1
|
Liu X, Lu Z, Huang S, Chen N, Xiao X, Zhu X, Zhang R. A practical fluorometric and colorimetric dual-mode sensing platform based on two-dimensional porous organic nanosheets for rapid determination of trifluralin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 39820884 DOI: 10.1039/d4ay02200a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Trifluralin, a widely used dinitroaniline herbicide, poses significant toxic risks, necessitating the development of rapid detection methods for food safety. In this study, we prepared ultrathin two-dimensional triphenylamine porous organic nanosheets (TPA-PONs) through a facile liquid-phase exfoliation process. The TPA-PONs, characterized by their exceptional fluorescence properties and nanoscale thickness (1.65 ± 0.3 nm), demonstrated a remarkable fluorescence quenching response upon exposure to trifluralin. Spectroscopic analysis combined with DFT calculations revealed that the quenching mechanism is driven by electron and energy transfer. TPA-PONs-based fluorescence sensor exhibited a linear response to trifluralin concentrations ranging from 0.01 to 10.0 μmol L-1 with a limit of detection as low as 3.50 nmol L-1. Additionally, the sensor was applied to detect trifluralin residues in vegetables, achieving recoveries of 89.08-102.84%. To facilitate on-site detection, a novel TPA-PONs-based colorimetric film sensor has been developed, enabling visual analysis of trifluralin using a smartphone. This dual-mode sensing platform holds significant potential for enhancing food safety monitoring.
Collapse
Affiliation(s)
- Xue Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China.
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| | - Zhenyu Lu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China.
| | - Shijun Huang
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| | - Na Chen
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China.
| | - Xue Xiao
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| | - Xiaohui Zhu
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Runkun Zhang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, PR China
| |
Collapse
|
2
|
Yang Q, Wu Y, Zhang S, Xie H, Han D, Yan H. Recent advancements in the extraction and analysis of phthalate acid esters in food samples. Food Chem 2025; 463:141262. [PMID: 39298858 DOI: 10.1016/j.foodchem.2024.141262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Phthalate acid esters (PAEs) are ubiquitous environmental pollutants present in food samples, necessitating accurate detection for risk assessment and remediation efforts. This review provides an updated overview of the recent progress on the PAEs analysis regarding sample pretreatment techniques and analytical methodologies over the latest decade. Advances in sample preparation include solid-based extraction techniques replacing conventional liquid-liquid extraction, with solid sorbents emerging as promising alternatives due to their minimal solvent consumption and enhanced selectivity. Although techniques like the microextraction methods offer versatility and reduced solvent reliance, there is a need for more efficient and environmentally friendly techniques enabling on-site portable detection. High-resolution mass spectrometry is increasingly utilized for its enhanced sensitivity and reduced contamination risks. However, challenges persist in developing in situ analytical techniques for trace PAEs in complex food samples. Future research should prioritize novel analytical techniques with superior sensitivity and selectivity, addressing current limitations to meet the demand for precise PAEs detection in diverse food matrices.
Collapse
Affiliation(s)
- Qian Yang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Yangqing Wu
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Shuaihua Zhang
- Department of Chemistry, Hebei Agricultural University, Baoding 071001, China.
| | - Hongyu Xie
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Dandan Han
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
3
|
Wang C, Wang Q, Wang J, Si K, Zhu H, Wu Q. Well-designed chitosan-based cationic porous polymer: A robust material for effective adsorption of endocrine disrupting chemicals. Int J Biol Macromol 2024; 280:135801. [PMID: 39306166 DOI: 10.1016/j.ijbiomac.2024.135801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/24/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
There is an immediate need for meticulous design of easily accessible, cost-effective, chemically stable and eco-friendly materials for effectively removal of water contaminant. Herein, targeting typical water contaminants, endocrine disrupting chemicals (EDCs), three cationic hyper-cross-linked porous polymers (ciHCP-1, ciHCP-2, ciHCP-3) with multiple adsorption sites were designed with 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) as precursor. The ciHCP-3 with large surface area (806 m2 g-1) exhibited high sorption capacity (137-366 mg g-1), and fast adsorption kinetics (5 min) for the EDCs, which is superior to the reported sorbents. The adsorption mechanisms can be attributed to the synergistic effect of physisorption and chemisorption. The high preparation reproducibility, physicochemical stability, and reuse capability of ciHCP highlights its great potential in practical water remediation applications.
Collapse
Affiliation(s)
- Chenhuan Wang
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Junmin Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Kaiyuan Si
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Huajie Zhu
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
4
|
Wang Y, Zhang Y, Cai N, Xue J. A novel composite electrode with multiple pore structures for efficient treatment of heavy metal ions in capacitive deionization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121974. [PMID: 39079498 DOI: 10.1016/j.jenvman.2024.121974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024]
Abstract
Multiple porous carbon materials have great promise and potential in the capacitive deionization (CDI) field. Specific surface area (SSA), pore size distribution, and preparation method of CDI electrode materials are essential for the treatment of heavy metal ions. In this work, PPy composited porous carbon electrodes (hypercrosslinked polymers/polypyrrole, HCPs/PPy) were obtained by one-step crosslinked carbonization preparation and electro-deposition. The diverse pore structure gives the composite electrode a large SSA and excellent adsorption performance. HCPs/PPy-4 gives a high SSA of 251.26 m2/g. In the CDI process, the adsorption capacity of HCPs/PPy-4 for Fe3+, Cu2+, Pb2+, and Ag+ is 20.69 mg/g, 37.81 mg/g, 26.86 mg/g, and 40.95 mg/g. The negative electrode recoveries for the adsorption of the four ions were reached 81.2%, 89.2%, 85.5%, and 100%, respectively. It indicates that HCPs/PPy is a novel and potentially porous carbon electrode for high-performance CDI.
Collapse
Affiliation(s)
- Yuehan Wang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yujie Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Ning Cai
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Juanqin Xue
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
5
|
Zhang Q, Zhu N, Lu Z, He M, Chen B, Hu B. Magnetic covalent organic frameworks as sorbents in the chromatographic analysis of environmental organic pollutants. J Chromatogr A 2024; 1728:465034. [PMID: 38824842 DOI: 10.1016/j.chroma.2024.465034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Covalent organic frameworks (COFs) are featured with large specific surface areas, good thermal stability, and abundant pores. These properties are exactly what the sorbents used for extraction or adsorption of interest substances are desired with. While, the low density and hydrophobicity of COFs often makes them difficult to be dispersed evenly and recovered from the aqueous solution. Magnetic covalent organic frameworks (MCOFs) inherit magnetic property of the magnetic particles and porous structure of COFs. They have improved dispersity in aqueous solution and phase separation can be rapidly achieved via external magnetic fields. This review summarized the synthesis strategies for MCOFs, and their application in trace environmental organic pollutants analysis by chromatography techniques. The selection of COFs types and modification with active groups for a certain adsorption purpose is discussed, along with the exploration of adsorption mechanisms, which is beneficial for the design and synthesis of MCOFs.
