1
|
Liu Y, Feng P, Wei X, Xu H, Yu M, Zhang L, Hao W, Guo Z. PGC7 regulates maternal mRNA translation via AKT1-YBX1 interactions in mouse oocytes. Cell Commun Signal 2024; 22:604. [PMID: 39696520 DOI: 10.1186/s12964-024-01976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024] Open
Abstract
Timely and accurate translation of maternal mRNA is essential for oocyte maturation and early embryonic development. Previous studies have highlighted the importance of Primordial Germ cell 7 (PGC7) as a maternal factor in maintaining DNA methylation of maternally imprinted loci in zygotes. However, it is still unknown whether PGC7 is involved in the regulation of Maternal mRNA Translation. In this study, we have identified that PGC7-AKT1-YBX1 axis is involved in promoting the translation of maternal mRNAs. PGC7 not only sustains AKT1 activity by counteracting PP2A dephosphorylation and facilitating PDK1-AKT1 binding but also assists AKT1 in phosphorylating the translation inhibitor YBX1. In the absence of PGC7, despite increased PIK3CA expression and AKT1 phosphorylation, AKT1 is unable to phosphorylate YBX1. PGC7 facilitates the interaction between AKT1 and YBX1, enhancing YBX1-Serine 100 phosphorylation, which leads to YBX1 dissociation from eIF4E, thereby activating the translation of maternal Cyclin B1 and YAP1. The findings demonstrate the indispensability of PGC7 for translation activation in mammalian oocytes and provide a potential network regulated by PGC7 in early oogenesis.
Collapse
Affiliation(s)
- Yingxiang Liu
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Peiwen Feng
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Xing Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Hongyu Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Mengying Yu
- Xi'an Center for Disease Control and Prevention, Xi'an, Shaanxi, 710049, P.R. China
| | - Lei Zhang
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan, Zhengzhou, P.R. China
| | - Weijie Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Zekun Guo
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China.
| |
Collapse
|
2
|
Cui X, Li H, Huang X, Xue T, Wang S, Zhu X, Jing X. N 6-Methyladenosine Modification on the Function of Female Reproductive Development and Related Diseases. Immun Inflamm Dis 2024; 12:e70089. [PMID: 39660878 PMCID: PMC11632877 DOI: 10.1002/iid3.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/17/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) modification is a widespread and reversible epigenetic alteration in eukaryotic mRNA, playing a pivotal role in various biological functions. Its significance in female reproductive development and associated diseases has recently become a focal point of research. OBJECTIVE This review aims to consolidate current knowledge of the role of m6A modification in female reproductive tissues, emphasizing its regulatory dynamics, functional significance, and implications in reproductive health and disease. METHODS A comprehensive analysis of recent studies focusing on m6A modification in ovarian development, oocyte maturation, embryo development, and the pathogenesis of reproductive diseases. RESULTS m6A modification exhibits dynamic regulation in female reproductive tissues, influencing key developmental stages and processes. It plays critical roles in ovarian development, oocyte maturation, and embryo development, underpinning essential aspects of reproductive health. m6A modification is intricately involved in the pathogenesis of several reproductive diseases, including polycystic ovary syndrome (PCOS), premature ovarian failure (POF), and endometriosis, offering insights into potential molecular mechanisms and therapeutic targets. CONCLUSION The review highlights the crucial role of m6A modification in female reproductive development and related diseases. It underscores the need for further research to explore innovative diagnostic and therapeutic strategies for reproductive disorders, leveraging the insights gained from understanding m6A modification's impact on reproductive health.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine CenterThe affiliated Children's Hospital of Shanxi Medical University, Children's Hospital of Shanxi, Shanxi Maternal and Child Health HospitalTaiyuanChina
| | - Huihui Li
- Reproductive Medicine CenterThe affiliated Children's Hospital of Shanxi Medical University, Children's Hospital of Shanxi, Shanxi Maternal and Child Health HospitalTaiyuanChina
| | - Xia Huang
- Department of Clinical LaboratoryShanxi Provincial People's Hospital, Shanxi Medical UniversityTaiyuanChina
| | - Tingting Xue
- Department of Clinical LaboratoryShanxi Provincial People's Hospital, Shanxi Medical UniversityTaiyuanChina
| | - Shu Wang
- Department of Clinical LaboratoryShanxi Provincial People's Hospital, Shanxi Medical UniversityTaiyuanChina
| | - Xinyu Zhu
- Department of Clinical LaboratoryShanxi Provincial People's Hospital, Shanxi Medical UniversityTaiyuanChina
| | - Xuan Jing
- Department of Clinical LaboratoryShanxi Provincial People's Hospital, Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
3
|
Cheng S, Schuh M. Two mechanisms repress cyclin B1 translation to maintain prophase arrest in mouse oocytes. Nat Commun 2024; 15:10044. [PMID: 39567493 PMCID: PMC11579420 DOI: 10.1038/s41467-024-54161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
In mammals, oocytes are arrested in prophase of meiosis I for long periods of time. Prophase arrest is critical for reproduction because it allows oocytes to grow to their full size to support meiotic maturation and embryonic development. Prophase arrest requires the inhibitory phosphorylation of the mitotic kinase CDK1. Whether prophase arrest is also regulated at the translational level is unknown. Here, we show that prophase arrest is regulated by translational control of dormant cyclin B1 mRNAs. Using Trim-Away, we identify two mechanisms that maintain cyclin B1 dormancy and thus prophase arrest. First, a complex of the RNA-binding proteins DDX6, LSM14B and CPEB1 directly represses cyclin B1 translation through interacting with its 3'UTR. Second, cytoplasmic poly(A)-binding proteins (PABPCs) indirectly repress the translation of cyclin B1 and other poly(A)-tail-less or short-tailed mRNAs by sequestering the translation machinery on long-tailed mRNAs. Together, we demonstrate how RNA-binding proteins coordinately regulate prophase arrest, and reveal an unexpected role for PABPCs in controlling mRNA dormancy.
Collapse
Affiliation(s)
- Shiya Cheng
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, 430072, Wuhan, China
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
4
|
Zhang J, Lv J, Qin J, Zhang M, He X, Ma B, Wan Y, Gao Y, Wang M, Hong Z. Unraveling the mysteries of early embryonic arrest: genetic factors and molecular mechanisms. J Assist Reprod Genet 2024:10.1007/s10815-024-03259-7. [PMID: 39325344 DOI: 10.1007/s10815-024-03259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
Early embryonic arrest (EEA) is a critical impediment in assisted reproductive technology (ART), affecting 40% of infertile patients by halting the development of early embryos from the zygote to blastocyst stage, resulting in a lack of viable embryos for successful pregnancy. Despite its prevalence, the molecular mechanism underlying EEA remains elusive. This review synthesizes the latest research on the genetic and molecular factors contributing to EEA, with a focus on maternal, paternal, and embryonic factors. Maternal factors such as irregularities in follicular development and endometrial environment, along with mutations in genes like NLRP5, PADI6, KPNA7, IGF2, and TUBB8, have been implicated in EEA. Specifically, PATL2 mutations are hypothesized to disrupt the maternal-zygotic transition, impairing embryo development. Paternal contributions to EEA are linked to chromosomal variations, epigenetic modifications, and mutations in genes such as CFAP69, ACTL7A, and M1AP, which interfere with sperm development and lead to infertility. Aneuploidy may disrupt spindle assembly checkpoints and pathways including Wnt, MAPK, and Hippo signaling, thereby contributing to EEA. Additionally, key genes involved in embryonic genome activation-such as ZSCAN4, DUXB, DUXA, NANOGNB, DPPA4, GATA6, ARGFX, RBP7, and KLF5-alongside functional disruptions in epigenetic modifications, mitochondrial DNA, and small non-coding RNAs, play critical roles in the onset of EEA. This review provides a comprehensive understanding of the genetic and molecular underpinnings of EEA, offering a theoretical foundation for the diagnosis and potential therapeutic strategies aimed at improving pregnancy outcomes.
Collapse
Affiliation(s)
- Jinyi Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Jing Lv
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Juling Qin
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Ming Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Xuanyi He
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Binyu Ma
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Yingjing Wan
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Ying Gao
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| | - Zhidan Hong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| |
Collapse
|
5
|
Yu X, Xu J, Song B, Zhu R, Liu J, Liu YF, Ma YJ. The role of epigenetics in women's reproductive health: the impact of environmental factors. Front Endocrinol (Lausanne) 2024; 15:1399757. [PMID: 39345884 PMCID: PMC11427273 DOI: 10.3389/fendo.2024.1399757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
This paper explores the significant role of epigenetics in women's reproductive health, focusing on the impact of environmental factors. It highlights the crucial link between epigenetic modifications-such as DNA methylation and histones post-translational modifications-and reproductive health issues, including infertility and pregnancy complications. The paper reviews the influence of pollutants like PM2.5, heavy metals, and endocrine disruptors on gene expression through epigenetic mechanisms, emphasizing the need for understanding how dietary, lifestyle choices, and exposure to chemicals affect gene expression and reproductive health. Future research directions include deeper investigation into epigenetics in female reproductive health and leveraging gene editing to mitigate epigenetic changes for improving IVF success rates and managing reproductive disorders.
Collapse
Affiliation(s)
- Xinru Yu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiawei Xu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Bihan Song
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Runhe Zhu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Jiaxin Liu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yi Fan Liu
- Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ying Jie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
6
|
Su Z, Dong Y, Sun J, Wu Y, Wei Q, Liang Y, Lin Z, Li Y, Shen L, Xi C, Wu L, Xu Y, Liu Y, Yin J, Wang H, Shi K, Le R, Gao S, Xu X. RNA m 6A modification regulates cell fate transition between pluripotent stem cells and 2-cell-like cells. Cell Prolif 2024; 57:e13696. [PMID: 38952035 PMCID: PMC11503247 DOI: 10.1111/cpr.13696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 07/03/2024] Open
Abstract
N6-methyladenosine (m6A) exerts essential roles in early embryos, especially in the maternal-to-zygotic transition stage. However, the landscape and roles of RNA m6A modification during the transition between pluripotent stem cells and 2-cell-like (2C-like) cells remain elusive. Here, we utilised ultralow-input RNA m6A immunoprecipitation to depict the dynamic picture of transcriptome-wide m6A modifications during 2C-like transitions. We found that RNA m6A modification was preferentially enriched in zygotic genome activation (ZGA) transcripts and MERVL with high expression levels in 2C-like cells. During the exit of the 2C-like state, m6A facilitated the silencing of ZGA genes and MERVL. Notably, inhibition of m6A methyltransferase METTL3 and m6A reader protein IGF2BP2 is capable of significantly delaying 2C-like state exit and expanding 2C-like cells population. Together, our study reveals the critical roles of RNA m6A modification in the transition between 2C-like and pluripotent states, facilitating the study of totipotency and cell fate decision in the future.
Collapse
Affiliation(s)
- Zhongqu Su
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease PreventionShandong Agricultural UniversityTai'anShandongChina
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yu Dong
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Jiatong Sun
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - You Wu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Qingqing Wei
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease PreventionShandong Agricultural UniversityTai'anShandongChina
| | - Yuwei Liang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Zhiyi Lin
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yujun Li
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Lu Shen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Chenxiang Xi
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Li Wu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yiliang Xu
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease PreventionShandong Agricultural UniversityTai'anShandongChina
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yingdong Liu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Jiqing Yin
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Kerong Shi
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease PreventionShandong Agricultural UniversityTai'anShandongChina
| | - Rongrong Le
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Xiaocui Xu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| |
Collapse
|
7
|
Zhao Y, Zhang M, Huang X, Liu J, Sun Y, Zhang F, Zhang N, Lei L. Lactate modulates zygotic genome activation through H3K18 lactylation rather than H3K27 acetylation. Cell Mol Life Sci 2024; 81:298. [PMID: 38992327 PMCID: PMC11335220 DOI: 10.1007/s00018-024-05349-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
In spite of its essential role in culture media, the precise influence of lactate on early mouse embryonic development remains elusive. Previous studies have implicated lactate accumulation in medium affecting histone acetylation. Recent research has underscored lactate-derived histone lactylation as a novel epigenetic modification in diverse cellular processes and diseases. Our investigation demonstrated that the absence of sodium lactate in the medium resulted in a pronounced 2-cell arrest at the late G2 phase in embryos. RNA-seq analysis revealed that the absence of sodium lactate significantly impaired the maternal-to-zygotic transition (MZT), particularly in zygotic gene activation (ZGA). Investigations were conducted employing Cut&Tag assays targeting the well-studied histone acetylation and lactylation sites, H3K18la and H3K27ac, respectively. The findings revealed a noticeable reduction in H3K18la modification under lactate deficiency, and this alteration showed a significant correlation with changes in gene expression. In contrast, H3K27ac exhibited minimal correlation. These results suggest that lactate may preferentially influence early embryonic development through H3K18la rather than H3K27ac modifications.
