1
|
Surve D, Fish A, Debnath M, Pinjari A, Lorenzana A, Piya S, Peyton S, Kulkarni A. Sprayable inflammasome-inhibiting lipid nanorods in a polymeric scaffold for psoriasis therapy. Nat Commun 2024; 15:9035. [PMID: 39426974 PMCID: PMC11490495 DOI: 10.1038/s41467-024-53396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Localized delivery of inflammasome inhibitors in phagocytic macrophages could be promising for psoriasis treatment. The present work demonstrates the development of non-spherical lipid nanoparticles, mimicking pathogen-like shapes, consisting of an anti-inflammatory inflammasome inhibiting lipid (pyridoxine dipalmitate) as a trojan horse. The nanorods inhibit inflammasome by 3.8- and 4.5-fold compared with nanoellipses and nanospheres, respectively. Nanorods reduce apoptosis-associated speck-like protein and lysosomal rupture, restrain calcium influx, and mitochondrial reactive oxygen species. Dual inflammasome inhibitor (NLRP3/AIM-2-IN-3) loaded nanorods cause synergistic inhibition by 21.5- and 59-folds compared with nanorods and free drug, respectively alongside caspase-1 inhibition. The NLRP3/AIM-2-IN-3 nanorod when transformed into a polymeric scaffold, simultaneously and effectively inhibits RNA levels of NLRP3, AIM2, caspase-1, chemokine ligand-2, gasdermin-D, interleukin-1β, toll-like receptor 7/ 8, and IL-17A by 6.4-, 1.6-, 2.0-, 13.0-, 4.2-, 24.4-, 4.3-, and 1.82-fold, respectively in psoriatic skin in comparison to Imiquimod positive control group in an in-vivo psoriasis-like mice model.
Collapse
Affiliation(s)
- Dhanashree Surve
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Adam Fish
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Maharshi Debnath
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Aniruddha Pinjari
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Adrian Lorenzana
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Sumi Piya
- Pathology Department, University of Massachusetts-Chan Medical School, Baystate Medical Center, Springfield, MA, 01199, USA
| | - Shelly Peyton
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA.
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
2
|
Qin S, He G, Yang J. Nanomaterial combined engineered bacteria for intelligent tumor immunotherapy. J Mater Chem B 2024; 12:9795-9820. [PMID: 39225508 DOI: 10.1039/d4tb00741g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cancer remains the leading cause of human death worldwide. Compared to traditional therapies, tumor immunotherapy has received a lot of attention and research focus due to its potential to activate both innate and adaptive immunity, low toxicity to normal tissue, and long-term immune activity. However, its clinical effectiveness and large-scale application are limited due to the immunosuppression microenvironment, lack of spatiotemporal control, expensive cost, and long manufacturing time. Recently, nanomaterial combined engineered bacteria have emerged as a promising solution to the challenges of tumor immunotherapy, which offers spatiotemporal control, reversal of immunosuppression, and scalable production. Therefore, we summarize the latest research on nanomaterial-assisted engineered bacteria for precise tumor immunotherapies, including the cross-talk of nanomaterials and bacteria as well as their application in different immunotherapies. In addition, we further discuss the advantages and challenges of nanomaterial-engineered bacteria and their future prospects, inspiring more novel and intelligent tumor immunotherapy.
Collapse
Affiliation(s)
- Shurong Qin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Guanzhong He
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jingjing Yang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
3
|
Xiao S, Mu M, Feng C, Pan S, Chen N. The application of bacteria-nanomaterial hybrids in antitumor therapy. J Nanobiotechnology 2024; 22:536. [PMID: 39227831 PMCID: PMC11373302 DOI: 10.1186/s12951-024-02793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Adverse effects and multidrug resistance remain significant obstacles in conventional cancer therapy. Nanomedicines, with their intrinsic properties such as nano-sized dimensions and tunable surface characteristics, have the potential to mitigate the side effects of traditional cancer treatments. While nanomaterials have been widely applied in cancer treatment, challenges such as low targeting efficiency and poor tumor penetration persist. Recent research has shown that anaerobic bacteria exhibit high selectivity for primary tumors and metastatic cancers, offering good safety and superior tumor penetration capabilities. This suggests that combining nanomaterials with bacteria could complement their respective limitations, opening vast potential applications in cancer therapy. The use of bacteria in combination with nanomaterials for anticancer treatments, including chemotherapy, radiotherapy, and photothermal/photodynamic therapy, has contributed to the rapid development of the field of bacterial oncology treatments. This review explores the mechanisms of bacterial tumor targeting and summarizes strategies for synthesizing bacterial-nanomaterial and their application in cancer therapy. The combination of bacterial-nanomaterial hybrids with modern therapeutic approaches represents a promising avenue for future cancer treatment research, with the potential to improve treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Susu Xiao
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Mu
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chenqian Feng
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shulin Pan
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nianyong Chen
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Wang C, Zhong L, Xu J, Zhuang Q, Gong F, Chen X, Tao H, Hu C, Huang F, Yang N, Li J, Zhao Q, Sun X, Huo Y, Chen Q, Zhao Y, Peng R, Liu Z. Oncolytic mineralized bacteria as potent locally administered immunotherapeutics. Nat Biomed Eng 2024; 8:561-578. [PMID: 38514774 DOI: 10.1038/s41551-024-01191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/17/2024] [Indexed: 03/23/2024]
Abstract
Oncolytic bacteria can trigger innate immune activity. However, the antitumour efficacy of inactivated bacteria is poor, and attenuated live bacteria pose substantial safety risks. Here we show that intratumourally injected paraformaldehyde-fixed bacteria coated with manganese dioxide potently activate innate immune activity, modulate the immunosuppressive tumour microenvironment and trigger tumour-specific immune responses and abscopal antitumour responses. A single intratumoural administration of mineralized Salmonella typhimurium suppressed the growth of multiple types of subcutaneous and orthotopic tumours in mice, rabbits and tree shrews and protected the cured animals against tumour rechallenge. We also show that mineralized bacteria can be administered via arterial embolization to treat orthotopic liver cancer in rabbits. Our findings support the further translational testing of oncolytic mineralized bacteria as potent and safe antitumour immunotherapeutics.
Collapse
Affiliation(s)
- Chenya Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Liping Zhong
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Jiachen Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Zhuang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Fei Gong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Xiaojing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Huiquan Tao
- InnoBM Pharmaceuticals Co. Ltd., Suzhou, China
| | - Cong Hu
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Fuquan Huang
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Junyan Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Qi Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
- InnoBM Pharmaceuticals Co. Ltd., Suzhou, China
| | - Xinjun Sun
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Yu Huo
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Yongxiang Zhao
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China.
| | - Rui Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China.
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China.
- InnoBM Pharmaceuticals Co. Ltd., Suzhou, China.
| |
Collapse
|
5
|
Guo Z, Ren H, Chang Q, Liu R, Zhou X, Xue K, Sun T, Luo J, Wang F, Ge J. Lactobacilli-derived adjuvants combined with immunoinformatics-driven multi-epitope antigens based approach protects against Clostridium perfringens in a mouse model. Int J Biol Macromol 2024; 267:131475. [PMID: 38608984 DOI: 10.1016/j.ijbiomac.2024.131475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
Clostridium perfringens is ubiquitously distributed and capable of secreting toxins, posing a significant threat to animal health. Infections caused by Clostridium perfringens, such as Necrotic Enteritis (NE), result in substantial economic losses to the livestock industry annually. However, there is no effective commercial vaccine available. Hence, we set out to propose an effective approach for multi-epitope subunit vaccine construction utilizing biomolecules. We utilized immunoinformatics to design a novel multi-epitope antigen against C. perfringens (CPMEA). Furthermore, we innovated novel bacterium-like particles (BLPs) through thermal acid treatment of various Lactobacillus strains and selected BLP23017 among them. Then, we detailed the structure of CPMEA and BLPs and utilized them to prepare a multi-epitope vaccine. Here, we showed that our vaccine provided full protection against C. perfringens infection after a single dose in a mouse model. Additionally, BLP23017 notably augmented the secretion of secretory immunoglobulin A (sIgA) and enhanced antibody production. We conclude that our vaccine possess safety and high efficacy, making it an excellent candidate for preventing C. perfringens infection. Moreover, we demonstrate our approach to vaccine construction and the preparation of BLP23017 with distinct advantages may contribute to the prevention of a wider array of diseases and the novel vaccine development.