Collapse
Affiliation(s)
- Qiulin Zhang
- Department of Chemistry, Wuhan University, China
| | - Ning Zhu
- Department of Chemistry, Wuhan University, China
| | - Ziyang Lu
- Department of Chemistry, Wuhan University, China
| | - Man He
- Department of Chemistry, Wuhan University, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, China.
| |
Collapse
|
6
|
Hashemi M, Bahrami A, Ghorbani-Shahna F, Afkhami A, Farhadian M, Poormohamadi A. Development of a needle trap device packed with modified PAF-6-MNPs for sampling and analysis of polycyclic aromatic compounds in air. RSC Adv 2024; 14:18588-18598. [PMID: 38860255 PMCID: PMC11163952 DOI: 10.1039/d4ra01651c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
The aim of this study was to develop a new method for sampling and analyzing polycyclic aromatic hydrocarbons in the air. This was achieved by utilizing a needle trap device packed with a modified porous aromatic framework coated with magnetic nanoparticles (PAF-6-MNPs). The modified adsorbent underwent qualitative evaluation using Fourier-transform infrared spectroscopy and X-ray diffraction, as well as scanning and transmission electron microscopy. The optimal conditions for sampling polycyclic aromatic hydrocarbons compounds were determined using a dynamic atmosphere chamber. The method was validated by taking various samples from the standard chamber, and then analyzed under different environmental sampling conditions using a gas chromatography device. The limit of detection (LOD) and limit of quantification (LOQ) values for the analytes of interest, including naphthalene, anthracene, and pyrene, ranged from 0.0034-0.0051 and 0.010-0.015 μg L-1, respectively. Also, the repeatability and reproducibility of the method expressed as relative standard deviation, for the mentioned analyses were found to be in the range of 17.8-20.5% and 20-22.9%. The results indicated that over a 20 day storage period (with the needle trap device containing the analytes of interest kept in the refrigerator), there was no significant decrease in the amount of analytes compared to the initial amount. These findings suggest that, the needle trap packed with the proposed adsorbent offers a reliable, highly-sensitive, easy-to-use, and cost-effective method for sampling polycyclic aromatic hydrocarbons in the air compared to the conventional method recommended by the National Institute of Occupational Safety and Health (NIOSH), method 5515.
Collapse
Affiliation(s)
- Mobina Hashemi
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences Hamadan Iran
| | - Abdulrahman Bahrami
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences Hamadan Iran
| | - Farshid Ghorbani-Shahna
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences Hamadan Iran
| | - Abas Afkhami
- Department of Chemistry, Bu-Ali-Sina University Hamedan Iran
| | - Maryam Farhadian
- Department of Biostatistics, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences Hamadan Iran
| | - Ali Poormohamadi
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences Hamadan Iran
| |
Collapse
|
7
|
Zhang Q, Zhi P, Zhang J, Duan S, Yao X, Liu S, Sun Z, Jun SC, Zhao N, Dai L, Wang L, Wu X, He Z, Zhang Q. Engineering Covalent Organic Frameworks Toward Advanced Zinc-Based Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313152. [PMID: 38491731 DOI: 10.1002/adma.202313152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/25/2024] [Indexed: 03/18/2024]
Abstract
Zinc-based batteries (ZBBs) have demonstrated considerable potential among secondary batteries, attributing to their advantages including good safety, environmental friendliness, and high energy density. However, ZBBs still suffer from issues such as the formation of zinc dendrites, occurrence of side reactions, retardation of reaction kinetics, and shuttle effects, posing a great challenge for practical applications. As promising porous materials, covalent organic frameworks (COFs) and their derivatives have rigid skeletons, ordered structures, and permanent porosity, which endow them with great potential for application in ZBBs. This review, therefore, provides a systematic overview detailing on COFs structure pertaining to electrochemical performance of ZBBs, following an in depth discussion of the challenges faced by ZBBs, which includes dendrites and side reactions at the anode, as well as dissolution, structural change, slow kinetics, and shuttle effect at the cathode. Then, the structural advantages of COF-correlated materials and their roles in various ZBBs are highlighted. Finally, the challenges of COF-correlated materials in ZBBs are outlined and an outlook on the future development of COF-correlated materials for ZBBs is provided. The review would serve as a valuable reference for further research into the utilization of COF-correlated materials in ZBBs.
Collapse
Affiliation(s)
- Qingqing Zhang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Peng Zhi
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Jing Zhang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Siying Duan
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Xinyue Yao
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Zhefei Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| | - Ningning Zhao
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Lei Dai
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Ling Wang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Zhangxing He
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Qiaobao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
8
|
Winterstein SF, Bettermann M, Timm J, Marschall R, Senker J. Thermodynamically Stable Functionalization of Microporous Aromatic Frameworks with Sulfonic Acid Groups by Inserting Methylene Spacers. Molecules 2024; 29:1666. [PMID: 38611945 PMCID: PMC11013227 DOI: 10.3390/molecules29071666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024] Open
Abstract
Porous aromatic frameworks (PAFs) are an auspicious class of materials that allow for the introduction of sulfonic acid groups at the aromatic core units by post-synthetic modification. This makes PAFs promising for proton-exchange materials. However, the limited thermal stability of sulfonic acid groups attached to aromatic cores prevents high-temperature applications. Here, we present a framework based on PAF-303 where the acid groups were added as methylene sulfonic acid side chains in a two-step post-synthetic route (SMPAF-303) via the intermediate chloromethylene PAF (ClMPAF-303). Elemental analysis, NMR spectroscopy, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy were used to characterize both frameworks and corroborate the successful attachment of the side chains. The resulting framework SMPAF-303 features high thermal stability and an ion-exchange capacity of about 1.7 mequiv g-1. The proton conductivity depends strongly on the adsorbed water level. It reaches from about 10-7 S cm-1 for 33% RH to about 10-1 S cm-1 for 100% RH. We attribute the strong change to a locally alternating polarity of the inner surfaces. The latter introduces bottleneck effects for the water molecule and oxonium ion diffusion at lower relative humidities, due to electrolyte clustering. When the pores are completely filled with water, these bottlenecks vanish, leading to an unhindered electrolyte diffusion through the framework, explaining the conductivity rise.
Collapse
Affiliation(s)
- Simon F. Winterstein
- Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Michael Bettermann
- Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Jana Timm
- Physical Chemistry III, Department of Chemistry, University of Bayreuth, Universitaetsstr. 30, 95447 Bayreuth, Germany (R.M.)
| | - Roland Marschall
- Physical Chemistry III, Department of Chemistry, University of Bayreuth, Universitaetsstr. 30, 95447 Bayreuth, Germany (R.M.)
| | - Jürgen Senker
- Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| |
Collapse
|
9
|
Wu J, Wang Z, Zhang S, Yang Q, Li Z, Zang X, Zhao X, Shang N, Khaorapapong N, Xu X, Yamauchi Y. Inorganic-Organic Nanoarchitectonics: MXene/Covalent Organic Framework Heterostructure for Superior Microextraction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305730. [PMID: 37902412 DOI: 10.1002/smll.202305730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/26/2023] [Indexed: 10/31/2023]
Abstract
One of the difficulties limiting covalent organic frameworks (COFs) from becoming excellent adsorbents is their stacking/aggregation architectures owing to poor morphology/structure control during the synthesis process. Herein, an inorganic-organic nanoarchitectonics strategy to synthesize the MXene/COF heterostructure (Ti3 C2 Tx /TAPT-TFP) is developed by the assembly of β-ketoenamine-linked COF on the Ti3 C2 Tx MXene nanosheets. The as-prepared Ti3 C2 Tx /TAPT-TFP retains the 2D architecture and high adsorption capacity of MXenes as well as large specific surface area and hierarchical porous structure of COFs. As a proof of concept, the potential of Ti3 C2 Tx /TAPT-TFP for solid-phase microextraction (SPME) of trace organochlorine pesticides (OCPs) is investigated. The Ti3 C2 Tx /TAPT-TFP based SPME method achieves low limits of detection (0.036-0.126 ng g-1 ), wide linearity ranges (0.12-20.0 ng g-1 ), and acceptable repeatabilities for preconcentrating trace OCPs from fruit and vegetable samples. This study offers insights into the potential of constructing COF or MXene-based heterostructures for the microextraction of environmental pollutants.