Collapse
Affiliation(s)
- Yanhua Zhao
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Meiting Zhang
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Xingwei Huang
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Jiqiang Liu
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Yuchen Sun
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Fan Zhang
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Na Zhang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
8
|
Que X, Ren L, Yang L, Wang L, Li J, Wu R, Chen Q. Long noncoding RNA BMPR1B-AS1 stability regulated by IGF2BP2 affects the decidualization in endometriosis patients through the SMAD1/5/9 pathway. FASEB J 2024; 38:e23622. [PMID: 38703029 DOI: 10.1096/fj.202302195r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024]
Abstract
Endometriosis (EMs)-related infertility commonly has decreased endometrial receptivity and normal decidualization is the basis for establishing and maintaining endometrial receptivity. However, the potential molecular regulatory mechanisms of impaired endometrial decidualization in patients with EMs have not been fully clarified. We confirmed the existence of reduced endometrial receptivity in patients with EMs by scanning electron microscopy and quantitative real-time PCR. Here we identified an lncRNA, named BMPR1B-AS1, which is significantly downregulated in eutopic endometrium in EMs patients and plays an essential role in decidual formation. Furthermore, RNA pull-down, mass spectrometry, RNA immunoprecipitation, and rescue analyses revealed that BMPR1B-AS1 positively regulates decidual formation through interaction with the RNA-binding protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Downregulation of IGF2BP2 led to a decreased stability of BMPR1B-AS1 and inhibition of activation of the SMAD1/5/9 pathway, an inhibitory effect which diminished decidualization in human endometrial stromal cells (hESCs) decidualization. In conclusion, our identified a novel regulatory mechanism in which the IGF2BP2-BMPR1B-AS1-SMAD1/5/9 axis plays a key role in the regulation of decidualization, providing insights into the potential link between abnormal decidualization and infertility in patients with EMs, which will be of clinical significance for the management and treatment of infertility in patients with EMs.
Collapse
Affiliation(s)
- Xiaohong Que
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
- Clinical Medical Research Center for Gynecology and Reproductive Health of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
| | - Lulu Ren
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
- Clinical Medical Research Center for Gynecology and Reproductive Health of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- Reproductive Medical Center, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Lin Yang
- Clinical Medical Research Center for Gynecology and Reproductive Health of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Lemeng Wang
- Clinical Medical Research Center for Gynecology and Reproductive Health of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Junzui Li
- Clinical Medical Research Center for Gynecology and Reproductive Health of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Rongfeng Wu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
- Clinical Medical Research Center for Gynecology and Reproductive Health of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- Reproductive Medical Center, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qionghua Chen
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
- Clinical Medical Research Center for Gynecology and Reproductive Health of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
9
|
Zhang H, Su W, Zhao R, Li M, Zhao S, Chen Z, Zhao H. Epigallocatechin-3-gallate improves the quality of maternally aged oocytes. Cell Prolif 2024; 57:e13575. [PMID: 38010042 PMCID: PMC10984106 DOI: 10.1111/cpr.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
The decline in female fertility as age advances is intricately linked to the diminished developmental potential of oocytes. Despite this challenge, the strategies available to enhance the quality of aged oocytes remain limited. Epigallocatechin-3-gallate (EGCG), characterised by its anti-inflammatory, antioxidant and tissue protective properties, holds promise as a candidate for improving the quality of maternally aged oocytes. In this study, we explored the precise impact and underlying mechanisms of EGCG on aged oocytes. EGCG exhibited the capacity to enhance the quality of aged oocytes both in vitro and in vivo. Specifically, the application of EGCG in vitro resulted in noteworthy improvements, including an increased rate of first polar body extrusion, enhanced mitochondrial function, refined spindle morphology and a reduction in oxidative stress. These beneficial effects were further validated by the improved fertility observed among aged mice. In addition, our findings propose that EGCG might augment the expression of Arf6. This augmentation, in turn, contributes to the assembly of spindle-associated F-actin, which can contribute to mitigate the aneuploidy induced by the disruption of spindle F-actin within aged oocytes. This work thus contributes not only to understanding the role of EGCG in bolstering oocyte health, but also underscores its potential as a therapeutic intervention to address fertility challenges associated with advanced age.
Collapse
Affiliation(s)
- HongHui Zhang
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversityNanjingChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Wei Su
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - RuSong Zhao
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversityNanjingChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Mei Li
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - ShiGang Zhao
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Zi‐Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghaiChina
- Center for Reproductive Medicine, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
10
|
Alhammadi MA, Bajbouj K, Talaat IM, Hamoudi R. The role of RNA-modifying proteins in renal cell carcinoma. Cell Death Dis 2024; 15:227. [PMID: 38503745 PMCID: PMC10951318 DOI: 10.1038/s41419-024-06479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 03/21/2024]
Abstract
Gene expression is one of the most critical cellular processes. It is controlled by complex mechanisms at the genomic, epigenomic, transcriptomic, and proteomic levels. Any aberration in these mechanisms can lead to dysregulated gene expression. One recently discovered process that controls gene expression includes chemical modifications of RNA molecules by RNA-modifying proteins, a field known as epitranscriptomics. Epitranscriptomics can regulate mRNA splicing, nuclear export, stabilization, translation, or induce degradation of target RNA molecules. Dysregulation in RNA-modifying proteins has been found to contribute to many pathological conditions, such as cancer, diabetes, obesity, cardiovascular diseases, and neurological diseases, among others. This article reviews the role of epitranscriptomics in the pathogenesis and progression of renal cell carcinoma. It summarizes the molecular function of RNA-modifying proteins in the pathogenesis of renal cell carcinoma.
Collapse
Affiliation(s)
- Muna A Alhammadi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
| | - Khuloud Bajbouj
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Department of Basic Sciences, College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, United States of America.
| | - Iman M Talaat
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Pathology Department, Faculty of Medicine, Alexandria University, 21131, Alexandria, Egypt.
| | - Rifat Hamoudi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Division of Surgery and Interventional Science, University College London, London, NW3 2PS, United Kingdom.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah, United Arab Emirates.
- BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
11
|
Lee K, Cho K, Morey R, Cook-Andersen H. An extended wave of global mRNA deadenylation sets up a switch in translation regulation across the mammalian oocyte-to-embryo transition. Cell Rep 2024; 43:113710. [PMID: 38306272 PMCID: PMC11034814 DOI: 10.1016/j.celrep.2024.113710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/18/2023] [Accepted: 01/11/2024] [Indexed: 02/04/2024] Open
Abstract
Without new transcription, gene expression across the oocyte-to-embryo transition (OET) relies instead on regulation of mRNA poly(A) tails to control translation. However, how tail dynamics shape translation across the OET in mammals remains unclear. We perform long-read RNA sequencing to uncover poly(A) tail lengths across the mouse OET and, incorporating published ribosome profiling data, provide an integrated, transcriptome-wide analysis of poly(A) tails and translation across the entire transition. We uncover an extended wave of global deadenylation during fertilization in which short-tailed, oocyte-deposited mRNAs are translationally activated without polyadenylation through resistance to deadenylation. Subsequently, in the embryo, mRNAs are readenylated and translated in a surge of global polyadenylation. We further identify regulation of poly(A) tail length at the isoform level and stage-specific enrichment of mRNA sequence motifs among regulated transcripts. These data provide insight into the stage-specific mechanisms of poly(A) tail regulation that orchestrate gene expression from oocyte to embryo in mammals.
Collapse
Affiliation(s)
- Katherine Lee
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kyucheol Cho
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert Morey
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Heidi Cook-Andersen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
Deng K, Li X, Liu Z, Su Y, Sun X, Wei W, Fan Y, Zhang Y, Wang F. IGF2BP2 regulates the proliferation and migration of endometrial stromal cells through the PI3K/AKT/mTOR signaling pathway in Hu sheep. J Anim Sci 2024; 102:skae129. [PMID: 38727196 PMCID: PMC11151927 DOI: 10.1093/jas/skae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
Insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2), a significant member of the conserved RNA-binding protein family, plays various roles in numerous physiological and pathological processes. However, the specific function of IGF2BP2 in regulating endometrial function in sheep remains largely unknown. In this study, we observed a significant upregulation in IGF2BP2 mRNA abundance in the endometrium during the luteal phase compared to the follicular phase in Hu sheep. The knockdown of IGF2BP2 resulted in accelerated cell proliferation and migration of Hu sheep endometrial stromal cells (ESCs). Moreover, RNA sequencing analysis revealed that genes with significantly altered expression in IGF2BP2 knockdown cells were predominantly enriched in endometrial receptivity-related signaling pathways, such as cytokine-cytokine receptor interaction, NOD-like receptor, PI3K-AKT, and JAK-STAT signaling pathway. Additionally, the knockdown of IGF2BP2 significantly increased the expression of matrix metalloprotein 9 (MMP9), vascular endothelial growth factor, and prolactin (PRL) in ESCs. The knockdown of IGF2BP2 was also observed to stimulate the PI3K/AKT/mTOR pathway by upregulating integrin β4 (ITGB4) expression. Notably, the downregulation of ITGB4 attenuates IGF2BP2 knockdown-induced facilitation of proliferation and migration of Hu sheep ESCs by inhibiting the PI3K/AKT/mTOR pathway. Collectively, these findings highlight the important role of IGF2BP2 in regulating endometrial function, particularly through the modulation of ESC proliferation and migration via the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Kaiping Deng
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaodan Li
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhipeng Liu
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yalong Su
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Sun
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wurilege Wei
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010000, China
| | - Yixuan Fan
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanli Zhang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
13
|
Wang Z, Wang X, Lan X, Zhu H, Qu L, Pan C. Polymorphism within the GATA binding protein 4 gene is significantly associated with goat litter size. Anim Biotechnol 2023; 34:4291-4300. [PMID: 36421983 DOI: 10.1080/10495398.2022.2147533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
GATA binding protein 4 (GATA4) is a typical transcription binding factor, and its main functions include regulating the proliferation, differentiation and apoptosis of ovarian granulosa cells, promoting spermatogenesis and sex differentiation, implying that this gene have possibly roles in animal reproduction. This study aims to detect five potential insertion/deletions (indels) of the GATA4 gene in 606 healthy unrelated Shaanbei white cashmere (SBWC) goats and analyze its association with the litter size. The electrophoresis and DNA sequencing identified two polymorphic indels (e.g., P4-Del-8bp and P5-Ins-9bp indel). Then T-test analysis showed that P4-Del-8bp was significantly correlated with litter size (p = 0.022) because of two different genotypes detected, e.g., insertion-deletion (ID) and deletion-deletion (DD), and the average litter size of individuals with DD genotype goats was higher than that of others. However, there was no correlation between P5-Ins-9bp and lambing of goats. Chi-square (X2) test found that the distribution of and P4-Del-8bp genotypes (X2 = 6.475, p = 0.011) was significantly different between single and multiple-lamb groups, while P5-Ins-9bp (X2 = 0.030, p = 0.862) was not. Therefore, these findings revealed that P4-Del-8bp polymorphism of goat GATA4 gene was a potential molecular marker significantly associated with litter size, which can be used for the marker-assisted selection (MAS) breeding to improve goat industry.