Collapse
Affiliation(s)
- Zhiyuan Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hongkun Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qingru Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Runhang Liu
- State Key Laboratory for Animal Disease control and prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinyao Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Kun Xue
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jilong Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Fang Wang
- State Key Laboratory for Animal Disease control and prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150030, China.
| |
Collapse
|
6
|
Lotfalizadeh N, Sadr S, Morovati S, Lotfalizadeh M, Hajjafari A, Borji H. A potential cure for tumor-associated immunosuppression by Toxoplasma gondii. Cancer Rep (Hoboken) 2024; 7:e1963. [PMID: 38109851 PMCID: PMC10850000 DOI: 10.1002/cnr2.1963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/06/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Recently, immunotherapy has become very hopeful for cancer therapy. Cancer treatment through immunotherapy has excellent specificity and less toxicity than conventional chemoradiotherapy. Pathogens have been used in cancer immunotherapy for a long time. The current study aims to evaluate the possibility of Toxoplasma gondii (T. gondii) as a probable treatment for cancers such as melanoma, breast, ovarian, lung, and pancreatic cancer. RECENT FINDINGS Nonreplicating type I uracil auxotrophic mutants of T. gondii can stimulate immune responses against tumors by reverse immunosuppression at the cellular level. T. gondii can be utilized to research T helper 1 (Th1) cell immunity in intracellular infections. Avirulent T. gondii uracil auxotroph vaccine can change the tumor's immunosuppression and improve the production of type 1 helper cell cytokines, i.e., Interferon-gamma (IFN-γ) and Interleukin-12 (IL-12) and activate tumor-related Cluster of Differentiation 8 (CD8+) T cells to identify and destroy cancer cells. The T. gondii profilin protein, along with T. gondii secreted proteins, have been found to exhibit promising properties in the treatment of various cancers. These proteins are being studied for their potential to inhibit tumor growth and enhance the effectiveness of cancer therapies. Their unique mechanisms of action make them valuable candidates for targeted interventions in ovarian cancer, breast cancer, pancreatic cancer, melanoma, and lung cancer treatments. CONCLUSION In summary, the study underscores the significant potential of harnessing T. gondii, including its diverse array of proteins and antigens, particularly in its avirulent form, as a groundbreaking approach in cancer immunotherapy.
Collapse
Affiliation(s)
- Narges Lotfalizadeh
- Department of Pathobiology, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Soheil Sadr
- Department of Pathobiology, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Solmaz Morovati
- Division of Biotechnology, Department of Pathobiology, School of Veterinary MedicineShiraz UniversityShirazIran
| | - Mohammadhassan Lotfalizadeh
- Board Certificate Oral and Maxillofacial RadiologistNorth Khorasan University of Medical Sciences (NKUMS)BojnurdIran
| | - Ashkan Hajjafari
- Department of Pathobiology, Faculty of Veterinary MedicineIslamic Azad University, Science and Research BranchTehranIran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| |
Collapse
|
7
|
Chen Z, Yong T, Wei Z, Zhang X, Li X, Qin J, Li J, Hu J, Yang X, Gan L. Engineered Probiotic-Based Personalized Cancer Vaccine Potentiates Antitumor Immunity through Initiating Trained Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305081. [PMID: 38009498 PMCID: PMC10797439 DOI: 10.1002/advs.202305081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/23/2023] [Indexed: 11/29/2023]
Abstract
Cancer vaccines hold great potential for clinical cancer treatment by eliciting T cell-mediated immunity. However, the limited numbers of antigen-presenting cells (APCs) at the injection sites, the insufficient tumor antigen phagocytosis by APCs, and the presence of a strong tumor immunosuppressive microenvironment severely compromise the efficacy of cancer vaccines. Trained innate immunity may promote tumor antigen-specific adaptive immunity. Here, a personalized cancer vaccine is developed by engineering the inactivated probiotic Escherichia coli Nissle 1917 to load tumor antigens and β-glucan, a trained immunity inducer. After subcutaneous injection, the cancer vaccine delivering model antigen OVA (BG/OVA@EcN) is highly accumulated and phagocytosed by macrophages at the injection sites to induce trained immunity. The trained macrophages may recruit dendritic cells (DCs) to facilitate BG/OVA@EcN phagocytosis and the subsequent DC maturation and T cell activation. In addition, BG/OVA@EcN remarkably enhances the circulating trained monocytes/macrophages, promoting differentiation into M1-like macrophages in tumor tissues. BG/OVA@EcN generates strong prophylactic and therapeutic efficacy to inhibit tumor growth by inducing potent adaptive antitumor immunity and long-term immune memory. Importantly, the cancer vaccine delivering autologous tumor antigens efficiently prevents postoperative tumor recurrence. This platform offers a facile translatable strategy to efficiently integrate trained immunity and adaptive immunity for personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Zhaoxia Chen
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Tuying Yong
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHuazhong University of Science and TechnologyWuhan430074China
| | - Zhaohan Wei
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Xiaoqiong Zhang
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Xin Li
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Jiaqi Qin
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Jianye Li
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Jun Hu
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHuazhong University of Science and TechnologyWuhan430074China
| | - Xiangliang Yang
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHuazhong University of Science and TechnologyWuhan430074China
| | - Lu Gan
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
8
|
Zhou X, Gao M, De X, Sun T, Bai Z, Luo J, Wang F, Ge J. Bacterium-like particles derived from probiotics: progress, challenges and prospects. Front Immunol 2023; 14:1263586. [PMID: 37868963 PMCID: PMC10587609 DOI: 10.3389/fimmu.2023.1263586] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Bacterium-like particles (BLPs) are hollow peptidoglycan particles obtained from food-grade Lactococcus lactis inactivated by hot acid. With the advantage of easy preparation, high safety, great stability, high loading capacity, and high mucosal delivery efficiency, BLPs can load and display proteins on the surface with the help of protein anchor (PA), making BLPs a proper delivery system. Owning to these features, BLPs are widely used in the development of adjuvants, vaccine carriers, virus/antigens purification, and enzyme immobilization. This review has attempted to gather a full understanding of the technical composition, characteristics, applications. The mechanism by which BLPs induces superior adaptive immune responses is also discussed. Besides, this review tracked the latest developments in the field of BLPs, including Lactobacillus-derived BLPs and novel anchors. Finally, the main limitations and proposed breakthrough points to further enhance the immunogenicity of BLPs vaccines were discussed, providing directions for future research. We hope that further developments in the field of antigen delivery of subunit vaccines or others will benefit from BLPs.