Collapse
Affiliation(s)
- Jingyu Wu
- Department of Chemistry, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Zhuo Wang
- Department of Chemistry, Hebei Agricultural University, Baoding, Hebei, 071001, China
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Shuaihua Zhang
- Department of Chemistry, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Qian Yang
- College of Public Health, Hebei University, Baoding, Hebei, 071002, China
| | - Zhi Li
- Department of Chemistry, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Xiaohuan Zang
- Department of Chemistry, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Xiaoxian Zhao
- Department of Chemistry, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Ningzhao Shang
- Department of Chemistry, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Nithima Khaorapapong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen, 40002, Thailand
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
10
|
Li J, Li C, Zhao Z, Guo Y, Chen H, Liu P, Zhao M, Guo J. Biomolecules meet organic frameworks: from synthesis strategies to diverse applications. NANOSCALE 2024; 16:4529-4541. [PMID: 38293903 DOI: 10.1039/d3nr05586h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Biomolecules are essential in pharmaceuticals, biocatalysts, biomaterials, etc., but unfortunately they are extremely susceptible to extraneous conditions. When biomolecules meet porous organic frameworks, significantly improved thermal, chemical, and mechanical stabilities are not only acquired for raw biomolecules, but also molecule sieving, substrate enrichment, chirality property, and other functionalities are additionally introduced for application expansions. In addition, the intriguing synergistic effect stemming from elaborate and concerted interactions between biomolecules and frameworks can further enhance application performances. In this paper, the synthesis strategies of the so-called bio-organic frameworks (BOFs) in recent years are systematically reviewed and classified. Additionally, their broad applications in biomedicine, catalysis, separation, sensing, and imaging are introduced and discussed. Before ending, the current challenges and prospects in the future for this infancy-stage but significant research field are also provided. We hope that this review will offer a concise but comprehensive vision of designing and constructing multifunctional BOF materials as well as their full explorations in various fields.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Chunyan Li
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Zelong Zhao
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Yuxue Guo
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Hongli Chen
- Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tiangong University, Tianjin 300387, China
| | - Pai Liu
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Meiting Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
| | - Jun Guo
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
11
|
Liu L, Yu R, Yin L, Zhang N, Zhu G. Porous organic framework membranes based on interface-induced polymerisation: design, synthesis and applications. Chem Sci 2024; 15:1924-1937. [PMID: 38332830 PMCID: PMC10848777 DOI: 10.1039/d3sc05787a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 02/10/2024] Open
Abstract
Porous organic frameworks (POFs) are novel porous materials that have attracted much attention due to their extraordinary properties, such as high specific surface area, tunable pore size, high stability and ease of functionalisation. However, conventional synthesised POFs are mostly large-sized particles or insoluble powders, which are difficult to recycle and have low mass transfer efficiencies, limiting the development of their cutting-edge applications. Therefore, processing POF materials into membrane structures is of great significance. In recent years, interface engineering strategies have proved to be efficient methods for the formation of POF membranes. In this perspective, recent advances in the use of interfaces to prepare POF membranes are reviewed. The challenges of this strategy and the potential applications of the formed POF membranes are discussed.
Collapse
Affiliation(s)
- Lin Liu
- Department of Chemistry, Northeast Normal University Changchun China
| | - Ruihe Yu
- Department of Chemistry, Northeast Normal University Changchun China
| | - Liying Yin
- Department of Chemistry, Northeast Normal University Changchun China
- School of Chemistry and Life Science, Changchun University of Technology Changchun China
| | - Ning Zhang
- Department of Chemistry, Northeast Normal University Changchun China
| | - Guangshan Zhu
- Department of Chemistry, Northeast Normal University Changchun China
| |
Collapse
|
12
|
Peng H, Ding L, Fang Y. Recent Advances in Construction Strategies for Fluorescence Sensing Films. J Phys Chem Lett 2024; 15:849-862. [PMID: 38236759 DOI: 10.1021/acs.jpclett.3c03130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
A year ago, film-based fluorescent sensors (FFSs) were recognized in the "IUPAC Top Ten Emerging Technologies in Chemistry 2022" due to their extensive application in detecting hidden explosives, illicit drugs, and volatile organic compounds. These sensors offer high sensitivity, specificity, immunity to light scattering, and noninvasiveness. The core of FFSs is the construction of high-performance fluorescent sensing films, which are dependent on the processes of "energy transfer" and "mass transfer" in the active layer and involve complex interactions between sensing molecules and analytes. This Perspective focuses on the latest strategies in constructing these films, emphasizing the design of sensing molecules with various innovative features and structures that enhance the mass transfer efficiency. Additionally, it discusses the ongoing challenges and potential advancements in the field of FFSs.
Collapse
Affiliation(s)
- Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
13
|
Huang S, Li J, Lin Y, Tong L, Zhong N, Huang A, Ma X, Huang S, Yi W, Shen Y, Chen G, Ouyang G. Hydrogen-Bonded Supramolecular Nanotrap Enabling the Interfacial Activation of Hosted Enzymes. J Am Chem Soc 2024; 146:1967-1976. [PMID: 38131319 DOI: 10.1021/jacs.3c09647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Engineering nanotraps to immobilize fragile enzymes provides new insights into designing stable and sustainable biocatalysts. However, the trade-off between activity and stability remains a long-standing challenge due to the inevitable diffusion barrier set up by nanocarriers. Herein, we report a synergetic interfacial activation strategy by virtue of hydrogen-bonded supramolecular encapsulation. The pore wall of the nanotrap, in which the enzyme is encapsulated, is modified with methyl struts in an atomically precise position. This well-designed supramolecular pore results in a synergism of hydrogen-bonded and hydrophobic interactions with the hosted enzyme, and it can modulate the catalytic center of the enzyme into a favorable configuration with high substrate accessibility and binding capability, which shows up to a 4.4-fold reaction rate and 4.9-fold conversion enhancements compared to free enzymes. This work sheds new light on the interfacial activation of enzymes using supramolecular engineering and also showcases the feasibility of interfacial assembly to access hierarchical biocatalysts featuring high activity and stability simultaneously.
Collapse
Affiliation(s)
- Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiansheng Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuhong Lin
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Linjing Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Ningyi Zhong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Anlian Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaomin Ma
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuyao Huang
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yong Shen
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
14
|
Busche SA, Traxler M, Thomas A, Börner HG. Ligating Catalytically Active Peptides onto Microporous Polymers: A General Route Toward Specifically-Functional High Surface Area Platforms. CHEMSUSCHEM 2024; 17:e202301045. [PMID: 37698038 DOI: 10.1002/cssc.202301045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
A versatile post-synthetic modification strategy to functionalize a high surface area microporous network (MPN-OH) by bio-orthogonal inverse electron-demand Diels-Alder (IEDDA) ligation is presented. While the polymer matrix is modified with a readily accessible norbornene isocyanate (Nor-NCO), a series of functional units presenting the robust asymmetric 1,2,4,5-tetrazine (Tz) allows easy functionalization of the MPN by chemoselective Nor/Tz ligation. A generic route is demonstrated, modulating the internal interfaces by introducing carboxylates, amides or amino acids as well as an oligopeptide d-Pro-Pro-Glu organocatalyst. The MPN-Pz-Peptide construct largely retains the catalytic activity and selectivity in an enantioselective enamine catalysis, demonstrates remarkable availability in different solvents, offers heterogeneous organocatalysis in bulk and shows stability in recycling settings.
Collapse
Affiliation(s)
- Steffen A Busche
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, Berlin, Germany
| | - Michael Traxler
- Institute of Chemistry, Technische Universität Berlin, Institute of Chemistry, Hardenbergstr. 40, Berlin, Germany
| | - Arne Thomas
- Institute of Chemistry, Technische Universität Berlin, Institute of Chemistry, Hardenbergstr. 40, Berlin, Germany
| | - Hans G Börner
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, Berlin, Germany
| |
Collapse
|
15
|
Koonani S, Ghiasvand A. A highly porous fiber coating based on a Zn-MOF/COF hybrid material for solid-phase microextraction of PAHs in soil. Talanta 2024; 267:125236. [PMID: 37757692 DOI: 10.1016/j.talanta.2023.125236] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
This study involved the development of a novel adsorbent by combining a Zn-based MOF with a melamine-based COF, resulting in the formation of a hybrid material known as Zn-MOF/COF. The adsorbent was characterized using FT-IR, SEM, XRD, EDX, and BET analysis techniques. The resulting Zn-MOF/COF sorbent was employed to prepare solid-phase microextraction (SPME) fibers for the extraction and enrichment of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil samples, after coupling with GC-FID. A Box-Behnken design (BBD) was used to optimize key variables of SPME conditions. Under optimal conditions of 85 °C for 30 min extraction with 23 μL g-1 sample's moisture level, linear responses of six PAHs were ranging from 1 to 20000 ng g⁻1 with determination coefficients greater than 0.99. Limits of detection (LODs) were over the ranges of 0.1-1 ng g-1. The RSDs for intra-fiber and inter-fiber analyses were obtained 2.2-6.6% and 5.2-11.6%, respectively. Relative recoveries values for real soil samples were found to be 91.1-110.2%. The results showed lower cost and higher extraction efficiency for the Zn-MOF/COF fiber, compared with commercial and homemade adsorbents.