Collapse
Affiliation(s)
- Zhiying Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xinyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haijing Zhu
- Life Science Research Center, Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
| | - Lei Qu
- Life Science Research Center, Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
14
|
Yu D, Xiao Z, Zou Z, Lin L, Li J, Tan J, Chen W. IGF2BP2 promotes head and neck squamous carcinoma cell proliferation and growth via the miR-98-5p/PI3K/Akt signaling pathway. Front Oncol 2023; 13:1252999. [PMID: 37936610 PMCID: PMC10627011 DOI: 10.3389/fonc.2023.1252999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction As a N6-methyladenosine reader protein, Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) is a critical player in tumor progression and metastasis. However, its specific function in head and neck squamous carcinoma (HNSCC) has yet to be determined. The present study aimed to determine the role of IGF2BP2 in HNSCC. Methods The expression of IGF2BP2 in HNSCC was analyzed using The Cancer Genome Atlas (TCGA) dataset and detected in HNSCC tissues and cells, respectively. Gain- and loss- of function methods were employed to study the effects of IGF2BP2 on HNSCC cell proliferation and tumorigenesis in vitro and in vivo. MicroRNAs (miRNAs) regulating IGF2BP2 were predicted using online tools and confirmed experimentally. Results We showed augmented IGF2BP2 expression in HNSCC, which correlated with poor clinical outcomes. Functional studies showed that IGF2BP2 promoted HNSCC cell proliferation by facilitating cell cycle progression while inhibiting apoptosis. We further demonstrated that IGF2BP2 could enhance HNSCC cell tumorigenesis in vivo. Mechanistically, our data revealed that miR-98-5p could directly target IGF2BP2. The interplay between IGF2BP2 and miR-98-5p is essential to drive the progression of HNSCC via the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-protein kinase B (Akt) pathway signaling pathway. Discussion The current study revealed the oncogenic role of IGF2BP2 and provided insights into its potential mechanism in HNSCC tumorigenesis. Additionally, IGF2BP2 might represent a promising therapeutic target and serve as prognostic biomarker in patients with HNSCC.
Collapse
Affiliation(s)
- Dan Yu
- Department of Otorhinolaryngology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenlong Xiao
- Department of Otorhinolaryngology, The Central Hospital of Wuhan, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhefei Zou
- Department of Otorhinolaryngology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Lin
- Department of Otorhinolaryngology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Li
- Department of Otorhinolaryngology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Tan
- Department of Otorhinolaryngology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Chen
- Department of Otorhinolaryngology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Bai L, Xiang Y, Tang M, Liu S, Chen Q, Chen Q, Zhang M, Wan S, Sang Y, Li Q, Wang S, Li Z, Song Y, Hu X, Mao L, Feng G, Cui L, Ye Y, Zhu Y. ALKBH5 controls the meiosis-coupled mRNA clearance in oocytes by removing the N 6-methyladenosine methylation. Nat Commun 2023; 14:6532. [PMID: 37848452 PMCID: PMC10582257 DOI: 10.1038/s41467-023-42302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023] Open
Abstract
N6-methyladenosine (m6A) maintains maternal RNA stability in oocytes. One regulator of m6A, ALKBH5, reverses m6A deposition and is essential in RNA metabolism. However, the specific role of ALKBH5 in oocyte maturation remains elusive. Here, we show that Alkbh5 depletion causes a wide range of defects in oocyte meiosis and results in female infertility. Temporal profiling of the maternal transcriptomes revealed striking RNA accumulation in Alkbh5-/- oocytes during meiotic maturation. Analysis of m6A dynamics demonstrated that ALKBH5-mediated m6A demethylation ensures the timely degradation of maternal RNAs, which is severely disrupted following Alkbh5-/- depletion. A distinct subset of transcripts with persistent m6A peaks are recognized by the m6A reader IGF2BP2 and thus remain stabilized, resulting in impaired RNA clearance. Additionally, reducing IGF2BP2 in Alkbh5-depleted oocytes partially rescued these defects. Overall, this work identifies ALKBH5 as a key determinant of oocyte quality and unveil the facilitating role of ALKBH5-mediated m6A removal in maternal RNA decay.
Collapse
Affiliation(s)
- Long Bai
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
| | - Yu Xiang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Minyue Tang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Shuangying Liu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Qingqing Chen
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Qichao Chen
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Min Zhang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Shan Wan
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Yimiao Sang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Qingfang Li
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Sisi Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Zhekun Li
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Yang Song
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Xiaoling Hu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Luna Mao
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Guofang Feng
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Long Cui
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Yinghui Ye
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Yimin Zhu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
16
|
Chen Y, Wang L, Guo F, Dai X, Zhang X. Epigenetic reprogramming during the maternal-to-zygotic transition. MedComm (Beijing) 2023; 4:e331. [PMID: 37547174 PMCID: PMC10397483 DOI: 10.1002/mco2.331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/08/2023] Open
Abstract
After fertilization, sperm and oocyte fused and gave rise to a zygote which is the beginning of a new life. Then the embryonic development is monitored and regulated precisely from the transition of oocyte to the embryo at the early stage of embryogenesis, and this process is termed maternal-to-zygotic transition (MZT). MZT involves two major events that are maternal components degradation and zygotic genome activation. The epigenetic reprogramming plays crucial roles in regulating the process of MZT and supervising the normal development of early development of embryos. In recent years, benefited from the rapid development of low-input epigenome profiling technologies, new epigenetic modifications are found to be reprogrammed dramatically and may play different roles during MZT whose dysregulation will cause an abnormal development of embryos even abortion at various stages. In this review, we summarized and discussed the important novel findings on epigenetic reprogramming and the underlying molecular mechanisms regulating MZT in mammalian embryos. Our work provided comprehensive and detailed references for the in deep understanding of epigenetic regulatory network in this key biological process and also shed light on the critical roles for epigenetic reprogramming on embryonic failure during artificial reproductive technology and nature fertilization.
Collapse
Affiliation(s)
- Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Fucheng Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| |
Collapse
|
17
|
Gao L, Zhang Z, Zheng X, Wang F, Deng Y, Zhang Q, Wang G, Zhang Y, Liu X. The Novel Role of Zfp296 in Mammalian Embryonic Genome Activation as an H3K9me3 Modulator. Int J Mol Sci 2023; 24:11377. [PMID: 37511136 PMCID: PMC10379624 DOI: 10.3390/ijms241411377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The changes in epigenetic modifications during early embryonic development significantly impact mammalian embryonic genome activation (EGA) and are species-conserved to some degree. Here, we reanalyzed the published RNA-Seq of human, mouse, and goat early embryos and found that Zfp296 (zinc finger protein 296) expression was higher at the EGA stage than at the oocyte stage in all three species (adjusted p-value < 0.05 |log2(foldchange)| ≥ 1). Subsequently, we found that Zfp296 was conserved across human, mouse, goat, sheep, pig, and bovine embryos. In addition, we identified that ZFP296 interacts with the epigenetic regulators KDM5B, SMARCA4, DNMT1, DNMT3B, HP1β, and UHRF1. The Cys2-His2(C2H2) zinc finger domain TYPE2 TYPE3 domains of ZFP296 co-regulated the modification level of the trimethylation of lysine 9 on the histone H3 protein subunit (H3K9me3). According to ChIP-seq analysis, ZFP296 was also enriched in Trim28, Suv39h1, Setdb1, Kdm4a, and Ehmt2 in the mESC genome. Then, knockdown of the expression of Zfp296 at the late zygote of the mouse led to the early developmental arrest of the mouse embryos and failure resulting from a decrease in H3K9me3. Together, our results reveal that Zfp296 is an H3K9me3 modulator which is essential to the embryonic genome activation of mouse embryos.
Collapse
Affiliation(s)
- Lu Gao
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Zihan Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Xiaoman Zheng
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Fan Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Yi Deng
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Qian Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Guoyan Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Xu Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
18
|
Li Q, Zhao L, Zeng Y, Kuang Y, Guan Y, Chen B, Xu S, Tang B, Wu L, Mao X, Sun X, Shi J, Xu P, Diao F, Xue S, Bao S, Meng Q, Yuan P, Wang W, Ma N, Song D, Xu B, Dong J, Mu J, Zhang Z, Fan H, Gu H, Li Q, He L, Jin L, Wang L, Sang Q. Large-scale analysis of de novo mutations identifies risk genes for female infertility characterized by oocyte and early embryo defects. Genome Biol 2023; 24:68. [PMID: 37024973 PMCID: PMC10080761 DOI: 10.1186/s13059-023-02894-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/01/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Oocyte maturation arrest and early embryonic arrest are important reproductive phenotypes resulting in female infertility and cause the recurrent failure of assisted reproductive technology (ART). However, the genetic etiologies of these female infertility-related phenotypes are poorly understood. Previous studies have mainly focused on inherited mutations based on large pedigrees or consanguineous patients. However, the role of de novo mutations (DNMs) in these phenotypes remains to be elucidated. RESULTS To decipher the role of DNMs in ART failure and female infertility with oocyte and embryo defects, we explore the landscape of DNMs in 473 infertile parent-child trios and identify a set of 481 confident DNMs distributed in 474 genes. Gene ontology analysis reveals that the identified genes with DNMs are enriched in signaling pathways associated with female reproductive processes such as meiosis, embryonic development, and reproductive structure development. We perform functional assays on the effects of DNMs in a representative gene Tubulin Alpha 4a (TUBA4A), which shows the most significant enrichment of DNMs in the infertile parent-child trios. DNMs in TUBA4A disrupt the normal assembly of the microtubule network in HeLa cells, and microinjection of DNM TUBA4A cRNAs causes abnormalities in mouse oocyte maturation or embryo development, suggesting the pathogenic role of these DNMs in TUBA4A. CONCLUSIONS Our findings suggest novel genetic insights that DNMs contribute to female infertility with oocyte and embryo defects. This study also provides potential genetic markers and facilitates the genetic diagnosis of recurrent ART failure and female infertility.
Collapse
Affiliation(s)
- Qun Li
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
- Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Lin Zhao
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Yang Zeng
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Yanping Kuang
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Yichun Guan
- Department of Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, 200032, China
| | - Shiru Xu
- Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, 518001, Guangdong, China
| | - Bin Tang
- Reproductive Medicine Center, The First People's Hospital of Changde City, Changde, 415000, China
| | - Ling Wu
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xiaoyan Mao
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Juanzi Shi
- Reproductive Medicine Center, Northwest Women's and Children's Hospital, Xi'an, 710000, China
| | - Peng Xu
- Hainan Jinghua Hejing Hospital for Reproductive Medicine, Haikou, 570125, China
| | - Feiyang Diao
- Reproductive Medicine Center, Jiangsu Province Hospital, Nanjing, 210036, China
| | - Songguo Xue
- Reproductive Medicine Center, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Shihua Bao
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Qingxia Meng
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215000, China
| | - Ping Yuan
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wenjun Wang
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ning Ma
- Reproductive Medical Center, Maternal and Child Health Care Hospital of Hainan Province, Haikou, 570206, Hainan Province, China
| | - Di Song
- Naval Medical University, Changhai Hospital, Shanghai, China
| | - Bei Xu
- Reproductive Medicine Centre, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Dong
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jian Mu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Zhihua Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Huizhen Fan
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Hao Gu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Qiaoli Li
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Lin He
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
19
|
Sun J, Xiao J, Jiang Y, Wang Y, Cao M, Wei J, Yu T, Ding X, Yang G. Genome-Wide Association Study on Reproductive Traits Using Imputation-Based Whole-Genome Sequence Data in Yorkshire Pigs. Genes (Basel) 2023; 14:genes14040861. [PMID: 37107619 PMCID: PMC10137786 DOI: 10.3390/genes14040861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Reproductive traits have a key impact on production efficiency in the pig industry. It is necessary to identify the genetic structure of potential genes that influence reproductive traits. In this study, a genome-wide association study (GWAS) based on chip and imputed data of five reproductive traits, namely, total number born (TNB), number born alive (NBA), litter birth weight (LBW), gestation length (GL), and number of weaned (NW), was performed in Yorkshire pigs. In total, 272 of 2844 pigs with reproductive records were genotyped using KPS Porcine Breeding SNP Chips, and then chip data were imputed to sequencing data using two online software programs: the Pig Haplotype Reference Panel (PHARP v2) and Swine Imputation Server (SWIM 1.0). After quality control, we performed GWAS based on chip data and the two different imputation databases by using fixed and random model circulating probability unification (FarmCPU) models. We discovered 71 genome-wide significant SNPs and 25 potential candidate genes (e.g., SMAD4, RPS6KA2, CAMK2A, NDST1, and ADCY5). Functional enrichment analysis revealed that these genes are mainly enriched in the calcium signaling pathway, ovarian steroidogenesis, and GnRH signaling pathways. In conclusion, our results help to clarify the genetic basis of porcine reproductive traits and provide molecular markers for genomic selection in pig breeding.