Collapse
Affiliation(s)
- Xinyao Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mingchun Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinqi De
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhikun Bai
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Jilong Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin, China
| |
Collapse
|
9
|
Zhou M, Tang Y, Xu W, Hao X, Li Y, Huang S, Xiang D, Wu J. Bacteria-based immunotherapy for cancer: a systematic review of preclinical studies. Front Immunol 2023; 14:1140463. [PMID: 37600773 PMCID: PMC10436994 DOI: 10.3389/fimmu.2023.1140463] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/30/2023] [Indexed: 08/22/2023] Open
Abstract
Immunotherapy has been emerging as a powerful strategy for cancer management. Recently, accumulating evidence has demonstrated that bacteria-based immunotherapy including naive bacteria, bacterial components, and bacterial derivatives, can modulate immune response via various cellular and molecular pathways. The key mechanisms of bacterial antitumor immunity include inducing immune cells to kill tumor cells directly or reverse the immunosuppressive microenvironment. Currently, bacterial antigens synthesized as vaccine candidates by bioengineering technology are novel antitumor immunotherapy. Especially the combination therapy of bacterial vaccine with conventional therapies may further achieve enhanced therapeutic benefits against cancers. However, the clinical translation of bacteria-based immunotherapy is limited for biosafety concerns and non-uniform production standards. In this review, we aim to summarize immunotherapy strategies based on advanced bacterial therapeutics and discuss their potential for cancer management, we will also propose approaches for optimizing bacteria-based immunotherapy for facilitating clinical translation.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yucheng Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenjie Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xinyan Hao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yongjiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Si Huang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| |
Collapse
|
10
|
Hou Y, Chen M, Bian Y, Zheng X, Tong R, Sun X. Advanced subunit vaccine delivery technologies: From vaccine cascade obstacles to design strategies. Acta Pharm Sin B 2023; 13:3321-3338. [PMID: 37655334 PMCID: PMC10465871 DOI: 10.1016/j.apsb.2023.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 01/12/2023] Open
Abstract
Designing and manufacturing safe and effective vaccines is a crucial challenge for human health worldwide. Research on adjuvant-based subunit vaccines is increasingly being explored to meet clinical needs. Nevertheless, the adaptive immune responses of subunit vaccines are still unfavorable, which may partially be attributed to the immune cascade obstacles and unsatisfactory vaccine design. An extended understanding of the crosstalk between vaccine delivery strategies and immunological mechanisms could provide scientific insight to optimize antigen delivery and improve vaccination efficacy. In this review, we summarized the advanced subunit vaccine delivery technologies from the perspective of vaccine cascade obstacles after administration. The engineered subunit vaccines with lymph node and specific cell targeting ability, antigen cross-presentation, T cell activation properties, and tailorable antigen release patterns may achieve effective immune protection with high precision, efficiency, and stability. We hope this review can provide rational design principles and inspire the exploitation of future subunit vaccines.
Collapse
Affiliation(s)
- Yingying Hou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Min Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xi Zheng
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Dong H, Li Q, Zhang Y, Ding M, Teng Z, Mou Y. Biomaterials Facilitating Dendritic Cell-Mediated Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301339. [PMID: 37088780 PMCID: PMC10288267 DOI: 10.1002/advs.202301339] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Dendritic cell (DC)-based cancer immunotherapy has exhibited remarkable clinical prospects because DCs play a central role in initiating and regulating adaptive immune responses. However, the application of traditional DC-mediated immunotherapy is limited due to insufficient antigen delivery, inadequate antigen presentation, and high levels of immunosuppression. To address these challenges, engineered biomaterials have been exploited to enhance DC-mediated immunotherapeutic effects. In this review, vital principal components that can enhance DC-mediated immunotherapeutic effects are first introduced. The parameters considered in the rational design of biomaterials, including targeting modifications, size, shape, surface, and mechanical properties, which can affect biomaterial optimization of DC functions, are further summarized. Moreover, recent applications of various engineered biomaterials in the field of DC-mediated immunotherapy are reviewed, including those serve as immune component delivery platforms, remodel the tumor microenvironment, and synergistically enhance the effects of other antitumor therapies. Overall, the present review comprehensively and systematically summarizes biomaterials related to the promotion of DC functions; and specifically focuses on the recent advances in biomaterial designs for DC activation to eradicate tumors. The challenges and opportunities of treatment strategies designed to amplify DCs via the application of biomaterials are discussed with the aim of inspiring the clinical translation of future DC-mediated cancer immunotherapies.
Collapse
Affiliation(s)
- Heng Dong
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Qiang Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Yu Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Meng Ding
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Yongbin Mou
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| |
Collapse
|
12
|
Li CX, Qi Y, Chen Y, Zhang Y, Li B, Feng J, Zhang XZ. Tuning Bacterial Morphology to Enhance Anticancer Vaccination. ACS NANO 2023; 17:8815-8828. [PMID: 37093563 DOI: 10.1021/acsnano.3c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Morphology tuning is a potent strategy to modulate physiological effects of synthetic biomaterials, but it is rarely explored in microbe-based biochemicals due to the lack of artificial adjustability. Inspired by the interesting phenomenon of microbial transformation, Escherichia coli is rationally adjusted into filamentous morphology-adjusted bacteria (MABac) via chemical stimulation to prepare a bacteria-based vaccine adjuvant/carrier. Inactivated MABac display stronger immunogenicity and special delivery patterns (phagosome escape and cytoplasmic retention) that are sharply distinct from the short rod-shaped bacteria parent (Bac). Transcriptomic study further offers solid evidence for deeply understanding the in vivo activity of MABac-based vaccine, which more effectively motivates multiple cytosolic immune pathways (such as NOD-like receptors and STING) and induces pleiotropic immune responses in comparison with Bac. Harnessing the special functions caused by morphology tuning, the MABac-based adjuvant/carrier significantly improves the immunogenicity and delivery profile of cancer antigens in vivo, thus boosting cancer-specific immunity against the melanoma challenge. This study validates the feasibility of tuning bacterial morphology to improve their biological effects, establishing a facile engineering strategy that upgrades bacterial properties and functions without complex procedures like gene editing.
Collapse
Affiliation(s)
- Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yongdan Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yingge Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Bin Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
13
|
Zhao N, Song Y, Xie X, Zhu Z, Duan C, Nong C, Wang H, Bao R. Synthetic biology-inspired cell engineering in diagnosis, treatment, and drug development. Signal Transduct Target Ther 2023; 8:112. [PMID: 36906608 PMCID: PMC10007681 DOI: 10.1038/s41392-023-01375-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
The fast-developing synthetic biology (SB) has provided many genetic tools to reprogram and engineer cells for improved performance, novel functions, and diverse applications. Such cell engineering resources can play a critical role in the research and development of novel therapeutics. However, there are certain limitations and challenges in applying genetically engineered cells in clinical practice. This literature review updates the recent advances in biomedical applications, including diagnosis, treatment, and drug development, of SB-inspired cell engineering. It describes technologies and relevant examples in a clinical and experimental setup that may significantly impact the biomedicine field. At last, this review concludes the results with future directions to optimize the performances of synthetic gene circuits to regulate the therapeutic activities of cell-based tools in specific diseases.
Collapse
Affiliation(s)
- Ninglin Zhao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yingjie Song
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Xiangqian Xie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Ziqi Zhu
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxi Duan
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Nong
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Rui Bao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Jiang J, Huang Y, Zeng Z, Zhao C. Harnessing Engineered Immune Cells and Bacteria as Drug Carriers for Cancer Immunotherapy. ACS NANO 2023; 17:843-884. [PMID: 36598956 DOI: 10.1021/acsnano.2c07607] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Immunotherapy continues to be in the spotlight of oncology therapy research in the past few years and has been proven to be a promising option to modulate one's innate and adaptive immune systems for cancer treatment. However, the poor delivery efficiency of immune agents, potential off-target toxicity, and nonimmunogenic tumors significantly limit its effectiveness and extensive application. Recently, emerging biomaterial-based drug carriers, including but not limited to immune cells and bacteria, are expected to be potential candidates to break the dilemma of immunotherapy, with their excellent natures of intrinsic tumor tropism and immunomodulatory activity. More than that, the tiny vesicles and physiological components derived from them have similar functions with their source cells due to the inheritance of various surface signal molecules and proteins. Herein, we presented representative examples about the latest advances of biomaterial-based delivery systems employed in cancer immunotherapy, including immune cells, bacteria, and their derivatives. Simultaneously, opportunities and challenges of immune cells and bacteria-based carriers are discussed to provide reference for their future application in cancer immunotherapy.