Collapse
Affiliation(s)
- Samira Koonani
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khoramabad, Iran.
| | - Alireza Ghiasvand
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khoramabad, Iran.
| |
Collapse
|
16
|
Hou S, Xu J, Wang J, Wang H, Zhang P. Mechanochemical Oxidative Coupling of Amine to Azo-based Polymers by Hypervalent Iodine Oxidant. Chemistry 2024; 30:e202303126. [PMID: 37819596 DOI: 10.1002/chem.202303126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023]
Abstract
Among porous organic polymers (POPs), azo-linked POPs represent a crucial class of materials, making them the focus of numerous catalytic systems proposed for their synthesis. However, the synthetic process is limited to metal-catalyzed, high-temperature, and liquid-phase reactions. In this study, we employ mechanochemical oxidative metal-free systems to encompass various syntheses of azo-based polymers. Drawing inspiration from the "rule of six" principle (six or more carbons on an azide group render the organic compound relatively safe), an azo compound featuring significant steric hindrance is obtained using the hypervalent iodine oxidation strategy. Furthermore, during the polymerization process, steric hindrance is enhanced in monomers to effectively prevent explosions resulting from direct contact between hypervalent iodine oxidants and primary amines. Indeed, this approach provides a facile and innovative solid-phase synthesis method for synthesizing azo-based materials.
Collapse
Affiliation(s)
- Shengtai Hou
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, 071002, Baoding, China
| | - Jialu Xu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Junjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, 071002, Baoding, China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, 071002, Baoding, China
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, 071002, Baoding, China
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| |
Collapse
|
17
|
Zarei N, Yarie M, Torabi M, Zolfigol MA. Urea-rich porous organic polymer as a hydrogen bond catalyst for Knoevenagel condensation reaction and synthesis of 2,3-dihydroquinazolin-4(1 H)-ones. RSC Adv 2024; 14:1094-1105. [PMID: 38174287 PMCID: PMC10759279 DOI: 10.1039/d3ra08354c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
In this research, a new urea-rich porous organic polymer (urea-rich POP) as a hydrogen bond catalyst was synthesized via a solvothermal method. The physiochemical properties of the synthesized urea-rich POP were investigated by using different analyses like Fourier transform infrared (FT-IR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), energy-dispersive X-ray spectroscopy (EDS), elemental mapping analysis, X-ray diffraction analysis (XRD) and Brunauer-Emmett-Teller (BET) techniques. The preparation of urea-rich POP provides an efficacious platform for designing unique hydrogen bond catalytic systems. Accordingly, urea-rich POP, due to the existence of several urea moieties as hydrogen bond sites, has excellent performance as a catalyst for the Knoevenagel condensation reaction and multi-component synthesis of 2,3-dihydroquinazolin-4(1H)-ones.
Collapse
Affiliation(s)
- Narges Zarei
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| |
Collapse
|
18
|
Winterstein S, Privalov AF, Greve C, Siegel R, Pötzschner B, Bettermann M, Adolph L, Timm J, Marschall R, Rössler EA, Herzig EM, Vogel M, Senker J. Ultrafast Proton Conduction in an Aqueous Electrolyte Confined in Adamantane-like Micropores of a Sulfonated, Aromatic Framework. J Am Chem Soc 2023; 145:27563-27575. [PMID: 38060438 PMCID: PMC10740000 DOI: 10.1021/jacs.3c09257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Sulfonated, cross-linked porous polymers are promising frameworks for aqueous high-performance electrolyte-host systems for electrochemical energy storage and conversion. The systems offer high proton conductivities, excellent chemical and mechanical stabilities, and straightforward water management. However, little is known about mass transport mechanisms in such nanostructured hosts. We report on the synthesis and postsynthetic sulfonation of an aromatic framework (SPAF-2) with a 3D-interconnected nanoporosity and varying sulfonation degrees. Water adsorption produces the system SPAF-2H20. It features proton exchange capacities up to 6 mequiv g-1 and exceptional proton conductivities of about 1 S cm-1. Two contributions are essential for the highly efficient transport. First, the nanometer-sized pores link the charge transport to the diffusion of adsorbed water molecules, which is almost as fast as bulk water. Second, continuous exchange between interface-bound and mobile species enhances the conductivities at elevated temperatures. SPAF-2H20 showcases how to tailor nanostructured electrolyte-host systems with liquid-like conductivities.
Collapse
Affiliation(s)
- Simon
F. Winterstein
- Inorganic
Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Alexei F. Privalov
- Institute
for Condensed Matter Physics, Technical
University of Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - Christopher Greve
- Dynamics
and Structure Formation, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Renée Siegel
- Inorganic
Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Björn Pötzschner
- Inorganic
Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Michael Bettermann
- Inorganic
Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Lea Adolph
- Inorganic
Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Jana Timm
- Physical
Chemistry III, Department of Chemistry, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Roland Marschall
- Physical
Chemistry III, Department of Chemistry, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Ernst A. Rössler
- Inorganic
Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Eva M. Herzig
- Dynamics
and Structure Formation, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Michael Vogel
- Institute
for Condensed Matter Physics, Technical
University of Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - Jürgen Senker
- Inorganic
Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| |
Collapse
|
19
|
Shi Y, Xu R, Wang S, Zheng J, Zhu F, Hu Q, Huang J, Ouyang G. Fluorinated-Squaramide Covalent Organic Frameworks for High-Performance and Interference-Free Extraction of Synthetic Cannabinoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302925. [PMID: 37807813 PMCID: PMC10646270 DOI: 10.1002/advs.202302925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/17/2023] [Indexed: 10/10/2023]
Abstract
Synthetic cannabinoids (SCs), one of the largest groups of new psychoactive substances (NPSs), have emerged as a significant public health threat in different regions worldwide. Analyzing SCs in water samples is critical to estimate their consumption and control. However, due to their low background concentration and the coexistence of complex matrix, the selective and effective enrichment of SCs is still challenging. In this study, a series of fluorinated-squaramide-based covalent organic frameworks (COF: FSQ-2, FSQ-3, and FSQ-4) are synthesized, and the as-prepared FSQ-4 exhibits strong affinity to different SCs. The proper pore size (1.4 nm) and pre-located functional groups (hydrogen-bond donors, hydrogen-bond acceptors, and fluorophilic segments) work synergistically for efficient SCs capture. Remarkably, when coupled FSQ-4 with solid-phase microextraction (SPME), trace-level (part per trillion, 10-9 ) determination of 13 SCs can be easily achieved, representing one of the best results among NPS analyses, and the excellent extraction performance can be maintained under various interfering conditions.