Collapse
Affiliation(s)
- Jingchun Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Jinhong Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Yifan Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yaxin Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Minghao Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Jialin Wei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Taiyong Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
20
|
Guo J, Zhao H, Zhang J, Lv X, Zhang S, Su R, Zheng W, Dai J, Meng F, Gong F, Lu G, Xue Y, Lin G. Selective Translation of Maternal mRNA by eIF4E1B Controls Oocyte to Embryo Transition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205500. [PMID: 36755190 PMCID: PMC10104655 DOI: 10.1002/advs.202205500] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Maternal messenger ribonucleic acids (mRNAs) are driven by a highly orchestrated scheme of recruitment to polysomes and translational activation. However, selecting and regulating individual mRNAs for the translation from a competitive pool of mRNAs are little-known processes. This research shows that the maternal eukaryotic translation initiation factor 4e1b (Eif4e1b) expresses during the oocyte-to-embryo transition (OET), and maternal deletion of Eif4e1b leads to multiple defects concerning oogenesis and embryonic developmental competence during OET. The linear amplification of complementary deoxyribonucleic acid (cDNA) ends, and sequencing (LACE-seq) is used to identify the distinct subset of mRNA and its CG-rich binding sites within the 5' untranslated region (UTR) targeted by eIF4E1B. The proteomics analyses indicate that eIF4E1B-specific bound genes show stronger downregulation at the protein level, which further verify a group of proteins that plays a crucial role in oocyte maturation and embryonic developmental competence is insufficiently synthesized in Eif4e1b-cKO oocytes during OET. Moreover, the biochemical results in vitro are combined to further confirm the maternal-specific translation activation model assembled by eIF4E1B and 3'UTR-associated mRNA binding proteins. The findings demonstrate the indispensability of eIF4E1B for selective translation activation in mammalian oocytes and provide a potential network regulated by eIF4E1B in OET.
Collapse
Affiliation(s)
- Jing Guo
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
| | - Hailian Zhao
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jue Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
| | - Xiangjiang Lv
- Laboratory of Reproductive and Stem Cell EngineeringNHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangsha410078P. R. China
| | - Shen Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
| | - Ruibao Su
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Wei Zheng
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
| | - Jing Dai
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
- Laboratory of Reproductive and Stem Cell EngineeringNHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangsha410078P. R. China
| | - Fei Meng
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
| | - Fei Gong
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
- Laboratory of Reproductive and Stem Cell EngineeringNHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangsha410078P. R. China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
- Laboratory of Reproductive and Stem Cell EngineeringNHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangsha410078P. R. China
| | - Yuanchao Xue
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
- Laboratory of Reproductive and Stem Cell EngineeringNHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangsha410078P. R. China
| |
Collapse
|
21
|
Huang E, Chen L. RNA N 6-methyladenosine modification in female reproductive biology and pathophysiology. Cell Commun Signal 2023; 21:53. [PMID: 36894952 PMCID: PMC9996912 DOI: 10.1186/s12964-023-01078-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/12/2023] [Indexed: 03/11/2023] Open
Abstract
Gene expression and posttranscriptional regulation can be strongly influenced by epigenetic modifications. N6-methyladenosine, the most extensive RNA modification, has been revealed to participate in many human diseases. Recently, the role of RNA epigenetic modifications in the pathophysiological mechanism of female reproductive diseases has been intensively studied. RNA m6A modification is involved in oogenesis, embryonic growth, and foetal development, as well as preeclampsia, miscarriage, endometriosis and adenomyosis, polycystic ovary syndrome, premature ovarian failure, and common gynaecological tumours such as cervical cancer, endometrial cancer, and ovarian cancer. In this review, we provide a summary of the research results of m6A on the female reproductive biology and pathophysiology in recent years and aim to discuss future research directions and clinical applications of m6A-related targets. Hopefully, this review will add to our understanding of the cellular mechanisms, diagnostic biomarkers, and underlying therapeutic strategies of female reproductive system diseases. Video Abstract.
Collapse
Affiliation(s)
- Erqing Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lijuan Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
22
|
Wang W, Miyamoto Y, Chen B, Shi J, Diao F, Zheng W, Li Q, Yu L, Li L, Xu Y, Wu L, Mao X, Fu J, Li B, Yan Z, Shi R, Xue X, Mu J, Zhang Z, Wu T, Zhao L, Wang W, Zhou Z, Dong J, Li Q, Jin L, He L, Sun X, Lin G, Kuang Y, Wang L, Sang Q. Karyopherin α deficiency contributes to human preimplantation embryo arrest. J Clin Invest 2023; 133:159951. [PMID: 36647821 PMCID: PMC9843055 DOI: 10.1172/jci159951] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/02/2022] [Indexed: 01/18/2023] Open
Abstract
Preimplantation embryo arrest (PREMBA) is a common cause of female infertility and recurrent failure of assisted reproductive technology. However, the genetic basis of PREMBA is largely unrevealed. Here, using whole-exome sequencing data from 606 women experiencing PREMBA compared with 2,813 controls, we performed a population and gene-based burden test and identified a candidate gene, karyopherin subunit α7 (KPNA7). In vitro studies showed that identified sequence variants reduced KPNA7 protein levels, impaired KPNA7 capacity for binding to its substrate ribosomal L1 domain-containing protein 1 (RSL1D1), and affected KPNA7 nuclear transport activity. Comparison between humans and mice suggested that mouse KPNA2, rather than mouse KPNA7, acts as an essential karyopherin in embryonic development. Kpna2-/- female mice showed embryo arrest due to zygotic genome activation defects, recapitulating the phenotype of human PREMBA. In addition, female mice with an oocyte-specific knockout of Rsl1d1 recapitulated the phenotype of Kpna2-/- mice, demonstrating the vital role of substrate RSL1D1. Finally, complementary RNA (cRNA) microinjection of human KPNA7, but not mouse Kpna7, was able to rescue the embryo arrest phenotype in Kpna2-/- mice, suggesting mouse KPNA2 might be a homologue of human KPNA7. Our findings uncovered a mechanistic understanding for the pathogenesis of PREMBA, which acts by impairing nuclear protein transport, and provide a diagnostic marker for PREMBA patients.
Collapse
Affiliation(s)
- Wenjing Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Juanzi Shi
- Reproductive Medicine Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Feiyang Diao
- Reproductive Medicine Center, Jiangsu Province Hospital, Jiangsu, China
| | - Wei Zheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Qun Li
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Lan Yu
- Reproductive Medicine Center, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Lin Li
- Key Laboratory of Human Reproduction and Genetics, Department of Reproductive Medicine, Nanchang Reproductive Hospital, Nanchang, China
| | - Yao Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling Wu
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Mao
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Fu
- Shanghai Ji’ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, and
| | - Bin Li
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Yan
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Shi
- Reproductive Medicine Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Xia Xue
- Reproductive Medicine Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Jian Mu
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Zhihua Zhang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Tianyu Wu
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Lin Zhao
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Weijie Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Zhou Zhou
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Jie Dong
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Qiaoli Li
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Lin He
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxi Sun
- Shanghai Ji’ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, and
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yanping Kuang
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Qing Sang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Mechanistic insights into HuR inhibitor MS-444 arresting embryonic development revealed by low-input RNA-seq and STORM. Cell Biol Toxicol 2022; 38:1175-1197. [PMID: 36085230 DOI: 10.1007/s10565-022-09757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023]
Abstract
With improvements in the survival rate of patients with cancer, fertility maintenance has become a major concern in terms of cancer treatment for women of reproductive age. Thus, it is important to examine the impact on fertility of anticancer drugs that are used clinically or are undergoing trials. The HuR small-molecule inhibitor MS-444 has been used in many cancer treatment studies, but its reproductive toxicity in females is unknown. Here, we reported that MS-444 blocked the nucleocytoplasmic transport of Agbl2 mRNA by inhibiting HuR dimerization, resulting in the developmental arrest of 2-cell stage embryos in mouse. Combining analysis of low-input RNA-seq for MS-444-treated 2-cell embryos and mapping binding sites of RNA-binding protein, Agbl2 was predicted to be the target gene of MS-444. For further confirmation, RNAi experiment in wild-type zygotes showed that Agbl2 knockdown reduced the proportion of embryos successfully developed to the blastocyst stage: from 71% in controls to 23%. Furthermore, RNA-FISH and luciferase reporter analyses showed that MS-444 blocked the nucleocytoplasmic transport of Agbl2 mRNA and reduced its stability by inhibiting HuR dimerization. In addition, optimized stochastic optical reconstruction microscopy (STORM) imaging showed that MS-444 significantly reduced the HuR dimerization, and HuR mainly existed in cluster form in 2-cell stage embryos. In conclusion, this study provides clinical guidance for maintaining fertility during the treatment of cancer with MS-444 in women of reproductive age. And also, our research provides guidance for the application of STORM in nanometer scale studies of embryonic cells. HuR inhibitor MS-444 arrested embryonic development at 2-cell stage. Low-input RNA-seq revealed that Agbl2 was the target gene of MS-444. MS-444 blocked the nucleocytoplasmic transport of Agbl2 mRNA by inhibiting HuR dimerization and reduced the stability of Agbl2 mRNA. STORM with our optimized protocol showed that HuR tended to form elliptical and dense clusters in 2-cell stage embryos.
Collapse
|
24
|
Pituitary-Gland-Based Genes Participates in Intrauterine Growth Restriction in Piglets. Genes (Basel) 2022; 13:genes13112141. [DOI: 10.3390/genes13112141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a major problem associated with piglet growth performance. The incidence of IUGR is widespread in Rongchang pigs. The pituitary gland is important for regulating growth and metabolism, and research has identified genes associated with growth and development. The pituitary gland of newborn piglets with normal birth weight (NBW group, n = 3) and (IUGR group, n = 3) was collected for transcriptome analysis. A total of 323 differentially expression genes (DEGs) were identified (|log2(fold-change)| > 1 and q value < 0.05), of which 223 were upregulated and 100 were downregulated. Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that the DEGs were mainly related to the extracellular matrix, regulation of the multicellular organismal process, tissue development and angiogenesis, which participate in the growth and immune response in IUGR piglets. Moreover, 7 DEGs including IGF2, THBS1, ITGA1, ITGA8, EPSTI1, FOSB, and UCP2 were associated with growth and immune response. Furthermore, based on the interaction network analysis of the DEGs, two genes, IGF2 and THBS1, participated in cell proliferation, embryonic development and angiogenesis. IGF2 and THBS1 were also the main genes participating in the IUGR. This study identified the core genes involved in IUGR in piglets and provided a reference for exploring the effect of the pituitary gland on piglet growth.
Collapse
|
25
|
Liu H, Zheng J, Liao A. The regulation and potential roles of m6A modifications in early embryonic development and immune tolerance at the maternal-fetal interface. Front Immunol 2022; 13:988130. [PMID: 36225914 PMCID: PMC9549360 DOI: 10.3389/fimmu.2022.988130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/09/2022] [Indexed: 12/16/2022] Open
Abstract
The immune microenvironment at the maternal-fetal interface was determined by the crosstalk between the trophoblast and maternal-derived cells, which dynamically changed during the whole gestation. Trophoblasts act as innate immune cells and dialogue with maternal-derived cells to ensure early embryonic development, depending on the local immune microenvironment. Therefore, dysfunctions in trophoblasts and maternal decidual cells contribute to pregnancy complications, especially recurrent pregnancy loss in early pregnancy. Since many unknown regulatory factors still affect the complex immune status, exploring new potential aspects that could influence early pregnancy is essential. RNA methylation plays an important role in contributing to the transcriptional regulation of various cells. Sufficient studies have shown the crucial roles of N6-methyladenosine (m6A)- and m6A-associated- regulators in embryogenesis during implantation. They are also essential in regulating innate and adaptive immune cells and the immune response and shaping the local and systemic immune microenvironment. However, the function of m6A modifications at the maternal-fetal interface still lacks wide research. This review highlights the critical functions of m6A in early embryonic development, summarizes the reported research on m6A in regulating immune cells and tumor immune microenvironment, and identifies the potential value of m6A modifications in shaping trophoblasts, decidual immune cells, and the microenvironment at the maternal-fetal interface. The m6A modifications are more likely to contribute to embryogenesis, placentation and shape the immune microenvironment at the maternal-fetal interface. Uncovering these crucial regulatory mechanisms could provide novel therapeutic targets for RNA methylation in early pregnancy.
