihiro Ogura
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lin Y, Vong K, Matsuoka K, Tanaka K. 2-Benzoylpyridine Ligand Complexation with Gold Critical for Propargyl Ester-Based Protein Labeling. Chemistry 2018; 24:10595-10600. [PMID: 29791049 DOI: 10.1002/chem.201802058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/18/2018] [Indexed: 01/07/2023]
Abstract
In previously reported work, AuIII complexes coordinated with 2-benzoylpyridine ligand, BPy-Au, were prebound to a protein and used to discover a novel protein-directed labeling approach with propargyl ester functional groups. In this work, further examination discovered that gold catalysts devoid of the 2-benzoylpyridine ligand (e.g., NaAuCl4) had significantly reduced levels of protein labeling. Mechanistic investigations then revealed that BPy-Au and propargyl esters undergo a rare example of C(sp2 )-C(sp) aryl-alkynyl cross-coupling, likely through spontaneous reductive elimination. Overall, these observations appear to suggest that BPy-Au-mediated, propargyl ester-based protein labeling acts via an activated ester intermediate, which contributes to our understanding of this process and will aid the expansion/optimization of gold-catalyst usage in future bioconjugation applications, especially in vivo.
Collapse
Affiliation(s)
- Yixuan Lin
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,Division of Material Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Koji Matsuoka
- Division of Material Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, 420008, Kazan, Russia.,JST-PRESTO, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| |
Collapse
|
25
|
Konovalov AI, Antipin IS, Burilov VA, Madzhidov TI, Kurbangalieva AR, Nemtarev AV, Solovieva SE, Stoikov II, Mamedov VA, Zakharova LY, Gavrilova EL, Sinyashin OG, Balova IA, Vasilyev AV, Zenkevich IG, Krasavin MY, Kuznetsov MA, Molchanov AP, Novikov MS, Nikolaev VA, Rodina LL, Khlebnikov AF, Beletskaya IP, Vatsadze SZ, Gromov SP, Zyk NV, Lebedev AT, Lemenovskii DA, Petrosyan VS, Nenaidenko VG, Negrebetskii VV, Baukov YI, Shmigol’ TA, Korlyukov AA, Tikhomirov AS, Shchekotikhin AE, Traven’ VF, Voskresenskii LG, Zubkov FI, Golubchikov OA, Semeikin AS, Berezin DB, Stuzhin PA, Filimonov VD, Krasnokutskaya EA, Fedorov AY, Nyuchev AV, Orlov VY, Begunov RS, Rusakov AI, Kolobov AV, Kofanov ER, Fedotova OV, Egorova AY, Charushin VN, Chupakhin ON, Klimochkin YN, Osyanin VA, Reznikov AN, Fisyuk AS, Sagitullina GP, Aksenov AV, Aksenov NA, Grachev MK, Maslennikova VI, Koroteev MP, Brel’ AK, Lisina SV, Medvedeva SM, Shikhaliev KS, Suboch GA, Tovbis MS, Mironovich LM, Ivanov SM, Kurbatov SV, Kletskii ME, Burov ON, Kobrakov KI, Kuznetsov DN. Modern Trends of Organic Chemistry in Russian Universities. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s107042801802001x] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Kaltner H, Manning JC, García Caballero G, Di Salvo C, Gabba A, Romero-Hernández LL, Knospe C, Wu D, Daly HC, O'Shea DF, Gabius HJ, Murphy PV. Revealing biomedically relevant cell and lectin type-dependent structure–activity profiles for glycoclusters by using tissue sections as an assay platform. RSC Adv 2018; 8:28716-28735. [PMID: 35542469 PMCID: PMC9084366 DOI: 10.1039/c8ra05382k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/24/2018] [Indexed: 12/05/2022] Open
Abstract
The increasing realization of the involvement of lectin-glycan recognition in (patho)physiological processes inspires envisioning therapeutic intervention by high-avidity/specificity blocking reagents. Synthetic glycoclusters are proving to have potential for becoming such inhibitors but the commonly used assays have their drawbacks to predict in vivo efficacy. They do not represent the natural complexity of (i) cell types and (ii) spatial and structural complexity of glycoconjugate representation. Moreover, testing lectins in mixtures, as present in situ, remains a major challenge, giving