Collapse
Affiliation(s)
- Yueru Shi
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Ruolun Xu
- Anti‐Drug Technology Center of Guangdong ProvinceGuangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and SafetyGuangzhou510535China
| | - Shaohan Wang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Juan Zheng
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Fang Zhu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Qingkun Hu
- Anti‐Drug Technology Center of Guangdong ProvinceGuangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and SafetyGuangzhou510535China
| | - Junlong Huang
- SGS‐CSTC Standards Technical Services Co., Ltd.Guangzhou510670China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
20
|
Ghosh P, Banerjee P. Drug delivery using biocompatible covalent organic frameworks (COFs) towards a therapeutic approach. Chem Commun (Camb) 2023; 59:12527-12547. [PMID: 37724444 DOI: 10.1039/d3cc01829f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Covalent organic frameworks (COFs) are constructed exclusively with lightweight organic scaffolds, which can have a 2D or 3D architecture. The ease of synthesis, robust skeleton and tunable properties of COFs make them superior candidates among their counterparts for a wide range of uses including biomedical applications. In the biomedical field, drug delivery or photodynamic-photothermal (PDT-PTT) therapy can be individually considered a potential parameter to be investigated. Therefore, this comprehensive review is focused on drug delivery using COFs, highlighting the encapsulation and decapsulation of drugs by COF scaffolds and their delivery in biological media including live cells. Versatile COF scaffolds together with the delivery of several drug molecules are considered. We attempted to incorporate the status of drug encapsulation and decapsulation considering a wide range of recent publications.
Collapse
Affiliation(s)
- Pritam Ghosh
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Chennai 600127, Tamilnadu, India.
| | - Priyabrata Banerjee
- Electric Mobility and Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, India.
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad 201002, Uttarpradesh, India
| |
Collapse
|
21
|
Zhang X, Li Z, Wang Y, Zhang S, Zang X, Wang C, Wang Z. Preparation of black phosphorus nanosheets/ zeolitic imidazolate framework nanocomposite for high-performance solid-phase microextraction of organophosphorus pesticides. J Chromatogr A 2023; 1708:464339. [PMID: 37660557 DOI: 10.1016/j.chroma.2023.464339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
Design and preparation of new fiber coatings for solid-phase microextraction (SPME) is of significance to the sample preparation techniques. Herein, a facile strategy has been developed for the integration of the black phosphorus (BP) nanosheets with metal-organic framework (ZIF-8) to generate a BP/ZIF-8 nanocomposite. For the first time, the newly-synthesized BP/ZIF-8 nanocomposite was adopted as the SPME fiber coating for the extraction of organophosphorus pesticides (OPPs). Under the optimized conditions, the BP/ZIF-8 based SPME method gained acceptable linearity (0.04-20 µg L-1), low limits of detection (0.012-0.051 µg L-1) and good repeatability (3.2-8.1%). Coupled with gas chromatography-mass spectrometric detection, the developed SPME method was successfully used for the preconcentration of OPPs from environmental waters with the method recoveries from 92.0%-103.8%. This method offers a good alternative for the analysis of trace OPPs in environmental water samples.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Zhi Li
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Yang Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Shuaihua Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Xiaohuan Zang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China.
| |
Collapse
|
22
|
Liu H, Wu Z, Chen J, Wang J, Qiu H. Recent advances in chiral liquid chromatography stationary phases for pharmaceutical analysis. J Chromatogr A 2023; 1708:464367. [PMID: 37714014 DOI: 10.1016/j.chroma.2023.464367] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/23/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023]
Abstract
Chirality is a common phenomenon in nature. Different enantiomers of chiral drug compounds have obvious differences in their effects on the human body. Therefore, the separation of chiral drugs plays an extremely important role in the safe utilization of drugs. High-performance liquid chromatography (HPLC) is an effective tool for the separation and analysis of compounds, in which the chromatographic packing plays a key role in the separation. Chiral pharmaceutical separation and analysis in HPLC rely on chiral stationary phases (CSPs). Thus, various CSPs are being developed to meet the needs of chiral drug separation and analysis. In this review, recent developments in CSPs, including saccharides (cyclodextrin, cellulose, amylose and chitosan), macrocycles (macrocyclic glycopeptides, pillar[n]arene and polyamide) and porous organic materials (metal-organic frameworks, covalent organic frameworks, and porous organic cages), for pharmaceutical analysis in HPLC were summarized, the advantages and disadvantages of various stationary phases were introduced, and their development prospects were discussed.
Collapse
Affiliation(s)
- Huifeng Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zhihai Wu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
23
|
Fajal S, Dutta S, Ghosh SK. Porous organic polymers (POPs) for environmental remediation. MATERIALS HORIZONS 2023; 10:4083-4138. [PMID: 37575072 DOI: 10.1039/d3mh00672g] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Modern global industrialization along with the ever-increasing growth of the population has resulted in continuous enhancement in the discharge and accumulation of various toxic and hazardous chemicals in the environment. These harmful pollutants, including toxic gases, inorganic heavy metal ions, anthropogenic waste, persistent organic pollutants, toxic dyes, pharmaceuticals, volatile organic compounds, etc., are destroying the ecological balance of the environment. Therefore, systematic monitoring and effective remediation of these toxic pollutants either by adsorptive removal or by catalytic degradation are of great significance. From this viewpoint, porous organic polymers (POPs), being two- or three-dimensional polymeric materials, constructed from small organic molecules connected with rigid covalent bonds have come forth as a promising platform toward various leading applications, especially for efficient environmental remediation. Their unique chemical and structural features including high stability, tunable pore functionalization, and large surface area have boosted the transformation of POPs into various macro-physical forms such as thick and thin-film membranes, which led to a new direction in advanced level pollutant removal, separation and catalytic degradation. In this review, our focus is to highlight the recent progress and achievements in the strategic design, synthesis, architectural-engineering and applications of POPs and their composite materials toward environmental remediation. Several strategies to improve the adsorption efficiency and catalytic degradation performance along with the in-depth interaction mechanism of POP-based materials have been systematically summarized. In addition, evolution of POPs from regular powder form application to rapid and more efficient size and chemo-selective, "real-time" applicable membrane-based application has been further highlighted. Finally, we put forward our perspective on the challenges and opportunities of these materials toward real-world implementation and future prospects in next generation remediation technology.
Collapse
Affiliation(s)
- Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Centre for Water Research, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
24
|
Li J, Xu X, Zhang F, Guo W, Wang X, Xie Y, Zhang F. Urea-based magnetic porous organic frameworks as novel adsorbent for the enrichment of phenylurea herbicides in foods. Food Chem 2023; 425:136436. [PMID: 37267786 DOI: 10.1016/j.foodchem.2023.136436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/06/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
A novel urea-based magnetic porous organic frameworks Fe3O4@UPOFs (ETTA-PPDI) was synthesized by a simple polymerization reaction under mild conditions. The adsorbent displayed desirable adsorption performance for phenylurea herbicides (PUHs) with optimized adsorption time of only 4 min. The adsorption capacities of the adsorbent for PUHs ranged from 47.30 to 111.93 mg g-1. A magnetic solid-phase extraction based on Fe3O4@UPOFs combined with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was established for the efficient determination of six PUHs in food samples (wheat, edible oil and cucumber), with determination coefficient (R2) ≥ 0.9972. The LODs of the method were in the range of 0.003-0.07 μg kg-1 and recoveries ranged from 82.00 to 112.53%. The relative standard deviations were lower than 6.7%. The newly prepared adsorbent displayed great application prospects for the efficient enrichment of trace phenylurea herbicides in complex food matrices.
Collapse
Affiliation(s)
- Jinhua Li
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Xiuli Xu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China.
| | - Wei Guo
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Xiujuan Wang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Yun Xie
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Feifang Zhang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
25
|
Mousa AO, Mohamed MG, Chuang CH, Kuo SW. Carbonized Aminal-Linked Porous Organic Polymers Containing Pyrene and Triazine Units for Gas Uptake and Energy Storage. Polymers (Basel) 2023; 15:polym15081891. [PMID: 37112038 PMCID: PMC10146094 DOI: 10.3390/polym15081891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Porous organic polymers (POPs) have plenteous exciting features due to their attractive combination of microporosity with π-conjugation. Nevertheless, electrodes based on their pristine forms suffer from severe poverty of electrical conductivity, precluding their employment within electrochemical appliances. The electrical conductivity of POPs may be significantly improved and their porosity properties could be further customized by direct carbonization. In this study, we successfully prepared a microporous carbon material (Py-PDT POP-600) by the carbonization of Py-PDT POP, which was designed using a condensation reaction between 6,6'-(1,4-phenylene)bis(1,3,5-triazine-2,4-diamine) (PDA-4NH2) and 4,4',4'',4'''-(pyrene-1,3,6,8-tetrayl)tetrabenzaldehyde (Py-Ph-4CHO) in the presence of dimethyl sulfoxide (DMSO) as a solvent. The obtained Py-PDT POP-600 with a high nitrogen content had a high surface area (up to 314 m2 g-1), high pore volume, and good thermal stability based on N2 adsorption/desorption data and a thermogravimetric analysis (TGA). Owing to the good surface area, the as-prepared Py-PDT POP-600 showed excellent performance in CO2 uptake (2.7 mmol g-1 at 298 K) and a high specific capacitance of 550 F g-1 at 0.5 A g-1 compared with the pristine Py-PDT POP (0.24 mmol g-1 and 28 F g-1).