Collapse
Affiliation(s)
- Jingwen Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zishan Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
15
|
Chen J, Liao W, Peng H. Toxoplasma gondii infection possibly reverses host immunosuppression to restrain tumor growth. Front Cell Infect Microbiol 2022; 12:959300. [PMID: 36118042 PMCID: PMC9470863 DOI: 10.3389/fcimb.2022.959300] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor cells can successfully escape the host immune attack by inducing the production of immunosuppressive cells and molecules, leading to an ineffective tumor treatment and poor prognosis. Although immunotherapies have improved the survival rate of cancer patients in recent years, more effective drugs and therapies still need to be developed. As an intracellular parasite, Toxoplasma gondii can trigger a strong Th1 immune response in host cells, including upregulating the expression of interleukin-12 (IL-12) and interferon-γ (IFN-γ). Non-replicating uracil auxotrophic strains of T. gondii were used to safely reverse the immunosuppression manipulated by the tumor microenvironment. In addition to the whole lysate antigens, T. gondii-secreted effectors, including Toxoplasma profilin, rhoptry proteins (ROPs), and dense granule antigens (GRAs), are involved in arousing the host’s antigen presentation system to suppress tumors. When T. gondii infection relieves immunosuppression, tumor-related myeloid cells, including macrophages and dendritic cells (DCs), are transformed into immunostimulatory phenotypes, showing a powerful Th1 immune response mediated by CD8+ T cells. Afterwards, they target and kill the tumor cells, and ultimately reduce the size and weight of tumor tissues. This article reviews the latest applications of T. gondii in tumor therapy, including the activation of cellular immunity and the related signal pathways, which will help us understand why T. gondii infection can restrain tumor growth.
Collapse
Affiliation(s)
- Jiating Chen
- Department of Pathogen Biology, School of Public Health, Guangdong Provincial Key laboratory of Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Wenzhong Liao
- Department of Pathogen Biology, School of Public Health, Guangdong Provincial Key laboratory of Tropical Medicine, Southern Medical University, Guangzhou, China
| | - HongJuan Peng
- Department of Pathogen Biology, School of Public Health, Guangdong Provincial Key laboratory of Tropical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Li S, Yue H, Wang S, Li X, Wang X, Guo P, Ma G, Wei W. Advances of bacteria-based delivery systems for modulating tumor microenvironment. Adv Drug Deliv Rev 2022; 188:114444. [PMID: 35817215 DOI: 10.1016/j.addr.2022.114444] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022]
Abstract
The components and hospitable properties of tumor microenvironment (TME) are associated with tumor progression. Recently, TME modulating vectors and strategies have garnished significant attention in cancer therapy. Although a pilot work has reviewed TME regulation via nanoparticle-based delivery systems, there is no systematical review that summarizes the natural bacteria-based anti-tumor system to modulate TME. In this review, we conclude the strategies of bacterial carriers (including whole bacteria, bacterial skeleton and bacterial components) to regulate TME from the perspective of TME components and hospitable properties, and the clinical trials of bacteria-mediated cancer therapy. Current challenges and future prospects for the design of bacteria-based carriers are also proposed that provide critical insights into this natural delivery system and related translation from the bench to the clinic.
Collapse
Affiliation(s)
- Shuping Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xin Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiaojun Wang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
17
|
Krishnan N, Kubiatowicz LJ, Holay M, Zhou J, Fang RH, Zhang L. Bacterial membrane vesicles for vaccine applications. Adv Drug Deliv Rev 2022; 185:114294. [PMID: 35436569 DOI: 10.1016/j.addr.2022.114294] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/13/2022] [Accepted: 04/10/2022] [Indexed: 12/11/2022]
Abstract
Vaccines have been highly successful in the management of many diseases. However, there are still numerous illnesses, both infectious and noncommunicable, for which there are no clinically approved vaccine formulations. While there are unique difficulties that must be overcome in the case of each specific disease, there are also a number of common challenges that have to be addressed for effective vaccine development. In recent years, bacterial membrane vesicles (BMVs) have received increased attention as a potent and versatile vaccine platform. BMVs are inherently immunostimulatory and are able to activate both innate and adaptive immune responses. Additionally, BMVs can be readily taken up and processed by immune cells due to their nanoscale size. Finally, BMVs can be modified in a variety of ways, including by genetic engineering, cargo loading, and nanoparticle coating, in order to create multifunctional platforms that can be leveraged against different diseases. Here, an overview of the interactions between BMVs and immune cells is provided, followed by discussion on the applications of BMV vaccine nanotechnology against bacterial infections, viral infections, and cancers.
Collapse
Affiliation(s)
- Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Luke J Kubiatowicz
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Maya Holay
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
18
|
Xu LQ, Yao LJ, Jiang D, Zhou LJ, Chen M, Liao WZ, Zou WH, Peng HJ. A uracil auxotroph Toxoplasma gondii exerting immunomodulation to inhibit breast cancer growth and metastasis. Parasit Vectors 2021; 14:601. [PMID: 34895326 PMCID: PMC8665513 DOI: 10.1186/s13071-021-05032-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Breast cancer is the most common cause of cancer-related death among women, and prognosis is especially poor for patients with triple-negative breast cancer (TNBC); therefore, there is an urgent need for new effective therapies. Recent studies have demonstrated that the uracil auxotroph Toxoplasma gondii vaccine displays anti-tumor effects. Here, we examined the immunotherapy effects of an attenuated uracil auxotroph strain of T. gondii against 4T1 murine breast cancer. METHODS We constructed a uracil auxotroph T. gondii RH strain via orotidine 5'-monophosphate decarboxylase gene deletion (RH-Δompdc) with CRISPR/Cas9 technology. The strain's virulence in the T. gondii-infected mice was determined in vitro and in vivo by parasite replication assay, plaque assay, parasite burden detection in mice peritoneal fluids and survival analysis. The immunomodulation ability of the strain was evaluated by cytokine detection. Its anti-tumor effect was evaluated after its in situ inoculation into 4T1 tumors in a mouse model; the tumor volume was measured, and the 4T1 lung metastasis was detected by hematoxylin and eosin and Ki67 antibody staining, and the cytokine levels were measured by an enzyme-linked immunosorbent assay. RESULTS The RH-Δompdc strain proliferated normally when supplemented with uracil, but it was unable to propagate without the addition of uracil and in vivo, which suggested that it was avirulent to the hosts. This mutant showed vaccine characteristics that could induce intense immune responses both in vitro and in vivo by significantly boosting the expression of inflammatory cytokines. Inoculation of RH-Δompdc in situ into the 4T1 tumor inhibited tumor growth, reduced lung metastasis, promoted the survival of the tumor-bearing mice and increased the secretion of Th1 cytokines, including interleukin-12 (IL-12) and interferon-γ (INF-δ), in both the serum and tumor microenvironment (TME). CONCLUSION Inoculation of the uracil auxotroph RH-Δompdc directly into the 4T1 tumor stimulated anti-infection and anti-tumor immunity in mice, and resulted in inhibition of tumor growth and metastasis, promotion of the survival of the tumor-bearing mice and increased secretion of IL-12 and IFN-γ in both the serum and TME. Our findings suggest that the immunomodulation caused by RH-Δompdc could be a potential anti-tumor strategy.