direction to this work. Using a toolbox with four lectins and six bi- to tetravalent glycoclusters bearing the cognate sugar in a model study, we here document the efficient and versatile application of tissue sections (from murine jejunum as the model) as a platform for routine and systematic glycocluster testing without commonly encountered limitations. The nature of glycocluster structure, especially core and valency, and of protein features, i.e. architecture, fine-specificity and valency, are shown to have an influence, as cell types can differ in response profiles. Proceeding from light microscopy to monitoring by fluorescence microscopy enables grading of glycocluster activity on individual lectins tested in mixtures. This work provides a robust tool for testing glycoclusters prior to considering in vivo experiments. Introducing tissue sections for testing glycocluster activity as inhibitors of lectin binding close to in vivo conditions.![]()
Collapse
|
27
|
Ito Y. Exploring Future Perspective of Glycochemistry by Japanese Researchers. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
A One-Pot Three-Component Double-Click Method for Synthesis of [ 67Cu]-Labeled Biomolecular Radiotherapeutics. Sci Rep 2017; 7:1912. [PMID: 28507297 PMCID: PMC5432496 DOI: 10.1038/s41598-017-02123-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/06/2017] [Indexed: 12/14/2022] Open
Abstract
A one-pot three-component double-click process for preparing tumor-targeting agents for cancer radiotherapy is described here. By utilizing DOTA (or NOTA) containing tetrazines and the TCO-substituted aldehyde, the two click reactions, the tetrazine ligation (an inverse electron-demand Diels-Alder cycloaddition) and the RIKEN click (a rapid 6π-azaelectrocyclization), could simultaneously proceed under mild conditions to afford covalent attachment of the metal chelator DOTA or NOTA to biomolecules such as to albumin and anti-IGSF4 antibody without altering their activities. Subsequently, radiolabeling of DOTA- or NOTA-attached albumin and anti-IGSF4 antibody (an anti-tumor-targeting antibody) with [67Cu], a β−-emitting radionuclide, could be achieved in a highly efficient manner via a simple chelation with DOTA proving to be a more superior chelator than NOTA. Our work provides a new and operationally simple method for introducing the [67Cu] isotope even in large quantities to biomolecules, thereby representing an important process for preparations of clinically relevant tumor-targeting agents for radiotherapy.
Collapse
|
29
|
Usachev K, Yamaguchi Y, Takamatsu M, Pavlova N, Klochkov V, Kurbangalieva A, Murase T, Shimoda T, Tanaka K. Simple Gd3+-Neu5NAc complexation results in NMR chemical shift asymmetries of structurally equivalent complex-type N-glycan branches. Analyst 2017; 142:2897-2900. [DOI: 10.1039/c7an00817a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A quite simple but overlooked approach for conveniently analyzing, assigning, and extracting sialoglycans using NMR without pre-installing metal chelators.
Collapse
Affiliation(s)
- Konstantin Usachev
- NMR Laboratory
- Institute of Physics
- Kazan Federal University
- Kazan 420008
- Russia
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team
- Systems Glycobiology Research Group
- RIKEN Global Research Cluster
- RIKEN
- Saitama 351-0198
| | | | - Nataliya Pavlova
- NMR Laboratory
- Institute of Physics
- Kazan Federal University
- Kazan 420008
- Russia
| | - Vladimir Klochkov
- NMR Laboratory
- Institute of Physics
- Kazan Federal University
- Kazan 420008
- Russia
| | - Almira Kurbangalieva
- Biofunctional Chemistry Laboratory
- A. Butlerov Institute of Chemistry
- Kazan Federal University
- Kazan 420008
- Russia
| | | | - Taiji Shimoda
- GlycoTargeting Research Team
- RIKEN
- Saitama 351-0198
- Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory
- RIKEN
- Saitama 351-0198
- Japan
- Biofunctional Chemistry Laboratory
| |
Collapse
|