Collapse
Affiliation(s)
- Hong Liu
- Department of Reproduction, Maternal and Child Health Hospital of Hubei Province, Affiliated in Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zheng
- Department of Reproduction, Maternal and Child Health Hospital of Hubei Province, Affiliated in Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jie Zheng, ; Aihua Liao,
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jie Zheng, ; Aihua Liao,
| |
Collapse
|
26
|
Wan Y, Muhammad T, Huang T, Lv Y, Sha Q, Yang S, Lu G, Chan WY, Ma J, Liu H. IGF2 reduces meiotic defects in oocytes from obese mice and improves embryonic developmental competency. Reprod Biol Endocrinol 2022; 20:101. [PMID: 35836183 PMCID: PMC9281013 DOI: 10.1186/s12958-022-00972-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Maternal obesity is a global issue that has devastating effects across the reproductive spectrum such as meiotic defects in oocytes, consequently worsening pregnancy outcomes. Different studies have shown that such types of meiotic defects originated from the oocytes of obese mothers. Thus, there is an urgent need to develop strategies to reduce the incidence of obesity-related oocyte defects that adversely affect pregnancy outcomes. Multiple growth factors have been identified as directly associated with female reproduction; however, the impact of various growth factors on female fertility in response to obesity remains poorly understood. METHODS The immature GV-stage oocytes from HFD female mice were collected and cultured in vitro in two different groups (HFD oocytes with and without 50 nM IGF2), however; the oocytes from ND mice were used as a positive control. HFD oocytes treated with or without IGF2 were further used to observe the meiotic structure using different analysis including, the spindle and chromosomal analysis, reactive oxygen species levels, mitochondrial functional activities, and early apoptotic index using immunofluorescence. Additionally, the embryonic developmental competency and embryos quality of IGF2-treated zygotes were also determined. RESULTS In our findings, we observed significantly reduced contents of insulin-like growth factor 2 (IGF2) in the serum and oocytes of obese mice. Our data indicated supplementation of IGF2 in a culture medium improves the blastocyst formation: from 46% in the HFD group to 61% in the HFD + IGF2-treatment group (50 nM IGF2). Moreover, adding IGF2 to the culture medium reduces the reactive oxygen species index and alleviates the frequency of spindle/chromosome defects. We found increased mitochondrial functional activity in oocytes from obese mice after treating the oocytes with IGF2: observed elevated level of adenosine triphosphate, increased mitochondrial distribution, higher mitochondrial membrane potentials, and reduced mitochondrial ultrastructure defects. Furthermore, IGF2 administration also increases the overall protein synthesis and decreases the apoptotic index in oocytes from obese mice. CONCLUSIONS Collectively, our findings are strongly in favor of adding IGF2 in culture medium to overcome obesity-related meiotic structural-developmental defects by helping ameliorate the known sub-optimal culturing conditions that are currently standard with assisted reproduction technologies.
Collapse
Affiliation(s)
- Yanling Wan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Tahir Muhammad
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Yue Lv
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Beijing, China
| | - Qianqian Sha
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Shuang Yang
- Department of Physiology School of Basic Medical Sciences Cheeloo College of Medicine Shandong University, Jinan, Shandong, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai-Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jinlong Ma
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Beijing, China.
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
27
|
Li S, Yang Q, Jiao R, Xu P, Sun Y, Li X. m6A Topological Transition Coupled to Developmental Regulation of Gene Expression During Mammalian Tissue Development. Front Cell Dev Biol 2022; 10:916423. [PMID: 35865625 PMCID: PMC9294180 DOI: 10.3389/fcell.2022.916423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/09/2022] [Indexed: 11/14/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification and reversible epitranscriptomic mark in messenger RNAs (mRNAs) and plays essential roles in a variety of biological processes. However, the dynamic distribution patterns of m6A and their significance during mammalian tissue development are poorly understood. Here, we found that based on m6A distribution patterns, protein-coding genes were classified into five groups with significantly distinct biological features and functions. Strikingly, comparison of the m6A methylomes of multiple mammalian tissues between fetal and adult stages revealed dynamic m6A topological transition during mammalian tissue development, and identified large numbers of genes with significant m6A loss in 5′UTRs or m6A gain around stop codons. The genes with m6A loss in 5′UTRs were highly enriched in developmental stage-specific genes, and their m6A topological transitions were strongly associated with gene expression regulation during tissue development. The genes with m6A gain around the stop codons were associated with tissue-specific functions. Our findings revealed the existence of different m6A topologies among protein-coding genes that were associated with distinct characteristics. More importantly, these genes with m6A topological transitions were crucial for tissue development via regulation of gene expression, suggesting the importance of dynamic m6A topological transitions during mammalian tissue development.
Collapse
Affiliation(s)
- Shanshan Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qing Yang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Rui Jiao
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Pengfei Xu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yazhou Sun
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Yazhou Sun, ; Xin Li,
| | - Xin Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Yazhou Sun, ; Xin Li,
| |
Collapse
|
28
|
Sun X, Lu J, Li H, Huang B. The Role of m 6A on Female Reproduction and Fertility: From Gonad Development to Ovarian Aging. Front Cell Dev Biol 2022; 10:884295. [PMID: 35712673 PMCID: PMC9197073 DOI: 10.3389/fcell.2022.884295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
Abstract
The growth and maturation of oocyte is accompanied by the accumulation of abundant RNAs and posttranscriptional regulation. N6-methyladenosine (m6A) is the most prevalent epigenetic modification in mRNA, and precisely regulates the RNA metabolism as well as gene expression in diverse physiological processes. Recent studies showed that m6A modification and regulators were essential for the process of ovarian development and its aberrant manifestation could result in ovarian aging. Moreover, the specific deficiency of m6A regulators caused oocyte maturation disorder and female infertility with defective meiotic initiation, subsequently the oocyte failed to undergo germinal vesicle breakdown and consequently lost the ability to resume meiosis by disrupting spindle organization as well as chromosome alignment. Accumulating evidence showed that dysregulated m6A modification contributed to ovarian diseases including polycystic ovarian syndrome (PCOS), primary ovarian insufficiency (POI), ovarian aging and other ovarian function disorders. However, the complex and subtle mechanism of m6A modification involved in female reproduction and fertility is still unknown. In this review, we have summarized the current findings of the RNA m6A modification and its regulators in ovarian life cycle and female ovarian diseases. And we also discussed the role and potential clinical application of the RNA m6A modification in promoting oocyte maturation and delaying the reproduction aging.
Collapse
Affiliation(s)
- Xiaoyan Sun
- State Key Laboratory of Reproductive Medicine, Gusu School, Suzhou Municipal Hospital, Suzhou Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Jiafeng Lu
- State Key Laboratory of Reproductive Medicine, Gusu School, Suzhou Municipal Hospital, Suzhou Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Hong Li
- State Key Laboratory of Reproductive Medicine, Gusu School, Suzhou Municipal Hospital, Suzhou Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine, Gusu School, Suzhou Municipal Hospital, Suzhou Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| |
Collapse
|
29
|
Xu X, Shen HR, Zhang JR, Li XL. The role of insulin-like growth factor 2 mRNA binding proteins in female reproductive pathophysiology. Reprod Biol Endocrinol 2022; 20:89. [PMID: 35706003 PMCID: PMC9199150 DOI: 10.1186/s12958-022-00960-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
Insulin-like growth factor 2 (IGF2) mRNA binding proteins (IMPs) family belongs to a highly conserved family of RNA-binding proteins (RBPs) and is responsible for regulating RNA processing including localization, translation and stability. Mammalian IMPs (IMP1-3) take part in development, metabolism and tumorigenesis, where they are believed to play a major role in cell growth, metabolism, migration and invasion. IMPs have been identified that are expressed in ovary, placenta and embryo. The up-to-date evidence suggest that IMPs are involved in folliculogenesis, oocyte maturation, embryogenesis, implantation, and placentation. The dysregulation of IMPs not only contributes to carcinogenesis but also disturbs the female reproduction, and may participate in the pathogenesis of reproductive diseases and obstetric syndromes, such as polycystic ovary syndrome (PCOS), pre-eclampsia (PE), gestational diabetes mellitus (GDM) and gynecological tumors. In this review, we summarize the role of IMPs in female reproductive pathophysiology, and hope to provide new insights into the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hao-Ran Shen
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China
| | - Jia-Rong Zhang
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Xue-Lian Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
30
|
Wu Y, Xu X, Qi M, Chen C, Li M, Yan R, Kou X, Zhao Y, Liu W, Li Y, Liu X, Zhang M, Yi C, Liu H, Xiang J, Wang H, Shen B, Gao Y, Gao S. N 6-methyladenosine regulates maternal RNA maintenance in oocytes and timely RNA decay during mouse maternal-to-zygotic transition. Nat Cell Biol 2022; 24:917-927. [PMID: 35606490 DOI: 10.1038/s41556-022-00915-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/11/2022] [Indexed: 12/31/2022]
Abstract
N6-methyladenosine (m6A) and its regulatory components play critical roles in various developmental processes in mammals. However, the landscape and function of m6A in early embryos remain unclear owing to limited materials. Here we developed a method of ultralow-input m6A RNA immunoprecipitation followed by sequencing to reveal the transcriptome-wide m6A landscape in mouse oocytes and early embryos and found unique enrichment and dynamics of m6A RNA modifications on maternal and zygotic RNAs, including the transcripts of transposable elements MTA and MERVL. Notably, we found that the maternal protein KIAA1429, a component of the m6A methyltransferase complex, was essential for m6A deposition on maternal mRNAs that undergo decay after zygotic genome activation and MTA transcripts to maintain their stability in oocytes. Interestingly, m6A methyltransferases, especially METTL3, deposited m6A on mRNAs transcribed during zygotic genome activation and ensured their decay after the two-cell stage, including Zscan4 and MERVL. Together, our findings uncover the essential functions of m6A in specific contexts during the maternal-to-zygotic transition, namely ensuring the stability of mRNAs in oocytes and the decay of two-cell-specific transcripts after fertilization.
Collapse
Affiliation(s)
- You Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Xiaocui Xu
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China.,Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meijie Qi
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Gusu School, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China.,Center for Reproductive Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Chuan Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengying Li
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Gusu School, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China
| | - Rushuang Yan
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaochen Kou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanhong Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenqiang Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanhe Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xuelian Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meiling Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Junhong Xiang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Gusu School, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China.
| | - Yawei Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China. .,Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China. .,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China. .,Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China. .,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China. .,Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
31
|
Musfee FI, Oluwafemi OO, Agopian A, Hakonarson H, Goldmuntz E, Mitchell LE. Maternal Effect Genes as Risk Factors for Congenital Heart Defects. HGG ADVANCES 2022; 3:100098. [PMID: 35345810 PMCID: PMC8957044 DOI: 10.1016/j.xhgg.2022.100098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/04/2022] [Indexed: 11/09/2022] Open
Abstract
Maternal effect genes (MEGs) encode factors (e.g., RNA) in the oocyte that control embryonic development prior to activation of the embryonic genome. Over 80 mammalian MEGs have been identified, including several that have been associated with phenotypes in humans. Maternal variation in MEGs is associated with a range of adverse outcomes, which, in humans, include hydatidiform moles, zygotic cleavage failure, and offspring with multi-locus imprinting disorders. In addition, data from both animal models and humans suggest that the MEGs may be associated with structural birth defects such as congenital heart defects (CHDs). To further investigate the association between MEGs and CHDs, we conducted gene-level and gene-set analyses of known mammalian MEGs (n = 82) and two common groups of CHDs: conotruncal heart defects and left ventricular outflow tract defects. We identified 14 candidate CHD-related MEGs. These 14 MEGs include three (CDC20, KHDC3L, and TRIP13) of the 11 known human MEGs, as well as one (DNMT3A) of the eight MEGs that have been associated with structural birth defects in animal models. Our analyses add to the growing evidence that MEGs are associated with structural birth defects, in particular CHDs. Given the large proportion of individuals with structural birth defects for whom etiology of their condition is unknown, further investigations of MEGs as potential risk factors for structural birth defects are strongly warranted.