Collapse
Affiliation(s)
- Li-Qing Xu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Li-Jie Yao
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Dan Jiang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Li-Juan Zhou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Min Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Wen-Zhong Liao
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Wei-Hao Zou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Hong-Juan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.
| |
Collapse
|
19
|
Ye T, Li F, Ma G, Wei W. Enhancing therapeutic performance of personalized cancer vaccine via delivery vectors. Adv Drug Deliv Rev 2021; 177:113927. [PMID: 34403752 DOI: 10.1016/j.addr.2021.113927] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022]
Abstract
In recent years, personalized cancer vaccines have gained increasing attention as emerging immunotherapies with the capability to overcome interindividual differences and show great benefits for individual patients in the clinic due to the highly tailored vaccine formulations. A large number of materials have been studied as delivery vectors to enhance the therapeutic performance of personalized cancer vaccines, including artificial materials, engineered microorganisms, cells and cell derivatives. These delivery vectors with distinct features are employed to change antigen biodistributions and to facilitate antigen uptake, processing and presentation, improving the strength, velocity, and duration of the immune response when delivered by different strategies. Here, we provide an overview of personalized cancer vaccine delivery vectors, describing their materials, physicochemical properties, delivery strategies and challenges for clinical transformation.
Collapse
|
20
|
Engineered porous/hollow Burkholderia pseudomallei loading tumor lysate as a vaccine. Biomaterials 2021; 278:121141. [PMID: 34564035 DOI: 10.1016/j.biomaterials.2021.121141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 11/23/2022]
Abstract
Due to its size, shape, and inherent expression of pathogen-associated molecular patterns and invasion-assistant adhesion proteins, Burkholderia pseudomallei can easily attach to, and then be internalized by, dendritic cells (DCs), leading to more efficient antigen cross-presentation if modified as carrier. Herein, we engineered Burkholderia pseudomallei as a porous/hollow carrier (SB) for loading tumor lysates (L) and adjuvant CpG (C) to be used as a tumor vaccine (SB-LC). We found that the adhesion proteins of Burkholderia pseudomallei promote internalization of the SB-LC vaccine by DCs, and result in enhanced DC maturation and antigen cross-presentation. SB-LC induces robust cellular and humoral antitumor responses that synergistically inhibit tumor growth with minimal adverse side effects in several tumor models. Moreover, SB-LC vaccination reverses the immunosuppressive tumor microenvironment, apparently as a result of CD8+-induced tumor ferroptosis. Thus, SB-LC is a potential model tumor vaccine for translating into a clinically viable treatment option.
Collapse
|
21
|
Li Z, Wang Y, Liu J, Rawding P, Bu J, Hong S, Hu Q. Chemically and Biologically Engineered Bacteria-Based Delivery Systems for Emerging Diagnosis and Advanced Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102580. [PMID: 34347325 DOI: 10.1002/adma.202102580] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Bacteria are one of the main groups of organisms, which dynamically and closely participate in human health and disease development. With the integration of chemical biotechnology, bacteria have been utilized as an emerging delivery system for various biomedical applications. Given the unique features of bacteria such as their intrinsic biocompatibility and motility, bacteria-based delivery systems have drawn wide interest in the diagnosis and treatment of various diseases, including cancer, infectious diseases, kidney failure, and hyperammonemia. Notably, at the interface of chemical biotechnology and bacteria, many research opportunities have been initiated, opening a promising frontier in biomedical application. Herein, the current synergy of chemical biotechnology and bacteria, the design principles for bacteria-based delivery systems, the microbial modulation, and the clinical translation are reviewed, with a special focus on the emerging advances in diagnosis and therapy.
Collapse
Affiliation(s)
- Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Jun Liu
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Piper Rawding
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| |
Collapse
|
22
|
Wu S, Xia Y, Hu Y, Ma G. Bio-mimic particles for the enhanced vaccinations: Lessons learnt from the natural traits and pathogenic invasion. Adv Drug Deliv Rev 2021; 176:113871. [PMID: 34311014 DOI: 10.1016/j.addr.2021.113871] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 12/21/2022]
Abstract
In the combat against pathogens, the immune systems were evolved with the immune recognitions against the various danger signals, which responded vigorously upon the pathogen invasions and elicited potent antibodies or T cell engagement against the re-infections. Envisage with the prevailing pandemics and increasing demands for cancer vaccines, bio-mimic particles were developed to imitate the natural traits of the pathogens, which conferred the optimal strategies to stimulate the immune engagement and let to the increased vaccine efficacy. Here, the recent development in bio-mimic particles, as well as the natural cues from the pathogens were discussed. As such, the designing principles that adapted from the physiochemical properties of the pathogens were unfolded as the surface characteristics (hydrophobic, nano-pattern, antigen display, charge), properties (size, shape, softness) and the delivered components (peptide, protein, nuclear acids, toll-like receptor (TLR) agonist, antibody). Additionally, the strategies for the efficient delivery, regarding the biodistribution, internalization and presentation of the antigens were also illustrated. Through reviewing the state-of-art in biomimetic particles, the lesson learnt from the natural traits and pathogenic invasion may shed light on the rational design for the enhanced vaccinations.