Collapse
Affiliation(s)
- Aya Osama Mousa
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Institute of Medical Science and Technology, College of Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, College of Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
26
|
Sato K, Osada N, Aihara H. Thienylene combined with pyridylene through planar triazine networks for applications as organic oxygen reduction reaction electrocatalysts. RSC Adv 2023; 13:11794-11799. [PMID: 37077995 PMCID: PMC10107030 DOI: 10.1039/d3ra01431b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
Covalent triazine networks are interesting candidates for organic electrocatalytic materials due to their tunable, durable and sustainable nature. However, the limited availability of molecular designs that ensure both two-dimensionality and functional groups in the π-conjugated plane has hindered their development. In this work, a layered triazine network composed of thiophene and pyridine ring was synthesized by the novel mild liquid phase condition. The resulting network showed layered nature since its intramolecular interaction stabilized its planar conformation. The connection on the 2-position of the heteroaromatic ring prevents steric hindrance. The simple acid treatment method could be used to exfoliate the networks, resulting in high yields of nanosheets. The planar triazine network showed superior electrocatalytic properties for the oxygen reduction reaction in the structure-defined covalent organic networks.
Collapse
Affiliation(s)
- Kosuke Sato
- Organic Materials Chemistry Group, Sagami Chemical Research Institute 2743-1 Hayakawa Ayase Kanagawa 252-1193 Japan
| | - Nodoka Osada
- Organic Materials Chemistry Group, Sagami Chemical Research Institute 2743-1 Hayakawa Ayase Kanagawa 252-1193 Japan
- Course of Applied Science, Graduate School of Engineering, Tokai University 4-1-1 Kitakaname Hiratsuka Kanagawa 259-1292 Japan
| | - Hidenori Aihara
- Organic Materials Chemistry Group, Sagami Chemical Research Institute 2743-1 Hayakawa Ayase Kanagawa 252-1193 Japan
| |
Collapse
|
27
|
Matias PMC, Murtinho D, Valente AJM. Triazine-Based Porous Organic Polymers: Synthesis and Application in Dye Adsorption and Catalysis. Polymers (Basel) 2023; 15:polym15081815. [PMID: 37111962 PMCID: PMC10143168 DOI: 10.3390/polym15081815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The scientific community has been developing promising materials to increase the sustainability and efficiency of production processes and pollutant environmental remediation strategies. Porous organic polymers (POPs) are of special interest, as they are insoluble custom-built materials at the molecular level, endowed with low densities and high stability, surface areas, and porosity. This paper describes the synthesis, characterization, and performance of three triazine-based POPs (T-POPs) in dye adsorption and Henry reaction catalysis. T-POPs were prepared by a polycondensation reaction between melamine and a dialdehyde (terephthalaldehyde (T-POP1) or isophthalaldehyde derivatives with a hydroxyl group (T-POP2) or both a hydroxyl and a carboxyl group (T-POP3)). The crosslinked and mesoporous polyaminal structures, with surface areas between 139.2 and 287.4 m2 g-1, positive charge, and high thermal stability, proved to be excellent methyl orange adsorbents, removing the anionic dye with an efficiency >99% in just 15-20 min. The POPs were also effective for methylene blue cationic dye removal from water, reaching efficiencies up to ca. 99.4%, possibly due to favorable interactions via deprotonation of T-POP3 carboxyl groups. The modification of the most basic polymers, T-POP1 and T-POP2, with copper(II) allowed the best efficiencies in Henry reactions catalysis, leading to excellent conversions (97%) and selectivities (99.9%).
Collapse
Affiliation(s)
- Pedro M C Matias
- Department of Chemistry, CQC-IMS, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Dina Murtinho
- Department of Chemistry, CQC-IMS, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Artur J M Valente
- Department of Chemistry, CQC-IMS, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| |
Collapse
|
28
|
Deori N, Borah R, Lahkar S, Brahma S. Title: Cr(III) Incorporated Melamine‐Terephthalaldehyde Porous Organic Framework Nanosheet Catalyst for Carbon Dioxide Fixation Reaction. ChemistrySelect 2023. [DOI: 10.1002/slct.202204881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Naranarayan Deori
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| | - Rakhimoni Borah
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| | - Surabhi Lahkar
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| | - Sanfaori Brahma
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| |
Collapse
|
29
|
Guo L, Zhao B, Wang L, Wang Q, Yangjuan A, Hao L, Liu W, Wang Z, Wu Q, Wang C. Design of hydroxyl-functionalized nanoporous organic polymer with tunable hydrophilic-hydrophobic surface for solid phase extraction of neonicotinoid insecticides. Talanta 2023; 258:124441. [PMID: 36958099 DOI: 10.1016/j.talanta.2023.124441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/25/2023]
Abstract
As being widely used insecticides, neonicotinoid residues are toxic and harmful to human health and aquatic ecosystems. Thus, the sensitive monitoring of neonicotinoids in water and food samples is highly desirable to reduce their risks to humans. Herein, four novel hydroxyl-functionalized nanoporous organic frameworks (OH-NOP1, OH-NOP2, OH-NOP3 and OH-NOP4) with tunable hydrophilic-hydrophobic surface have been designed and fabricated for the first time by employing luteolin as monomer and 4,4'-bis(chloromethyl)-1,1'-biphenyl as crosslinker at the molar ratio of 3:1, 1:1, 1:3 and 1:6, respectively. When the molar ratio of luteolin to crosslinker was 1:3, OH-NOP3 was obtained and it presented the highest affinity with excellent adsorption performance towards the studied neonicotinoids. The adsorption mechanism was proposed to be the strong hydrogen bond, polar interaction, Lewis acid-base interaction and pore adsorption between OH-NOP3 and neonicotinoids. Then, utilizing OH-NOP3 as sorbent for solid phase extraction cartridges, an effective method for extraction and preconcentration of neonicotinoids followed by high performance liquid chromatography analysis has been developed for quantitative detection of neonicotinoids from water and edible fungi. The method provided good linearity over the range of 0.06-100.0 ng mL-1 for lake water, 1.5-100.0 ng g-1 for pleurotus eryngii and sea-shroom. Low detection limit (at the signal to noise ratio of 3) was achieved in the range of 0.02-0.08 ng mL-1 for water, 0.50-0.60 ng g-1 for pleurotus eryngii and 0.50-0.80 ng g-1 for sea-shroom, while the limit of quantification was 0.06-0.25 ng mL-1, 1.50-1.80 ng g-1 and 1.50-2.50 ng g-1, respectively. Satisfactory method recoveries (85.1-112%) were obtained, with relative standard deviations below 8.2%. This study offered a new strategy for designing efficient sorbents to adsorb or remove organic pollutants based on the structure and properties of substrates.