Collapse
|
32
|
Jiang ZY, Fan HY. Five questions toward mRNA degradation in oocytes and preimplantation embryos: When, who, to whom, how, and why? Biol Reprod 2022; 107:62-75. [DOI: 10.1093/biolre/ioac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
RNA, the primary product of the genome, is subject to various biological events during its lifetime. During mammalian gametogenesis and early embryogenesis, germ cells and preimplantation embryos undergo marked changes in the transcriptome, including mRNA turnover. Various factors, including specialized proteins, RNAs, and organelles, function in an intricate degradation system, and the degradation selectivity is determined by effectors and their target mRNAs. RNA homeostasis regulators and surveillance factors function in the global transcriptome of oocytes and somatic cells. Other factors, including BTG4, PABPN1L, the CCR4-NOT subunits, CNOT6L and CNOT7, and TUTs, are responsible for two maternal mRNA avalanches: M- and Z-decay. In this review, we discuss recent advances in mRNA degradation mechanisms in mammalian oocytes and preimplantation embryos. We focused on the studies in mice, as a model mammalian species, and on RNA turnover effectors and the cis-elements in targeting RNAs.
Collapse
Affiliation(s)
- Zhi-Yan Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
33
|
Han L, Lei G, Chen Z, Zhang Y, Huang C, Chen W. IGF2BP2 Regulates MALAT1 by Serving as an N6-Methyladenosine Reader to Promote NSCLC Proliferation. Front Mol Biosci 2022; 8:780089. [PMID: 35111811 PMCID: PMC8802805 DOI: 10.3389/fmolb.2021.780089] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 01/22/2023] Open
Abstract
Insulin-like growth factor 2 (IGF2) mRNA-binding protein 2 (IGF2BP2) is an important posttranscriptional regulatory for stability and m6A modification. Here, we investigated the role of IGF2BP2 in non–small-cell lung cancer (NSCLC) proliferation. TCGA database was used to predict the expression and clinical significance of IGF2BP2 in normal and NSCLC samples. The expression of IGF2BP2 was further validated in NSCLC samples from surgery. Then we performed the functional study in NSCLC cell lines through overexpressing and knocking down IGF2BP2 in NSCLC cell lines in vitro and in vivo. The mechanism of interaction between IGF2BP2 and lncRNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) in NSCLC proliferation was determined by RIP assay. We demonstrated that IGF2BP2 is highly expressed in NSCLC and positively associated with poor overall survival (OS) and disease-free survival (DFS). We identified that lncRNA MALAT1 is a target of IGF2BP2 in NSCLC. IGF2BP2 promotes MALAT1 stability in an m6A-dependent mechanism, thus promoting its downstream target autophagy-related (ATG)12 expression and NSCLC proliferation.
Collapse
Affiliation(s)
- Le Han
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi’an Jiaotong University, Xi’an, China
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Guangyan Lei
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Zhenghong Chen
- Department of Integrated Chinese and Western Medicine, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Yili Zhang
- Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Chen Huang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- *Correspondence: Chen Huang, ; Wenjuan Chen,
| | - Wenjuan Chen
- Department of Third Oncology, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Chen Huang, ; Wenjuan Chen,
| |
Collapse
|
34
|
Yu D, Pan M, Li Y, Lu T, Wang Z, Liu C, Hu G. RNA N6-methyladenosine reader IGF2BP2 promotes lymphatic metastasis and epithelial-mesenchymal transition of head and neck squamous carcinoma cells via stabilizing slug mRNA in an m6A-dependent manner. J Exp Clin Cancer Res 2022; 41:6. [PMID: 34980207 PMCID: PMC8722037 DOI: 10.1186/s13046-021-02212-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/05/2021] [Indexed: 12/20/2022] Open
Abstract
Background Lymph node metastasis is the main cause of poor prognosis of head and neck squamous carcinoma (HNSCC) patients. N6-methyladenosine (m6A) RNA modification is an emerging epigenetic regulatory mechanism for gene expression, and as a novel m6A reader protein, IGF2BP2 has been implicated in tumor progression and metastasis. However, not much is currently known about the functional roles of IGF2BP2 in HNSCC, and whether IGF2BP2 regulates lymphatic metastasis through m6A modification in HNSCC remains to be determined. Methods The expression and overall survival (OS) probability of m6A-related regulators in HNSCC were analyzed with The Cancer Genome Atlas (TCGA) dataset and GEPIA website tool, respectively. The expression levels of IGF2BP2 were measured in HNSCC tissues and normal adjacent tissues. To study the effects of IGF2BP2 on HNSCC cell metastasis in vitro and in vivo, gain- and loss- of function methods were employed. RIP, MeRIP, luciferase reporter and mRNA stability assays were performed to explore the epigenetic mechanism of IGF2BP2 in HNSCC. Results We investigated 20 m6A-related regulators in HNSCC and discovered that only the overexpression of IGF2BP2 was associated with a poor OS probability and an independent prognostic factor for HNSCC patients. Additionally, we demonstrated that IGF2BP2 was overexpressed in HNSCC tissues, and significantly correlated to lymphatic metastasis and poor prognosis. Functional studies have shown that IGF2BP2 promotes both HNSCC cell migration as well as invasion via the epithelial-mesenchymal transition (EMT) process in vitro, and IGF2BP2 knockdown significantly inhibited lymphatic metastasis and lymphangiogenesis in vivo. Mechanistic investigations revealed that Slug, a key EMT-related transcriptional factor, is the direct target of IGF2BP2, and essential for IGF2BP2-regulated EMT and metastasis in HNSCC. Furthermore, we demonstrated that IGF2BP2 recognizes and binds the m6A site in the coding sequence (CDS) region of Slug and promotes its mRNA stability. Conclusions Collectively, our study uncovers the oncogenic role and potential mechanism of IGF2BP2, which serves as a m6A reader, in controlling lymphatic metastasis and EMT in HNSCC, suggesting that IGF2BP2 may act as a therapeutic target and prognostic biomarker for HNSCC patients with metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02212-1.
Collapse
Affiliation(s)
- Dan Yu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Min Pan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yanshi Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Tao Lu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Zhihai Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Chuan Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Guohua Hu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
35
|
Yoshizawa-Sugata N, Yamazaki S, Mita-Yoshida K, Ono T, Nishito Y, Masai H. Loss of full-length DNA replication regulator Rif1 in two-cell embryos is associated with zygotic transcriptional activation. J Biol Chem 2021; 297:101367. [PMID: 34736895 PMCID: PMC8686075 DOI: 10.1016/j.jbc.2021.101367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 11/21/2022] Open
Abstract
Rif1 regulates DNA replication timing and double-strand break repair, and its depletion induces transcriptional bursting of two-cell (2C) zygote-specific genes in mouse ES cells. However, how Rif1 regulates zygotic transcription is unclear. We show here that Rif1 depletion promotes the formation of a unique Zscan4 enhancer structure harboring both histone H3 lysine 27 acetylation (H3K27ac) and moderate levels of silencing chromatin mark H3K9me3. Curiously, another enhancer mark H3K4me1 is missing, whereas DNA methylation is still maintained in the structure, which spreads across gene bodies and neighboring regions within the Zscan4 gene cluster. We also found by function analyses of Rif1 domains in ES cells that ectopic expression of Rif1 lacking N-terminal domain results in upregulation of 2C transcripts. This appears to be caused by dominant negative inhibition of endogenous Rif1 protein localization at the nuclear periphery through formation of hetero-oligomers between the N-terminally truncated and endogenous forms. Strikingly, in murine 2C embryos, most of Rif1-derived polypeptides are expressed as truncated forms in soluble nuclear or cytosolic fraction and are likely nonfunctional. Toward the morula stage, the full-length form of Rif1 gradually increased. Our results suggest that the absence of the functional full-length Rif1 due to its instability or alternative splicing and potential inactivation of Rif1 through dominant inhibition by N-terminally truncated Rif1 polypeptides may be involved in 2C-specific transcription program.
Collapse
Key Words
- 2c, two-cell (embryo)
- 4-oht, 4-hydroxytamoxifen
- dox, doxycycline
- erv, endogenous retrovirus
- es, embryonic stem
- hpf, hours post fertilization
- idr, intrinsic disordered region
- ivf, in vitro fertilization
- kd, knockdown
- ko, knockout
- rt, room temperature
Collapse
Affiliation(s)
| | - Satoshi Yamazaki
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kaoru Mita-Yoshida
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tomio Ono
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hisao Masai
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
36
|
Deng Y, Zhu H, Xiao L, Liu C, Liu YL, Gao W. Identification of the function and mechanism of m6A reader IGF2BP2 in Alzheimer's disease. Aging (Albany NY) 2021; 13:24086-24100. [PMID: 34705667 PMCID: PMC8610118 DOI: 10.18632/aging.203652] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/03/2021] [Indexed: 01/06/2023]
Abstract
Alzheimer’s disease, the most common form of dementia in the elderly, is a kind of neurodegenerative disease. However, its pathogenesis and diagnosis remain unclear. M6A is related to nervous system development and neurodegenerative diseases. Here in this study, using multiple RNA-seq datasets of Alzheimer’s brain tissues, along with bioinformatic analysis, we innovatively found that m6A reader protein IGF2BP2 was abnormally highly expressed in Alzheimer’s patients. After compared between Alzheimer’s and normal brain samples, and between IGF2BP2- high and IGF2BP2- low subgroups of Alzheimer’s patients, we took the shared differentially expressed genes as the relevant gene sets of IGF2PB2 affecting Alzheimer’s disease occurrence for subsequent analysis. Then, weight gene correlation analysis was conducted and 17 functional modules were identified. The module that most positively correlated with Alzheimer’s disease and IGF2PB2-high subgroups were mainly participated in ECM receptor interaction, focal adhesion, cytokine-cytokine receptor interaction, and TGF-beta signaling pathway. Afterwards, a hub gene-based model including 20 genes was constructed by LASSO regression and validated by ROC curve for Alzheimer diagnosis. Finally, we preliminarily elucidated that IGF2BP2 could bind with mRNAs in a m6A-dependent manner. This study first elucidates the pathogenic role of IGF2BP2 in Alzheimer’s disease. IGF2BP2 and its relevant m6A modifications are potential to be new diagnostic and therapeutic targets for Alzheimer’s patients.
Collapse
Affiliation(s)
- Yanyao Deng
- Department of Neurology, The First Hospital of Changsha, Changsha, Hunan Province, China
| | - Hongwei Zhu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Le Xiao
- Department of Neurology, The First Hospital of Changsha, Changsha, Hunan Province, China
| | - Chao Liu
- Department of Neurology, The First Hospital of Changsha, Changsha, Hunan Province, China
| | - Ya-Lin Liu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Wenzhe Gao
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
37
|
Mu H, Zhang T, Yang Y, Zhang D, Gao J, Li J, Yue L, Gao D, Shi B, Han Y, Zhong L, Chen X, Wang ZB, Lin Z, Tong MH, Sun QY, Yang YG, Han J. METTL3-mediated mRNA N 6-methyladenosine is required for oocyte and follicle development in mice. Cell Death Dis 2021; 12:989. [PMID: 34689175 PMCID: PMC8542036 DOI: 10.1038/s41419-021-04272-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
Abstract
Proper follicle development is very important for the production of mature oocytes, which is essential for the maintenance of female fertility. This complex biological process requires precise gene regulation. The most abundant modification of mRNA, N6-methyladenosine (m6A), is involved in many RNA metabolism processes, including RNA splicing, translation, stability, and degradation. Here, we report that m6A plays essential roles during oocyte and follicle development. Oocyte-specific inactivation of the key m6A methyltransferase Mettl3 with Gdf9-Cre caused DNA damage accumulation in oocytes, defective follicle development, and abnormal ovulation. Mechanistically, combined RNA-seq and m6A methylated RNA immunoprecipitation sequencing (MeRIP-seq) data from oocytes revealed, that we found METTL3 targets Itsn2 for m6A modification and then enhances its stability to influence the oocytes meiosis. Taken together, our findings highlight the crucial roles of mRNA m6A modification in follicle development and coordination of RNA stabilization during oocyte growth.