Collapse
|
23
|
Yang Z, Hua L, Yang M, Liu SQ, Shen J, Li W, Long Q, Bai H, Yang X, Ren Z, Zheng X, Sun W, Ye C, Li D, Zheng P, He J, Chen Y, Huang W, Peng X, Ma Y. RBD-Modified Bacterial Vesicles Elicited Potential Protective Immunity against SARS-CoV-2. NANO LETTERS 2021; 21:5920-5930. [PMID: 34279108 PMCID: PMC8315139 DOI: 10.1021/acs.nanolett.1c00680] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/02/2021] [Indexed: 05/13/2023]
Abstract
The disease caused by SARS-CoV-2 infection threatens human health. In this study, we used high-pressure homogenization technology not only to efficiently drive the bacterial membrane to produce artificial vesicles but also to force the fusion protein ClyA-receptor binding domain (RBD) to pass through gaps in the bacterial membrane to increase the contact between ClyA-RBD and the membrane. Therefore, the load of ClyA-RBD on the membrane is substantially increased. Using this technology, we constructed a "ring-like" bacterial biomimetic vesicle (BBV) loaded with polymerized RBD (RBD-BBV). RBD-BBVs injected subcutaneously can accumulate in lymph nodes, promote antigen uptake and processing, and elicit SARS-CoV-2-specific humoral and cellular immune responses in mice. In conclusion, we evaluated the potential of this novel bacterial vesicle as a vaccine delivery system and provided a new idea for the development of SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Zhongqian Yang
- Laboratory
of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Kunming, China
| | - Liangqun Hua
- Laboratory
of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Kunming, China
- Yunnan
University, Kunming, China
| | - Mengli Yang
- National
Kunming High-level Biosafety Primate Research Center, Institute of
Medical Biology, Chinese Academy of Medical
Sciences and Peking Union Medical College, Kunming, China
| | - Shu-Qun Liu
- Yunnan
University, Kunming, China
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan & School of Life Sciences, Yunnan
University, Kunming, China
| | - Jianxin Shen
- Yunnan
University, Kunming, China
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan & School of Life Sciences, Yunnan
University, Kunming, China
| | - Weiran Li
- Laboratory
of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Kunming, China
| | - Qiong Long
- Laboratory
of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Kunming, China
| | - Hongmei Bai
- Laboratory
of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Kunming, China
| | - Xu Yang
- Laboratory
of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Kunming, China
| | - Zhaoling Ren
- The
Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Kunming
Medical University, Kunming, China
| | - Xiao Zheng
- Laboratory
of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Kunming, China
- Yunnan
University, Kunming, China
| | - Wenjia Sun
- Laboratory
of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Kunming, China
| | - Chao Ye
- Laboratory
of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Kunming, China
| | - Duo Li
- Laboratory
of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Kunming, China
- Department
of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Center for Disease Control and Prevention, Kunming, China
| | - Peng Zheng
- Laboratory
of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Kunming, China
| | - Jinrong He
- Laboratory
of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Kunming, China
- Kunming
Medical University, Kunming, China
| | - Yongjun Chen
- Laboratory
of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Kunming, China
| | - Weiwei Huang
- Laboratory
of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Kunming, China
| | - Xiaozhong Peng
- National
Kunming High-level Biosafety Primate Research Center, Institute of
Medical Biology, Chinese Academy of Medical
Sciences and Peking Union Medical College, Kunming, China
- State
Key Laboratory of Medical Molecular Biology, Department of Molecular
Biology and Biochemistry, Institute of Basic Medical Sciences, Medical
Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking
Union Medical College, Beijing, China
| | - Yanbing Ma
- Laboratory
of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Kunming, China
| |
Collapse
|
24
|
Abstract
The natural world has provided a host of materials and inspiration for the field of nanomedicine. By taking design cues from naturally occurring systems, the nanoengineering of advanced biomimetic platforms has significantly accelerated over the past decade. In particular, the biomimicry of bacteria, with their motility, taxis, immunomodulation, and overall dynamic host interactions, has elicited substantial interest and opened up exciting avenues of research. More recently, advancements in genetic engineering have given way to more complex and elegant systems with tunable control characteristics. Furthermore, bacterial derivatives such as membrane ghosts, extracellular vesicles, spores, and toxins have proven advantageous for use in nanotherapeutic applications, as they preserve many of the features from the original bacteria while also offering distinct advantages. Overall, bacteria-inspired nanomedicines can be employed in a range of therapeutic settings, from payload delivery to immunotherapy, and have proven successful in combatting both cancer and infectious disease.
Collapse
Affiliation(s)
- Maya Holay
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhongyuan Guo
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jessica Pihl
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiyoung Heo
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Joon Ho Park
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
25
|
Song C, Zhang X, Wei W, Ma G. Principles of regulating particle multiscale structures for controlling particle-cell interaction process. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Liu L, Wu J, Gao J, Lu X. Bacteria-Derived Nanoparticles: Multifunctional Containers for Diagnostic and Therapeutic Applications. Adv Healthc Mater 2020; 9:e2000893. [PMID: 32945152 DOI: 10.1002/adhm.202000893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/04/2020] [Indexed: 12/12/2022]
Abstract
In recent decades, investigations on bacteria-derived materials have progressed from being a proof of concept to a means for improving traditional biomaterials. Owing to their unique characteristics, such as gene manipulation, rapid proliferation, and specific targeting, bacteria-derived materials have provided remarkable flexibility in applied biomedical functionalization. In this review, bacteria-derived nanoparticles are focused on as a promising biomaterial, introducing several bacterial species with great potential and useful strategies for fabrication. Through well-designed choices, bacteria-derived nanoparticles can be exploited to obtain functional bacteria-mimicking materials for a variety of applications, including cargo delivery, imaging, therapy, and immune modulation. Finally, the prospects and challenges of bacteria-derived nanoparticles are discussed. Particularly, safety concerns regarding the use of bacteria and their immunogenicity remain major obstacles to the clinical application of bacteria-derived nanoparticles and these concerns are immediate priorities for the research community.
Collapse
Affiliation(s)
- Lin Liu
- Department of Pharmacy Zhejiang University School of Medicine First Affiliated Hospital Hangzhou 310003 P. R. China
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 P. R. China
| | - Jiahe Wu
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 P. R. China
| | - Jianqing Gao
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 P. R. China
| | - Xiaoyang Lu
- Department of Pharmacy Zhejiang University School of Medicine First Affiliated Hospital Hangzhou 310003 P. R. China
| |
Collapse
|
27
|
Xia Y, Song T, Hu Y, Ma G. Synthetic Particles for Cancer Vaccines: Connecting the Inherent Supply Chain. Acc Chem Res 2020; 53:2068-2080. [PMID: 32945648 DOI: 10.1021/acs.accounts.0c00336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer vaccines have opened a new paradigm for safe and effective antitumor therapy, but they still suffer from shortcomings such as insufficient immunogenicity and immune tolerance, which seldom makes them the first choice in clinic. In fact, similar to providing a high-end product, a robust antitumor effect depends on the inherent supply chain, which attains, processes, and presents tumor-associated antigens via antigen presenting cells to T cells, which then leads to lysis of the cancer cells to release more antigens to complete the supply chain. Under these circumstances, the failure of cancer vaccines can be treated as a blockade or chain rupture. Thus, for effective tumor treatment, the key is to rationally design logistic systems to restore the supply chain.Under these circumstances, this Account summarizes our recent attempts to exploit the immunogenic trait of synthetic particles to enhance the distribution, presentation, and immune activations of the whole priming process in cancer vaccines: (1) Raw material (tumor antigen/signals) procurement: We illustrated the efforts to deliver antigens to antigen presenting cells (APCs) and draining lymph nodes for potent internalizations, and put more emphasis on the structural effect of sizes, charges, shapes, and assembly strategies for the antigen depot, lymph node transfer, and APC endocytosis. (2) Manufacture of cytotoxic T lymphocytes (CTLs) via APC recognition and presentation: We centered on exploiting the softness of two-dimensional graphene and Pickering emulsions to dynamically potentiate the immune recognition, and demonstrating the recent advances in lysosome escape strategies for enhanced antigen cross-presentations. (3) Marketing the accumulations of CTLs and the reversal of an immunosuppressive microenvironment within the tumor: We demonstrated the previous attempts to inherently cultivate the tumor tropism of the T cells via the multiantigenic repertoire and discussed the advances and challenges of combinatory cancer vaccines with an immune checkpoint blockade to reinforce the antitumor efficacy. Collectively, this Account aims to illustrate the potential of the particulate cancer vaccines to recapitalize the inherent host immune responses for the maximum antitumor effect. And by integrating the antitumor supply chain, optimized synthetic particles may shed light on the development of safe and effective particulate cancer vaccines.
Collapse
Affiliation(s)
- Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Tiantian Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, P. R. China
- Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Yuning Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
28
|
Ma G, Yue H. Advances in Uniform Polymer Microspheres and Microcapsules: Preparation and Biomedical Applications. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000135] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science Beijing 100190 China
| |
Collapse
|
29
|
Xi X, Ye T, Wang S, Na X, Wang J, Qing S, Gao X, Wang C, Li F, Wei W, Ma G. Self-healing microcapsules synergetically modulate immunization microenvironments for potent cancer vaccination. SCIENCE ADVANCES 2020; 6:eaay7735. [PMID: 32494733 PMCID: PMC7244316 DOI: 10.1126/sciadv.aay7735] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/09/2020] [Indexed: 05/20/2023]
Abstract
Therapeutic cancer vaccines that harness the immune system to reject cancer cells have shown great promise for cancer treatment. Although a wave of efforts have spurred to improve the therapeutic effect, unfavorable immunization microenvironment along with a complicated preparation process and frequent vaccinations substantially compromise the performance. Here, we report a novel microcapsule-based formulation for high-performance cancer vaccinations. The special self-healing feature provides a mild and efficient paradigm for antigen microencapsulation. After vaccination, these microcapsules create a favorable immunization microenvironment in situ, wherein antigen release kinetics, recruited cell behavior, and acid surrounding work in a synergetic manner. In this case, we can effectively increase the antigen utilization, improve the antigen presentation, and activate antigen presenting cells. As a result, effective T cell response, potent tumor inhibition, antimetastatic effects, and prevention of postsurgical recurrence are achieved with various types of antigens, while neoantigen was encapsuled and evaluated in different tumor models.