Collapse
Affiliation(s)
- Linna Guo
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China
| | - Bin Zhao
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Lijuan Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - An Yangjuan
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Lin Hao
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Weihua Liu
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Qiuhua Wu
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China; College of Science, Hebei Agricultural University, Baoding, 071001, China.
| | - Chun Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China; College of Science, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
30
|
Boivin L, Harvey PD. Virus Management Using Metal-Organic Framework-Based Technologies. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36892577 DOI: 10.1021/acsami.3c00922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The eradication and isolation of viruses are two concurrent approaches to protect ourselves from viral infections and diseases. The quite versatile porous materials called metal-organic frameworks (MOFs), have recently emerged as efficient nanosized tools to manage viruses, and several strategies to accomplish these tasks have been developed. This review describes these strategies employing nanoscale MOFs against SARS-CoV-2, HIV-1, tobacco mosaic virus, etc., which include the sequestration by host-guest penetration inside pores, mineralization, design of a physical barrier, controlled delivery of organic and inorganic antiviral drugs or bioinhibitors, photosensitization of singlet oxygen, and direct contact with inherently cytotoxic MOFs.
Collapse
Affiliation(s)
- Léo Boivin
- Département de Chimie, Université de Sherbrooke, Québec J1K 2R1, Canada
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
31
|
Wang R, Tong W, Wu Y, Chen Z, Lin Z, Cai Z. Facile synthesis of hollow microtubular COF as enrichment probe for quantitative detection of ultratrace quinones in mice plasma with APGC-MS/MS. Mikrochim Acta 2023; 190:72. [PMID: 36695957 DOI: 10.1007/s00604-023-05639-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/26/2022] [Indexed: 01/26/2023]
Abstract
A hollow microtubular covalent organic framework (denoted as TatDha-COF) was synthesized by solvothermal method for the enrichment and determination of quinones. The TatDha-COF showed large specific surface area (2057 m2 g-1), good crystal structure, ordered pore size distribution (2.3 nm), stable chemical properties and good reusability. Accordingly, a simple and efficient method based on dispersive solid-phase extraction (d-SPE) and atmospheric pressure gas chromatography tandem mass spectrometry (APGC-MS/MS) was developed for the determination of quinones in complex samples. The established method demonstrated a wide liner range, good linearity (r>0.9990), high enrichment factors (EFs, 24-69-folds) and low detection limits (LODs, 0.200-30.0 pg L-1, S/N≥3). On this basis, the suggested method was successfully applied to sensitively detect the eight ultratrace quinones in mice plasma. Overall, the established method has provided a powerful tool for the enrichment and detection of ultratrace quinones in complex samples, presenting the promising application of TatDha-COF in sample pretreatment.
Collapse
Affiliation(s)
- Ran Wang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wei Tong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yijing Wu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhuling Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, 999077, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
32
|
Wang X, Liu H, Zhang J, Chen S. Covalent organic frameworks (COFs): a promising CO 2 capture candidate material. Polym Chem 2023. [DOI: 10.1039/d2py01350a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Covalent organic frameworks (COFs) are an emerging kind of porous crystal material.
Collapse
Affiliation(s)
- Xiaoqiong Wang
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Haorui Liu
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jinrui Zhang
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Shuixia Chen
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
- Materials Science Institute, Sun Yat-Sen University, Guangzhou 510275, PR China
| |
Collapse
|
33
|
Synthesis and Characterization of Benzene- and Triazine-Based Azo-Bridged Porous Organic Polymers. Polymers (Basel) 2023; 15:polym15010229. [PMID: 36616577 PMCID: PMC9824540 DOI: 10.3390/polym15010229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Porous organic polymers incorporating nitrogen-rich functionalities have recently emerged as promising materials for efficient and highly selective CO2 capture and separation. Herein, we report synthesis and characterization of new two-dimensional (2D) benzene- and triazine-based azo-bridged porous organic polymers. Different synthetic approaches towards the porous azo-bridged polymers were tested, including reductive homocoupling of aromatic nitro monomers, oxidative homocoupling of aromatic amino monomers and heterocoupling of aromatic nitro monomers and a series of aromatic diamines of different lengths and rigidity. IR spectroscopy, 13C CP/MAS NMR spectroscopy, powder X-ray diffraction, elemental analysis, thermogravimetric analysis, nitrogen adsorption-desorption experiments and computational study were used to characterize structures and properties of the resulting polymers. The synthesized azo-bridged polymers are all amorphous solids of good thermal stability, exhibiting various surface areas (up to 351 m2 g-1). The obtained results indicated that the synthetic methods and building units have a pronounced effect on the porosity of the final materials. Reductive and oxidative homocoupling of aromatic nitro and amino building units, respectively, lead to 2D azo-bridged polymers of substantially higher porosity when compared to those produced by heterocoupling reactions. Periodic DFT calculations and Grand-canonical Monte Carlo (GCMC) simulations suggested that, within the used approximations, linear linkers of different lengths do not significantly affect CO2 adsorption properties of model azo-bridged polymers.
Collapse
|
34
|
Preparation of covalent triazine-based polyamides for copper (II) ions removal from aqueous solutions. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
35
|
Satheeshkumar C, Seo H, Hong S, Kim P, Seo M. Synthesis of triphenylene-based hierarchically porous monolith with nitroaromatic-sensitive fluorescence. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
36
|
Wang Q, Tang R, Xu M, Wang J, Li S, Liu W, Hao L, Zhang S, Zhou J, Wang C, Wu Q, Wang Z. Sustainable synthesis of hydroxyl-functional porous organic framework as novel adsorbent for effective removal of organic micropollutants from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115952. [PMID: 35985270 DOI: 10.1016/j.jenvman.2022.115952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Organic micropollutants (OMPs) in water resources are a growing threat to aquatic ecosystems and human health. Efficient removal of polar OMPs is very challenging because of their high hydrophility. Synthesizing novel adsorbent capable of high-efficiently removing hydrophilic and hydrophobic micropollutants is highly desirable for water remediation. Here, using natural proanthocyanidin as building units, a novel hydroxyl-functional porous organic framework (denoted as PC-POF) with amphiphilic feature was synthesized through facile azo coupling reaction. Five sulfonamide antibiotics were selected as model OMPs for adsorption study. Adsorption experiments demonstrated a more rapid and efficient sulfonamides capture ability of the PC-POF than that of the most reported adsorbents due to strong hydrogen bonding, π stacking and electrostatic interactions. The PC-POF can be easily recovered and reused at least 5 times without obvious decline in adsorption performance. Moreover, experiments conducted at environmentally relevant concentrations (μg L-1) further confirmed a notable adsorption performance of the PC-POF even when the sulfonamides solution was rapidly passed through the PC-POF packed column. The PC-POF also showed good adsorption performance for other micropollutants like neonicotinoid insecticides, nitroimidazole antibiotics and triazine herbicides, indicating a promising prospect. This work provides a new strategy to construct amphiphilic adsorbent by using renewable resources for pollutants removal.