Collapse
Affiliation(s)
- Haiyuan Mu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ting Zhang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,China National Center for Bioinformation, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,China National Center for Bioinformation, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Danru Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jie Gao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Junhong Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liang Yue
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dengfeng Gao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Bingbo Shi
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yue Han
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,China National Center for Bioinformation, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Zhong
- Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, Hebei, 050051, China
| | - Xinze Chen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen-Bo Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ming-Han Tong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Yun-Gui Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China. .,China National Center for Bioinformation, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianyong Han
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
38
|
Yang Q, Ma Y, Liu Y, Shao X, Jia W, Yu X, Li YX, Yang L, Gu W, Wang H, Wang J, Wang YL. MNSFβ regulates placental development by conjugating IGF2BP2 to enhance trophoblast cell invasiveness. Cell Prolif 2021; 54:e13145. [PMID: 34668606 PMCID: PMC8666274 DOI: 10.1111/cpr.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/10/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022] Open
Abstract
Objectives Success in pregnancy in mammals predominantly depends on a well‐developed placenta. The differentiation of invasive trophoblasts is a fundamental process of placentation, the abnormalities of which are tightly associated with pregnancy disorders including preeclampsia (PE). Monoclonal nonspecific suppressor factor beta (MNSFβ) is an immunosuppressive factor. Its conventional knockout in mice induced embryonic lethality, whereas the underlying mechanism of MNSFβ in regulating placentation and pregnancy maintenance remains to be elucidated. Methods Trophoblast‐specific knockout of MNSFβ was generated using Cyp19‐Cre mice. In situ hybridization (ISH), haematoxylin and eosin (HE), immunohistochemistry (IHC) and immunofluorescence (IF) were performed to examine the distribution of MNSFβ and insulin‐like growth factor 2 mRNA‐binding protein 2 (IGF2BP2) at the foeto‐maternal interface. The interaction and expression of MNSFβ, IGF2BP2 and invasion‐related molecules were detected by immunoprecipitation (IP), immunoblotting and quantitative real‐time polymerase chain reaction (qRT‐PCR). The cell invasion ability was measured by the Transwell insert assay. Results We found that deficiency of MNSFβ in trophoblasts led to embryonic growth retardation by mid‐gestation and subsequent foetal loss, primarily shown as apparently limited trophoblast invasion. In vitro experiments in human trophoblasts demonstrated that the conjugation of MNSFβ with IGF2BP2 and thus the stabilization of IGF2BP2 essentially mediated the invasion‐promoting effect of MNSFβ. In the placentas from MNSFβ‐deficient mice and severe preeclamptic (PE) patients, downregulation of MNSFβ was evidently associated with the repressed IGF2BP2 expression. Conclusions The findings reveal the crucial role of MNSFβ in governing the trophoblast invasion and therefore foetal development, and add novel hints to reveal the placental pathology of PE.
Collapse
Affiliation(s)
- Qian Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yeling Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Medical College, Shaoxing University, Shaoxing, China
| | - Yanlei Liu
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuan Shao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wentong Jia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xin Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Xia Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Long Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Wenwen Gu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Jian Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Li M, Ren C, Zhou S, He Y, Guo Y, Zhang H, Liu L, Cao Q, Wang C, Huang J, Hu Y, Bai X, Guo X, Shu W, Huo R. Integrative proteome analysis implicates aberrant RNA splicing in impaired developmental potential of aged mouse oocytes. Aging Cell 2021; 20:e13482. [PMID: 34582091 PMCID: PMC8520726 DOI: 10.1111/acel.13482] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/18/2021] [Accepted: 09/11/2021] [Indexed: 12/24/2022] Open
Abstract
Aging has many effects on the female reproductive system, among which decreased oocyte quality and impaired embryo developmental potential are the most important factors affecting female fertility. However, the mechanisms underlying oocyte aging are not yet fully understood. Here, we selected normal reproductively aging female mice and constructed a protein expression profile of metaphase II (MII) oocytes from three age groups. A total of 187 differentially expressed (DE) proteins were identified, and bioinformatics analyses showed that these DE proteins were highly enriched in RNA splicing. Next, RNA‐seq was performed on 2‐cell embryos from these three age groups, and splicing analysis showed that a large number of splicing events and genes were discovered at this stage. Differentially spliced genes (DSGs) in the two reproductively aging groups versus the younger group were enriched in biological processes related to DNA damage repair/response. Binding motif analysis suggested that PUF60 might be one of the core splicing factors causing a decline in DNA repair capacity in the subsequent development of oocytes from reproductively aging mice, and changing the splicing pattern of its potential downstream DSG Cdk9 could partially mimic phenotypes in the reproductively aging groups. Taken together, our study suggested that the abnormal expression of splicing regulation proteins in aged MII oocytes would affect the splicing of nascent RNA after zygotic genome activation in 2‐cell embryos, leading to the production of abnormally spliced transcripts of some key genes associated with DNA damage repair/response, thus affecting the developmental potential of aged oocytes.
Collapse
Affiliation(s)
- Mingrui Li
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University Nanjing China
- Department of Clinical Nursing, School of Nursing Nanjing Medical University Nanjing China
| | - Chao Ren
- Department of Biotechnology Beijing Institute of Radiation Medicine Beijing China
| | - Shuai Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University Nanjing China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University Nanjing China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University Nanjing China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University Nanjing China
| | - Lu Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University Nanjing China
| | - Qiqi Cao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University Nanjing China
| | - Congjing Wang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University Nanjing China
| | - Jie Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University Nanjing China
| | - Yue Hu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University Nanjing China
| | - Xue Bai
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University Nanjing China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University Nanjing China
| | - Wenjie Shu
- Department of Biotechnology Beijing Institute of Radiation Medicine Beijing China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University Nanjing China
| |
Collapse
|
40
|
Xin D, Bai Y, Bi Y, He L, Kang Y, Pan C, Zhu H, Chen H, Qu L, Lan X. Insertion/deletion variants within the IGF2BP2 gene identified in reported genome-wide selective sweep analysis reveal a correlation with goat litter size. J Zhejiang Univ Sci B 2021; 22:757-766. [PMID: 34514755 DOI: 10.1631/jzus.b2100079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2, also called IMP2) plays an essential role in the development and maturation of germ cells and embryos and is a candidate gene for goat litter size, based on a previous genome-wide selective sweep analysis. In this study, the mRNA expression level of IGF2BP2 was found to be significantly higher in a single-lamb group than in a multi-lamb group. Insertions/deletions (indels) within the goat IGF2BP2 gene, including P4-Ins-13bp and P5-Del-12bp, were verified in 918 Shaanbei White Cashmere (SBWC) female goats. The minor allelic frequencies (MAFs) of P4-Ins-13bp and P5-Del-12bp loci were 0.349 and 0.295, respectively. Analysis using the Chi-square (χ2) test showed that the genotype (χ2=14.479, P=0.006) distribution of P4-Ins-13bp was significantly different between the single-lamb and multi-lamb groups. Correlation analysis demonstrated that P4-Ins-13bp was significantly associated with goat litter size (P=0.022), and individual goats with the homozygous deletion/deletion (DD) genotype produced more litters than other goats. Therefore, considered as a potential molecular marker significantly related to lambing traits, the P4-Ins-13bp mutation of the goat IGF2BP2 gene can be used in goat breeding with practical molecular marker-assisted selection (MAS) to optimize female reproduction and improve economic efficiency in the goat industry.
Collapse
Affiliation(s)
- Dongyun Xin
- Lab of Animal Genome and Gene Function, College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yangyang Bai
- Lab of Animal Genome and Gene Function, College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yi Bi
- Lab of Animal Genome and Gene Function, College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, China
| | - Libang He
- Lab of Animal Genome and Gene Function, College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yuxin Kang
- Lab of Animal Genome and Gene Function, College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, China
| | - Chuanying Pan
- Lab of Animal Genome and Gene Function, College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, China
| | - Haijing Zhu
- Life Science Research Center, Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China
| | - Hong Chen
- Lab of Animal Genome and Gene Function, College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, China
| | - Lei Qu
- Life Science Research Center, Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China
| | - Xianyong Lan
- Lab of Animal Genome and Gene Function, College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
41
|
Goszczynski DE, Tinetti PS, Choi YH, Hinrichs K, Ross PJ. Genome activation in equine in vitro-produced embryos. Biol Reprod 2021; 106:66-82. [PMID: 34515744 DOI: 10.1093/biolre/ioab173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/17/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Embryonic genome activation is a critical event in embryo development, in which the transcriptional program of the embryo is initiated. The timing and regulation of this process are species-specific. In vitro embryo production is becoming an important clinical and research tool in the horse; however, very little is known about genome activation in this species. The objective of this work was to identify the timing of genome activation, and the transcriptional networks involved, in in vitro-produced horse embryos. RNA-Seq was performed on oocytes and embryos at eight stages of development (MII, zygote, 2-cell, 4-cell, 8-cell, 16-cell, morula, blastocyst; n = 6 per stage, 2 from each of 3 mares). Transcription of seven genes was initiated at the 2-cell stage. The first substantial increase in gene expression occurred at the 4-cell stage (minor activation), followed by massive gene upregulation and downregulation at the 8-cell stage (major activation). An increase in intronic nucleotides, indicative of transcription initiation, was also observed at the 4-cell stage. Co-expression network analyses identified groups of genes that appeared to be regulated by common mechanisms. Investigation of hub genes and binding motifs enriched in the promoters of co-expressed genes implicated several transcription factors. This work represents, to the best of our knowledge, the first genomic evaluation of embryonic genome activation in horse embryos.
Collapse
Affiliation(s)
- D E Goszczynski
- Department of Animal Science, University of California, Davis, CA, USA
| | - P S Tinetti
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Y H Choi
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - K Hinrichs
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - P J Ross
- Department of Animal Science, University of California, Davis, CA, USA
| |
Collapse
|
42
|
Abstract
Similar to epigenetic DNA and histone modifications, epitranscriptomic modifications (RNA modifications) have emerged as crucial regulators in temporal and spatial gene expression during eukaryotic development. To date, over 170 diverse types of chemical modifications have been identified upon RNA nucleobases. Some of these post-synthesized modifications can be reversibly installed, removed, and decoded by their specific cellular components and play critical roles in different biological processes. Accordingly, dysregulation of RNA modification effectors is tightly orchestrated with developmental processes. Here, we particularly focus on three well-studied RNA modifications, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), and N1-methyladenosine (m1A), and summarize recent knowledge of underlying mechanisms and critical roles of these RNA modifications in stem cell fate determination, embryonic development, and cancer progression, providing a better understanding of the whole association between epitranscriptomic regulation and mammalian development.
Collapse
|
43
|
Li H, Wang D, Yi B, Cai H, Wang Y, Lou X, Xi Z, Li Z. SUMOylation of IGF2BP2 promotes vasculogenic mimicry of glioma via regulating OIP5-AS1/miR-495-3p axis. Int J Biol Sci 2021; 17:2912-2930. [PMID: 34345216 PMCID: PMC8326132 DOI: 10.7150/ijbs.58035] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Rationale: Glioma is the most common primary malignant tumor of human central nervous system, and its rich vascular characteristics make anti-angiogenic therapy become a therapeutic hotspot. However, the existence of glioma VM makes the anti-angiogenic therapy ineffective. SUMOylation is a post-translational modification that affects cell tumorigenicity by regulating the expression and activity of substrate proteins. Methods: The binding and modification of IGF2BP2 and SUMO1 were identified using Ni2+-NTA agarose bead pull-down assays, CO-IP and western blot; and in vitro SUMOylation assays combined with immunoprecipitation and immunofluorescence staining were performed to explore the detail affects and regulations of the SUMOylation on IGF2BP2. RT-PCR and western blot were used to detect the expression levels of IGF2BP2, OIP5-AS1, and miR-495-3p in glioma tissues and cell lines. CCK-8 assays, cell transwell assays, and three-dimensional cell culture methods were used for evaluating the function of IGF2BP2, OIP5-AS1, miR-495-3p, HIF1A and MMP14 in biological behaviors of glioma cells. Meantime, RIP and luciferase reporter assays were used for inquiring into the interactions among IGF2BP2, OIP5-AS1, miR-495-3p, HIF1A and MMP14. Eventually, the tumor xenografts in nude mice further as certained the effects of IGF2BP2 SUMOylation on glioma cells. Results: This study proved that IGF2BP2 mainly binds to SUMO1 and was SUMOylated at the lysine residues K497, K505 and K509 sites, which can be reduced by SENP1. SUMOylation increased IGF2BP2 protein expression and blocked its degradation through ubiquitin-proteasome pathway, thereby increasing its stability. The expressions of IGF2BP2 and OIP5-AS1 were up-regulated and the expression of miR-495-3p was down-regulated in both glioma tissues and cells. IGF2BP2 enhances the stability of OIP5-AS1, thereby increasing the binding of OIP5-AS1 to miR-495-3p, weakening the binding of miR-495-3p to the 3'UTR of HIF1A and MMP14 mRNA, and ultimately promoting the formation of VM in glioma. Conclusions: This study first revealed that SUMOylation of IGF2BP2 regulated OIP5-AS1/miR-495-3p axis to promote VM formation in glioma cells and xenografts growth in nude mice, providing a new idea for molecular targeted therapy of glioma.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Bolong Yi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yipeng Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Xin Lou
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| |
Collapse
|
44
|
The biological function of IGF2BPs and their role in tumorigenesis. Invest New Drugs 2021; 39:1682-1693. [PMID: 34251559 DOI: 10.1007/s10637-021-01148-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/30/2021] [Indexed: 01/09/2023]
Abstract
The insulin-like growth factor-2 mRNA-binding proteins (IGF2BPs) pertain to a highly conservative RNA-binding family that works as a post-transcriptional fine-tuner for target transcripts. Emerging evidence suggests that IGF2BPs regulate RNA processing and metabolism, including stability, translation, and localization, and are involved in various cellular functions and pathophysiologies. In this review, we summarize the roles and molecular mechanisms of IGF2BPs in cancer development and progression. We mainly discuss the functional relevance of IGF2BPs in embryo development, neurogenesis, metabolism, RNA processing, and tumorigenesis. Understanding IGF2BPs role in tumor progression will provide new insight into cancer pathophysiology.