Collapse
Affiliation(s)
- Xiaobo Xi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tong Ye
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiangming Na
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jianghua Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuang Qing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoyong Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Changlong Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Feng Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
30
|
Qin M, Du G, Sun X. Biomimetic cell-derived nanocarriers for modulating immune responses. Biomater Sci 2020; 8:530-543. [PMID: 31750453 DOI: 10.1039/c9bm01444f] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, we summarize various applications of biomimetic carriers in modulating immune responses and discuss the future perspectives.
Collapse
Affiliation(s)
- Ming Qin
- Key Laboratory of Drug Targeting and Drug Delivery Systems
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Guangsheng Du
- Key Laboratory of Drug Targeting and Drug Delivery Systems
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| |
Collapse
|
31
|
Wu J, Ma G. Biomimic strategies for modulating the interaction between particle adjuvants and antigen-presenting cells. Biomater Sci 2020; 8:2366-2375. [DOI: 10.1039/c9bm02098e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The design strategies of particle adjuvants by mimicking natural pathogens to strengthen their interaction with antigen-presenting cells.
Collapse
Affiliation(s)
- Jie Wu
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- P.R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- P.R. China
| |
Collapse
|
32
|
Huo M, Wang L, Zhang L, Wei C, Chen Y, Shi J. Photosynthetic Tumor Oxygenation by Photosensitizer-Containing Cyanobacteria for Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2019; 59:1906-1913. [PMID: 31721383 DOI: 10.1002/anie.201912824] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/03/2019] [Indexed: 12/28/2022]
Abstract
Sustained tumor oxygenation is of critical importance during type-II photodynamic therapy (PDT), which depends on the intratumoral oxygen level for the generation of reactive oxygen species. Herein, the modification of photosynthetic cyanobacteria with the photosensitizer chlorin e6 (ce6) to form ce6-integrated photosensitive cells, termed ceCyan, is reported. Upon 660 nm laser irradiation, sustained photosynthetic O2 evolution by the cyanobacteria and the immediate generation of reactive singlet oxygen species (1 O2 ) by the integrated photosensitizer could be almost simultaneously achieved for tumor therapy using type-II PDT both in vitro and in vivo. This work contributes a conceptual while practical paradigm for biocompatible and effective PDT using hybrid microorganisms, displaying a bright future in clinical PDT by microbiotic nanomedicine.
Collapse
Affiliation(s)
- Minfeng Huo
- State Key Laboratory of High Performance Ceramics, and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liying Wang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Linlin Zhang
- State Key Laboratory of High Performance Ceramics, and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Chenyang Wei
- State Key Laboratory of High Performance Ceramics, and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics, and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics, and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
33
|
Huo M, Wang L, Zhang L, Wei C, Chen Y, Shi J. Photosynthetic Tumor Oxygenation by Photosensitizer‐Containing Cyanobacteria for Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912824] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Minfeng Huo
- State Key Laboratory of High Performance Ceramics, and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Liying Wang
- Shanghai Tenth People's HospitalTongji University School of Medicine Shanghai 200072 P. R. China
| | - Linlin Zhang
- State Key Laboratory of High Performance Ceramics, and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
| | - Chenyang Wei
- State Key Laboratory of High Performance Ceramics, and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics, and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics, and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
34
|
Zhang Z, Sang W, Xie L, Dai Y. Metal-organic frameworks for multimodal bioimaging and synergistic cancer chemotherapy. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213022] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Song C, Li F, Wang S, Wang J, Wei W, Ma G. Recent Advances in Particulate Adjuvants for Cancer Vaccination. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cui Song
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Feng Li
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
| | - Jianghua Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
36
|
Zhang L, Wu S, Qin Y, Fan F, Zhang Z, Huang C, Ji W, Lu L, Wang C, Sun H, Leng X, Kong D, Zhu D. Targeted Codelivery of an Antigen and Dual Agonists by Hybrid Nanoparticles for Enhanced Cancer Immunotherapy. NANO LETTERS 2019; 19:4237-4249. [PMID: 30868883 DOI: 10.1021/acs.nanolett.9b00030] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Among approaches of current cancer immunotherapy, a dendritic cell (DC)-targeted vaccine based on nanotechnology could be a promising way to efficiently induce potent immune responses. To enhance DC targeting and vaccine efficiency, we included imiquimod (IMQ), a toll-like receptor 7/8 (TLR 7/8) agonist, and monophosphoryl lipid A (MPLA), a TLR4 agonist, to synthesize lipid-polymer hybrid nanoparticles using PCL-PEG-PCL and DOTAP (IMNPs) as well as DSPE-PEG-mannose (MAN-IMNPS). The spatiotemporal delivery of MPLA (within the outer lipid layer) to extracellular TLR4 and IMQ (in the hydrophobic core of NPs) to intracellular TLR7/8 can activate DCs synergistically to improve vaccine efficacy. Ovalbumin (OVA) as a model antigen was readily absorbed by positively charged DOTAP and showed a quick release in vitro. Our results demonstrated that this novel nanovaccine enhanced cellular uptake, cytokine production, and maturation of DCs. Compared with the quick metabolism of free OVA-agonists, the depot effect of OVA-IMNPs was observed, whereas MAN-OVA-IMNPs promoted trafficking to secondary lymphoid organs. After immunization with a subcutaneous injection, the nanovaccine, especially MAN-OVA-IMNPs, induced more antigen-specific CD8+ T cells, greater lymphocyte activation, stronger cross-presentation, and more generation of memory T cells, antibody, IFN-γ, and granzyme B. Prophylactic vaccination of MAN-OVA-IMNPs significantly delayed tumor development and prolonged the survival in mice. The therapeutic tumor challenge indicated that MAN-OVA-IMNPs prohibited tumor progression more efficiently than other formulations, and the combination with an immune checkpoint blockade further enhanced antitumor effects. Hence, the DC-targeted vaccine codelivery with IMQ and MPLA adjuvants by hybrid cationic nanoparticles in a spatiotemporal manner is a promising multifunctional antigen delivery system in cancer immunotherapy.