Collapse
Affiliation(s)
- Qianqian Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Ranxiao Tang
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Mingming Xu
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Junmin Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Shuofeng Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Weihua Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Lin Hao
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Shuaihua Zhang
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Junhong Zhou
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Qiuhua Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Zhi Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| |
Collapse
|
37
|
Sun M, Feng J, Feng Y, Xin X, Ding Y, Sun M. Preparation of ionic covalent organic frameworks and their applications in solid-phase extraction. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Zhang Y, Wu J, Gao J, Chen X, Wang Q, Yu X, Zhang Z, Liu M, Li J. Oxygen ether chain containing covalent organic frameworks as efficient fluorescence-enhanced probe for water detection. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Wang J, Feng J, Lian Y, Sun X, Wang M, Sun M. Advances of the functionalized covalent organic frameworks for sample preparation in food field. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Xu M, Zhou Z, Hao L, Li Z, Li J, Wang Q, Liu W, Wang C, Wang Z, Wu Q. Phenyl-imidazole based and nitrogen rich hyper-crosslinked polymer for sensitive determination of aflatoxins. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Ahmed LR, Chuang CH, Lüder J, Yang HW, EL-Mahdy AFM. Direct Metal-Free Synthesis of Uracil- and Pentaazaphenalene-Functionalized Porous Organic Polymers via Quadruple Mannich Cyclization and Their Nucleobase Recognition Activities. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lamiaa Reda Ahmed
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Johann Lüder
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Center for Theoretical and computational Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Hung-Wei Yang
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Ahmed F. M. EL-Mahdy
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
42
|
Li J, Wang Z, Li J, Zhang S, An Y, Hao L, Yang X, Wang C, Wang Z, Wu Q. Novel N-riched covalent organic framework for solid-phase microextraction of organochlorine pesticides in vegetable and fruit samples. Food Chem 2022; 388:133007. [PMID: 35483283 DOI: 10.1016/j.foodchem.2022.133007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/19/2022] [Accepted: 04/17/2022] [Indexed: 12/01/2022]
Abstract
A covalent organic framework named N-COF was successfully constructed by the aldehyde-amine condensation reaction between 2,4,6-tris (4-formyl phenoxy)-1,3,5-triazine and 1,3-bis(4-aminophenyl) urea for the first time. The prepared N-COF exhibited good stability and high affinity to organochlorine pesticides (OCPs). Thus, the N-COF was served as solid phase microextraction fiber coating for extraction of six OCPs from vegetables and fruits including romaine lettuce, cabbage, Chinese cabbage, apple, pear and peach, followed by quantitation with gas chromatography-electron capture detector (GC-ECD). Under the optimal conditions, good linearities for the OCPs existed in the ranges from 0.1 to 1.0 ng g-1 to 100.0 ng g-1 for the samples. The low limits of detection for analytes were obtained in the range of 0.03-0.3 ng g-1. The present work can offer new alternative for sensitive analysis of trace level of OCPs in vegetables and fruits.
Collapse
Affiliation(s)
- Jie Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China; College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Zhuo Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Jinqiu Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Shuaihua Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China; College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Yangjuan An
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Lin Hao
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Xiumin Yang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Chun Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Zhi Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China; College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Qiuhua Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China; College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China.
| |
Collapse
|
43
|
Gao Y, Sheng K, Bao T, Wang S. Recent applications of organic molecule-based framework porous materials in solid-phase microextraction for pharmaceutical analysis. J Pharm Biomed Anal 2022; 221:115040. [PMID: 36126613 DOI: 10.1016/j.jpba.2022.115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 09/08/2022] [Indexed: 11/15/2022]
Abstract
Sample preparation is an indispensable part of detection of complex samples in pharmaceutical analysis. Solid-phase microextraction (SPME) has obtained a lot of attention due to its advantages of time saving, less solvent and easily automation. A variety of functional materials are used as sorbents in SPME to carry out selective and high extraction. This review centers around the recent applications of organic molecule-based framework porous materials, such as metal organic frameworks (MOFs) and covalent organic frameworks (COFs), as SPME coating materials mainly focus on pharmaceutical analysis in food, environment, and biological samples. Four representative extraction devices are introduced, including on-fiber SPME, in-tube SPME, thin film SPME, stir bar SPME. The application prospect of other organic porous materials as sorbents for pharmaceutical analysis are also discussed, such as hyper crosslinked polymers (HCPs) and conjugated microporous polymers (CMPs). The progresses and discusses are provided to offer references for further research focusing on application and development of organic molecule-based framework porous materials in the field of SPME.
Collapse
Affiliation(s)
- Yan Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Kangjia Sheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Tao Bao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China.
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China.
| |
Collapse
|
44
|
Ariga K. Materials nanoarchitectonics in a two-dimensional world within a nanoscale distance from the liquid phase. NANOSCALE 2022; 14:10610-10629. [PMID: 35838591 DOI: 10.1039/d2nr02513b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Promoted understanding of nanotechnology has enabled the construction of functional materials with nanoscale-regulated structures. Accordingly, materials science requires one-step further innovation by coupling nanotechnology with the other materials sciences. As a post-nanotechnology concept, nanoarchitectonics has recently been proposed. It is a methodology to architect functional material systems using atomic, molecular, and nanomaterial unit-components. One of the attractive methodologies would be to develop nanoarchitectonics in a defined dimensional environment with certain dynamism, such as liquid interfaces. However, nanoarchitectonics at liquid interfaces has not been fully explored because of difficulties in direct observations and evaluations with high-resolutions. This unsatisfied situation in the nanoscale understanding of liquid interfaces may keep liquid interfaces as unexplored and attractive frontiers in nanotechnology and nanoarchitectonics. Research efforts related to materials nanoarchitectonics on liquid interfaces have been continuously made. As exemplified in this review paper, a wide range of materials can be organized and functionalized on liquid interfaces, including organic molecules, inorganic nanomaterials, hybrids, organic semiconductor thin films, proteins, and stem cells. Two-dimensional nanocarbon sheets have been fabricated by molecular reactions at dynamically moving interfaces, and metal-organic frameworks and covalent organic frameworks have been fabricated by specific interactions and reactions at liquid interfaces. Therefore, functions such as sensors, devices, energy-related applications, and cell control are being explored. In fact, the potential for the nanoarchitectonics of functional materials in two-dimensional nanospaces at liquid surfaces is sufficiently high. On the basis of these backgrounds, this short review article describes recent approaches to materials nanoarchitectonics in a liquid-based two-dimensional world, i.e., interfacial regions within a nanoscale distance from the liquid phase.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
45
|
Determination of benzimidazoles in beef by molecularly imprinted boron nitride composite based dispersive solid phase microextraction and ultra performance liquid chromatography. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
46
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
47
|
Cu@MTPOF as an Efficient Catalyst for the C–S Coupling of 2-Mercaptobenzimidazole with Aryl Halides and 2-Halobenzoic Acids. Catal Letters 2022. [DOI: 10.1007/s10562-022-04092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
48
|
Challenges and Opportunities in Carbon Capture, Utilization and Storage: A Process Systems Engineering Perspective. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2022.107925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
49
|
Ahmadi Y, Kim KH. Recent Progress in the Development of Hyper-Cross-Linked Polymers for Adsorption of Gaseous Volatile Organic Compounds. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2082470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Younes Ahmadi
- Department of Analytical Chemistry, Kabul University, Kabul, Afghanistan
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, Korea
| |
Collapse
|
50
|
He N, Li Z, Hu C, Chen Z. In situ synthesis of a spherical covalent organic framework as a stationary phase for capillary electrochromatography. J Pharm Anal 2022; 12:610-616. [PMID: 36105161 PMCID: PMC9463497 DOI: 10.1016/j.jpha.2022.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
Covalent organic frameworks (COFs) are a novel type of crystalline porous organic polymer materials recently developed. It has several advantages in chromatographic separation field, such as high thermal stability, porosity, structural regularity, and large specific surface area. Here, a novel spherical COF 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 2,5-bis(2-propyn-1-yloxy)-1,4-benzenedicarboxaldehyde (BPTA) was developed as an electrochromatographic stationary phase for capillary electrochromatography separation. The COF TAPB-BPTA modified capillary column was fabricated via a facile in situ growth method at room temperature. The characterization results of scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD) confirmed that COF TAPB-BPTA were successfully modified onto the capillary inner surface. The electrochromatography separation performance of the COF TAPB-BPTA modified capillary was investigated. The prepared column demonstrated outstanding separation performance toward alkylbenzenes, phenols, and chlorobenzenes compounds. Furthermore, the baseline separations of non-steroidal anti-inflammatory drugs (NSAIDs) and parabens with good efficiency and high resolution were achieved. Also, the prepared column possessed satisfactory precision of the intra-day runs (n = 5), inter-day runs (n = 3), and parallel columns (n = 3), and the relative standard deviations (RSDs) of the retention times of tested alkylbenzenes were all less than 2.58%. Thus, this new COF-based stationary phase shows tremendous application potential in chromatographic separation field. COF TAPB–BPTA was studied as OT-CEC stationary phase. In situ, room-temperature growth method was quite facile and efficient. Excellent separation performances toward various hydrophobic compounds. The maximum column efficiency was 1.78 × 105 plates/m. Reproducibility and stability were found to be satisfactory.
Collapse
|