Collapse
|
45
|
Zhou S, Guo Y, Sun H, Liu L, Yao L, Liu C, He Y, Cao S, Zhou C, Li M, Cao Y, Wang C, Lu Q, Li W, Guo X, Huo R. Maternal RNF114-mediated target substrate degradation regulates zygotic genome activation in mouse embryos. Development 2021; 148:269079. [PMID: 34104941 DOI: 10.1242/dev.199426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
Zygotic genomic activation (ZGA) is a landmark event in the maternal-to-zygotic transition (MZT), and the regulation of ZGA by maternal factors remains to be elucidated. In this study, the depletion of maternal ring finger protein 114 (RNF114), a ubiquitin E3 ligase, led to developmental arrest of two-cell mouse embryos. Using immunofluorescence and transcriptome analysis, RNF114 was proven to play a crucial role in major ZGA. To study the underlying mechanism, we performed protein profiling in mature oocytes and found a potential substrate for RNF114, chromobox 5 (CBX5), ubiquitylation and degradation of which was regulated by RNF114. The overexpression of CBX5 prevented embryonic development and impeded major ZGA. Furthermore, TAB1 was abnormally accumulated in mutant two-cell embryos, which was consistent with the result of in vitro knockdown of Rnf114. Knockdown of Cbx5 or Tab1 in maternal RNF114-depleted embryos partially rescued developmental arrest and the defect of major ZGA. In summary, our study reveals that maternal RNF114 plays a precise role in degrading some important substrates during the MZT, the misregulation of which may impede the appropriate activation of major ZGA in mouse embryos.
Collapse
Affiliation(s)
- Shuai Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China.,Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Haifeng Sun
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Lu Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Liping Yao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Chao Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Shanren Cao
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Cheng Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Mingrui Li
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Yumeng Cao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Congjing Wang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Qianneng Lu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Wei Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
46
|
Wang X, Ji Y, Feng P, Liu R, Li G, Zheng J, Xue Y, Wei Y, Ji C, Chen D, Li J. The m6A Reader IGF2BP2 Regulates Macrophage Phenotypic Activation and Inflammatory Diseases by Stabilizing TSC1 and PPAR γ. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100209. [PMID: 34258163 PMCID: PMC8261491 DOI: 10.1002/advs.202100209] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/06/2021] [Indexed: 05/20/2023]
Abstract
Phenotypic polarization of macrophages is regulated by a milieu of cues in the local tissue microenvironment. Currently, little is known about how the intrinsic regulators modulate proinflammatory (M1) versus prohealing (M2) macrophages activation. Here, it is observed that insulin-like growth factor 2 messenger RNA (mRNA)-binding protein 2 (IGF2BP2)-deleted macrophages exhibit enhanced M1 phenotype and promote dextran sulfate sodium induced colitis development. However, the IGF2BP2-/- macrophages are refractory to interleukin-4 (IL-4) induced activation and alleviate cockroach extract induced pulmonary allergic inflammation. Molecular studies indicate that IGF2BP2 switches M1 macrophages to M2 activation by targeting tuberous sclerosis 1 via an N6-methyladenosine (m6A)-dependent manner. Additionally, it is also shown a signal transducer and activators of transcription 6 (STAT6)-high mobility group AT-hook 2-IGF2BP2-peroxisome proliferator activated receptor-γ axis involves in M2 macrophages differentiation. These findings highlight a key role of IGF2BP2 in regulation of macrophages activation and imply a potential therapeutic target of macrophages in the inflammatory diseases.
Collapse
Affiliation(s)
- Xia Wang
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Yuge Ji
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Panpan Feng
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Rucheng Liu
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Guosheng Li
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Junjie Zheng
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Yaqiang Xue
- ABLife BioBigData InstituteWuhanHubei430075China
| | - Yaxun Wei
- Center for Genoem AnalysisABLife Inc.WuhanHubei430075China
| | - Chunyan Ji
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Dawei Chen
- Laboratory of Medical ChemistryInterdisciplinary Cluster for Applied Genoproteomics (GIGA) Stem CellsUniversity of LiègeCHU, Sart‐TilmanLiège4000Belgium
| | - Jingxin Li
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| |
Collapse
|
47
|
Ren F, Miao R, Xiao R, Mei J. m 6A reader Igf2bp3 enables germ plasm assembly by m 6A-dependent regulation of gene expression in zebrafish. Sci Bull (Beijing) 2021; 66:1119-1128. [PMID: 36654345 DOI: 10.1016/j.scib.2021.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/13/2020] [Accepted: 10/27/2020] [Indexed: 01/20/2023]
Abstract
Bucky ball (Buc) is involved in germ plasm (GP) assembly during early zebrafish development by regulating GP mRNA expression via an unknown mechanism. The present study demonstrates that an m6A reader Igf2bp3 interacts and colocalizes with Buc in the GP. Similar to the loss of Buc, the genetic deletion of maternal igf2bp3 in zebrafish leads to abnormal GP assembly and insufficient germ cell specification, which can be partially restored by the injection of igf2bp3 mRNA. Igf2bp3 binds to m6A-modified GP-organizer and GP mRNAs in an m6A-dependent manner and prevents their degradation. These findings indicate that the functions of Igf2bp3, a direct effector protein of Buc, in GP mRNA expression and GP assembly involve m6A-dependent regulation; these results emphasize a critical role of m6A modification in the process of GP assembly.
Collapse
Affiliation(s)
- Fan Ren
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ran Miao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Xiao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China; Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
48
|
Llobat L. Pluripotency and Growth Factors in Early Embryonic Development of Mammals: A Comparative Approach. Vet Sci 2021; 8:vetsci8050078. [PMID: 34064445 PMCID: PMC8147802 DOI: 10.3390/vetsci8050078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/24/2022] Open
Abstract
The regulation of early events in mammalian embryonic development is a complex process. In the early stages, pluripotency, cellular differentiation, and growth should occur at specific times and these events are regulated by different genes that are expressed at specific times and locations. The genes related to pluripotency and cellular differentiation, and growth factors that determine successful embryonic development are different (or differentially expressed) among mammalian species. Some genes are fundamental for controlling pluripotency in some species but less fundamental in others, for example, Oct4 is particularly relevant in bovine early embryonic development, whereas Oct4 inhibition does not affect ovine early embryonic development. In addition, some mechanisms that regulate cellular differentiation do not seem to be clear or evolutionarily conserved. After cellular differentiation, growth factors are relevant in early development, and their effects also differ among species, for example, insulin-like growth factor improves the blastocyst development rate in some species but does not have the same effect in mice. Some growth factors influence genes related to pluripotency, and therefore, their role in early embryo development is not limited to cell growth but could also involve the earliest stages of development. In this review, we summarize the differences among mammalian species regarding the regulation of pluripotency, cellular differentiation, and growth factors in the early stages of embryonic development.
Collapse
Affiliation(s)
- Lola Llobat
- Research Group Microbiological Agents Associated with Animal Reproduction (PROVAGINBIO), Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA) Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain
| |
Collapse
|
49
|
Timofeeva A, Drapkina Y, Fedorov I, Chagovets V, Makarova N, Shamina M, Kalinina E, Sukhikh G. Small Noncoding RNA Signatures for Determining the Developmental Potential of an Embryo at the Morula Stage. Int J Mol Sci 2020; 21:ijms21249399. [PMID: 33321810 PMCID: PMC7764539 DOI: 10.3390/ijms21249399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
As part of the optimization of assisted reproductive technology programs, the aim of the study was to identify key small noncoding RNA (sncRNA) molecules that participate in maternal-to-zygotic transition and determine development potential and competence to form a healthy fetus. Small RNA deep sequencing followed by quantitative real-time RT-PCR was used to profile sncRNAs in 50 samples of spent culture medium from morula with different development potentials (no potential (degradation/developmental arrest), low potential (poor-quality blastocyst), and high potential (good/excellent quality blastocyst capable of implanting and leading to live birth)) obtained from 27 subfertile couples who underwent in vitro fertilization. We have shown that the quality of embryos at the morula stage is determined by secretion/uptake rates of certain sets of piRNAs and miRNAs, namely hsa_piR_011291, hsa_piR_019122, hsa_piR_001311, hsa_piR_015026, hsa_piR_015462, hsa_piR_016735, hsa_piR_019675, hsa_piR_020381, hsa_piR_020485, hsa_piR_004880, hsa_piR_000807, hsa-let-7b-5p, and hsa-let-7i-5p. Predicted gene targets of these sncRNAs included those globally decreased at the 8-cell–morula–blastocyst stage and critical to early embryo development. We show new original data on sncRNA profiling in spent culture medium from morula with different development potential. Our findings provide a view of a more complex network that controls human embryogenesis at the pre-implantation stage. Further research is required using reporter analysis to experimentally confirm interactions between identified sncRNA/gene target pairs.
Collapse
|
50
|
Muhammad T, Wan Y, Sha Q, Wang J, Huang T, Cao Y, Li M, Yu X, Yin Y, Chan WY, Chen ZJ, You L, Lu G, Liu H. IGF2 improves the developmental competency and meiotic structure of oocytes from aged mice. Aging (Albany NY) 2020; 13:2118-2134. [PMID: 33318299 PMCID: PMC7880328 DOI: 10.18632/aging.202214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Advanced maternal-age is a major factor adversely affecting oocyte quality, consequently worsening pregnancy outcomes. Thus, developing strategies to reduce the developmental defects associated with advanced maternal-age would benefit older mothers. Multiple growth factors involved in female fertility have been extensively studied; however, the age-related impacts of various growth factors remain poorly studied. In the present study, we identified that levels of insulin-like growth factor 2 (IGF2) are significantly reduced in the serum and oocytes of aged mice. We found that adding IGF2 in culture medium promotes oocyte maturation and significantly increases the proportion of blastocysts: from 41% in the untreated control group to 64% (50 nM IGF2) in aged mice (p < 0.05). Additionally, IGF2 supplementation of the culture medium reduced reactive oxygen species production and the incidence of spindle/chromosome defects. IGF2 increases mitochondrial functional activity in oocytes from aged mice: we detected increased ATP levels, elevated fluorescence intensity of mitochondria, higher mitochondrial membrane potentials, and increased overall protein synthesis, as well as increased autophagy activity and decreased apoptosis. Collectively, our findings demonstrate that IGF2 supplementation in culture media improves oocyte developmental competence and reduces meiotic structure defects in oocytes from aged mice.
Collapse
Affiliation(s)
- Tahir Muhammad
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Yanling Wan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Qianqian Sha
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Jianfeng Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Tao Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Yongzhi Cao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Mengjing Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Xiaochen Yu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Yingying Yin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Wai Yee Chan
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200000, China.,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Li You
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Gang Lu
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|