Collapse
Affiliation(s)
- Linhua Zhang
- Tianjin Key Laboratory of Biomedical Materials , Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300192 , China
| | - Shengjie Wu
- Tianjin Key Laboratory of Biomedical Materials , Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300192 , China
| | - Yu Qin
- Tianjin Key Laboratory of Biomedical Materials , Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300192 , China
| | - Fan Fan
- Tianjin Key Laboratory of Biomedical Materials , Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300192 , China
| | - Zhiming Zhang
- Tianjin Key Laboratory of Biomedical Materials , Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300192 , China
| | - Chenlu Huang
- Tianjin Key Laboratory of Biomedical Materials , Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300192 , China
| | - Weihang Ji
- Department of Biomedical Engineering , University of Minnesota , 7-116 Hasselmo Hall, 312 Church Street SE , Minneapolis , Minnesota 55455 , United States
| | - Lu Lu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine , Tianjin 300192 , China
| | - Chun Wang
- Department of Biomedical Engineering , University of Minnesota , 7-116 Hasselmo Hall, 312 Church Street SE , Minneapolis , Minnesota 55455 , United States
| | - Hongfan Sun
- Tianjin Key Laboratory of Biomedical Materials , Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300192 , China
| | - Xigang Leng
- Tianjin Key Laboratory of Biomedical Materials , Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300192 , China
| | - Deling Kong
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences , Nankai University , Tianjin 300071 , China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute , Xuzhou Medical University , Xuzhou 221004 , Jiangsu , China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials , Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300192 , China
| |
Collapse
|
37
|
Imitation of nature: Bionic design in the study of particle adjuvants. J Control Release 2019; 303:101-108. [DOI: 10.1016/j.jconrel.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/23/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022]
|
38
|
Jin JW, Peng WL, Tang SQ, Rong MZ, Zhang MQ. Antigen uptake and immunoadjuvant activity of pathogen-mimetic hollow silica particles conjugated with β-glucan. J Mater Chem B 2018; 6:6288-6301. [PMID: 32254619 DOI: 10.1039/c8tb02129e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of vaccines is to imitate the immune responses induced by pathogen infection without causing disease. Therefore, strategies of designing vaccine delivery systems by mimicking key features of pathogens are often used. For this purpose, the present study prepares pathogen-mimicking β-glucan-conjugated hollow silica particles by using polystyrene or bacteria particles as templates. The particles perfectly duplicate the structure and morphology of pathogens and possess excellent properties of hollow silica particles, including large opening pore channels, large interior cavities, high loading of OVA (ovalbumin) and controlled release capability, biocompatibility, tunability of surface functionality and immunopotentiating activity. In addition, the particles are antigen presenting cells (APCs) targeted by specific interaction with β-glucan specific receptors on the surface of APCs, which can enhance the uptake and sustained proteolytic processing of antigens and induce APC maturation. Eventually, potent Th1 and Th2-type immune responses are aroused. The size and shape of the particles have a significant impact on the antigen uptake and immunoadjuvant activity. The degree of antigen uptake enhancement is ranked in the following order: PS HSP@glucan (nanoscale spherical) > E. coli HSP@glucan (micron-sized rod-like) > S. aureus HSP@glucan (micron-sized spherical). The PS HSP@glucan is more apt to induce a Th1-type immune response, while the E. coli HSP@glucan is more apt to induce a Th2-type immune response. The particles may thus provide a promising strategy for development of novel vaccine delivery systems for inducing robust humoral and cellular immune responses against infectious diseases and cancers.
Collapse
Affiliation(s)
- Jing Wei Jin
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | | | | | | | | |
Collapse
|
39
|
Snapper CM. Distinct Immunologic Properties of Soluble Versus Particulate Antigens. Front Immunol 2018; 9:598. [PMID: 29619034 PMCID: PMC5871672 DOI: 10.3389/fimmu.2018.00598] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/09/2018] [Indexed: 12/14/2022] Open
Abstract
Antigens in particulate form have distinct immunologic properties relative to soluble antigens. An understanding of the mechanisms and functional consequences of the distinct immunologic pathways engaged by these different forms of antigen is particularly relevant to the design of vaccines. It is also relevant regarding the use of therapeutic human proteins in clinical medicine that have been shown to aggregate, and perhaps as a result, elicit autoantibodies.
Collapse
Affiliation(s)
- Clifford M Snapper
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
40
|
Nautiyal P, Alam F, Balani K, Agarwal A. The Role of Nanomechanics in Healthcare. Adv Healthc Mater 2018; 7. [PMID: 29193838 DOI: 10.1002/adhm.201700793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/18/2017] [Indexed: 12/21/2022]
Abstract
Nanomechanics has played a vital role in pushing our capability to detect, probe, and manipulate the biological species, such as proteins, cells, and tissues, paving way to a deeper knowledge and superior strategies for healthcare. Nanomechanical characterization techniques, such as atomic force microscopy, nanoindentation, nanotribology, optical tweezers, and other hybrid techniques have been utilized to understand the mechanics and kinetics of biospecies. Investigation of the mechanics of cells and tissues has provided critical information about mechanical characteristics of host body environments. This information has been utilized for developing biomimetic materials and structures for tissue engineering and artificial implants. This review summarizes nanomechanical characterization techniques and their potential applications in healthcare research. The principles and examples of label-free detection of cancers and myocardial infarction by nanomechanical cantilevers are discussed. The vital importance of nanomechanics in regenerative medicine is highlighted from the perspective of material selection and design for developing biocompatible scaffolds. This review interconnects the advancements made in fundamental materials science research and biomedical technology, and therefore provides scientific insight that is of common interest to the researchers working in different disciplines of healthcare science and technology.
Collapse
Affiliation(s)
- Pranjal Nautiyal
- Nanomechanics and Nanotribology Laboratory Florida International University 10555 West Flagler Street Miami FL 33174 USA
| | - Fahad Alam
- Biomaterials Processing and Characterization Laboratory Department of Materials Science and Engineering Indian Institute of Technology Kanpur Kanpur 208016 India
| | - Kantesh Balani
- Biomaterials Processing and Characterization Laboratory Department of Materials Science and Engineering Indian Institute of Technology Kanpur Kanpur 208016 India
| | - Arvind Agarwal
- Nanomechanics and Nanotribology Laboratory Florida International University 10555 West Flagler Street Miami FL 33174 USA
| |
Collapse
|
41
|
Pan J, Wang Y, Zhang C, Wang X, Wang H, Wang J, Yuan Y, Wang X, Zhang X, Yu C, Sun SK, Yan XP. Antigen-Directed Fabrication of a Multifunctional Nanovaccine with Ultrahigh Antigen Loading Efficiency for Tumor Photothermal-Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1704408. [PMID: 29318677 DOI: 10.1002/adma.201704408] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/01/2017] [Indexed: 06/07/2023]
Abstract
Current antigen-encapsulated multifunctional nanovaccines for oncotherapy suffer from limited antigen loading efficiency, low yield, tedious manufacture, and systemic toxicity. Here, an antigen-directed strategy for the fabrication of multifunctional nanovaccine with ultrahigh antigen loading efficiency in a facile way for tumor photothermal-immunotherapy is shown. As a proof of concept, a model antigen ovalbumin (OVA) is used as a natural carrier to load a representative theranostic agent indocyanine green (ICG). Mixing OVA and ICG in aqueous solution gives the simplest multifunctional nanovaccine so far. The nanovaccine owns antigen loading efficiency of 80.8%, high yield of >90%, intense near-infrared absorption and fluorescence, excellent reproducibility, good aqueous solubility and stability, and favorable biocompatibility. These merits not only guarantee sensitive labeling/tracking and efficient stimulation of dendritic cells, but also reliable imaging-guided photothermal-immunotherapy of tumors and tumor prevention. The proposed strategy provides a facile and robust method for large-scale and reproducible fabrication of multifunctional nanovaccines with ultrahigh antigen loading efficiency for tumor therapy.
Collapse
Affiliation(s)
- Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yaqiong Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Cai Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin, 300071, China
| | - Xiaoyi Wang
- Department of Ultrasound, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Haoyu Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jiaojiao Wang
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Yizhong Yuan
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Xu Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xuejun Zhang
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Institute of Analytical Foodsafetiology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| |
Collapse
|
42
|
Zhang X, Song C, Ma G, Wei W. Mechanical determination of particle–cell interactions and the associated biomedical applications. J Mater Chem B 2018; 6:7129-7143. [DOI: 10.1039/c8tb01590b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mechanical determination of particle–cell interactions and the associated biomedical applications.
Collapse
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Cui Song
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|