1
|
Duan L, Zheng D, Farhadi B, Wu S, Wang H, Peng L, Liu L, Du M, Zhang Y, Wang K, Liu S. A-D-A Molecule-Bridge Interface for Efficient Perovskite Solar Cells and Modules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314098. [PMID: 38362999 DOI: 10.1002/adma.202314098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/02/2024] [Indexed: 02/17/2024]
Abstract
As the photovoltaic field endeavors to transition perovskite solar cells (PSCs) to industrial applications, inverted PSCs, which incorporate fullerene as electron transport layers, have emerged as a compelling choice due to their augmented stability and cost-effectiveness. However, these attributes suffer from performance issues stemming from suboptimal electrical characteristics at the perovskite/fullerene interface. To surmount these hurdles, an interface bridging strategy (IBS) is proposed to attenuate the interface energy loss and enhance the interfacial stability by designing a series of A-D-A type perylene monoimide (PMI) derivatives with multifaceted advantages. In addition to passivating defects, the IBS plays a crucial role in facilitating the binding between perovskite and fullerene, thereby enhancing interface coupling and importantly, improving the formation of fullerene films. The PMI derivatives, functioning as bridges, serve as a protective barrier to enhance the device stability. Consequently, the IBS enables a remarkable efficiency of 24.62% for lab-scale PSCs and an efficiency of 18.73% for perovskite solar modules craft on 156 × 156 mm2 substrates. The obtained efficiencies represent some of the highest recorded for fullerene-based devices, showcasing significant progress in designing interfacial molecules at the perovskite/fullerene interface and offering a promising path to enhance the commercial viability of PSCs.
Collapse
Affiliation(s)
- Lianjie Duan
- College of Chemistry, Key Laboratory of Advanced Green Functional Materials, Changchun Normal University, Changchun, 130032, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Dexu Zheng
- China National Nuclear Power Co., Ltd., Beijing, 100089, China
| | - Bita Farhadi
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Sajian Wu
- China National Nuclear Power Co., Ltd., Beijing, 100089, China
| | - Hao Wang
- College of Chemistry, Key Laboratory of Advanced Green Functional Materials, Changchun Normal University, Changchun, 130032, China
| | - Lei Peng
- China National Nuclear Power Co., Ltd., Beijing, 100089, China
| | - Lu Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Minyong Du
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Youdi Zhang
- College of Chemistry, Key Laboratory of Advanced Green Functional Materials, Changchun Normal University, Changchun, 130032, China
| | - Kai Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Shengzhong Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| |
Collapse
|
2
|
Luo F, Lim D, Seok HJ, Kim HK. Solvent-free preparation and thermocompression self-assembly: an exploration of performance improvement strategies for perovskite solar cells. RSC Adv 2024; 14:17261-17294. [PMID: 38808244 PMCID: PMC11132079 DOI: 10.1039/d4ra02191f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
Perovskite solar cells (PSCs) exhibit sufficient technological efficiency and economic competitiveness. However, their poor stability and scalability are crucial factors limiting their rapid development. Therefore, achieving both high efficiency and good stability is an urgent challenge. In addition, the preparation methods for PSCs are currently limited to laboratory-scale methods, so their commercialization requires further research. Effective packaging technology is essential to protect the PSCs from degradation by external environmental factors and ensure their long-term stability. The industrialization of PSCs is also inseparable from the preparation technology of perovskite thin films. This review discusses the solvent-free preparation of PSCs, shedding light on the factors that affect PSC performance and strategies for performance enhancement. Furthermore, this review analyzes the existing simulation techniques that have contributed to a better understanding of the interfacial evolution of PSCs during the packaging process. Finally, the current challenges and possible solutions are highlighted, providing insights to facilitate the development of highly efficient and stable PSC modules to promote their widespread application.
Collapse
Affiliation(s)
- Fang Luo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University 2066, Seobu-ro Jangan-gu Suwon-si Gyeonggi-do 16419 the Republic of Korea
| | - Doha Lim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University 2066, Seobu-ro Jangan-gu Suwon-si Gyeonggi-do 16419 the Republic of Korea
| | - Hae-Jun Seok
- School of Advanced Materials Science and Engineering, Sungkyunkwan University 2066, Seobu-ro Jangan-gu Suwon-si Gyeonggi-do 16419 the Republic of Korea
| | - Han-Ki Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University 2066, Seobu-ro Jangan-gu Suwon-si Gyeonggi-do 16419 the Republic of Korea
| |
Collapse
|
3
|
Li F, Wang H, Chen Z, Liu X, Wang P, Zhang W, Dong H, Fu J, Wang Z, Shao Y. Aging CsPbBr 3 Nanocrystal Wafer for Ultralow Ionic Migration and Environmental Stability for Direct X-ray Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10344-10351. [PMID: 38350064 DOI: 10.1021/acsami.3c16870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The outstanding photoelectric properties of perovskites demonstrate extreme promise for application in X-ray detection. However, the soft lattice of the perovskite results in severe ionic migration for three-dimensional materials, limiting the operation stability of perovskite X-ray detectors. Although ligand-decorated nanocrystals (NCs) exhibit significantly higher stability than three-dimensional perovskites, defects remaining on the interface of NCs could still trigger halide migration under a high bias due to the incomplete ligand decoration. Furthermore, it is still challenging to realize sufficient thickness of absorption layers based on NCs for X-ray detectors through traditional methods. Herein, we develop a centimeter-size and millimeter-thick wafer based on CsPbBr3 NCs through isostatic pressing for X-ray detectors, in which the interfacial defects of NCs are remedied by CsPb2Br5 during aging of wafer in ambient humidity. The wafer shows outstanding sensitivity (200 μC Gyair-1 cm-2) and ultralow dark current drift (1.78 × 10-8 nA cm-1 s-1 V-1 @ 400 V cm-1). Moreover, it shows storage stability with negligible performance degradation for 60 days in ambient humidity. Thus, aging perovskite NC wafers for X-ray detection holds huge potential for next-generation X-ray imaging plates.
Collapse
Affiliation(s)
- Fenghua Li
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Hu Wang
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhilong Chen
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Liu
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Pengxiang Wang
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Wenqing Zhang
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Hao Dong
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- School of Microelectronics, Shanghai University, Shanghai 201899, China
| | - Jie Fu
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- School of Microelectronics, Shanghai University, Shanghai 201899, China
| | - Zhiyuan Wang
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yuchuan Shao
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
4
|
Khadka DB, Shirai Y, Yanagida M, Ota H, Lyalin A, Taketsugu T, Miyano K. Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding. Nat Commun 2024; 15:882. [PMID: 38287031 PMCID: PMC10824754 DOI: 10.1038/s41467-024-45228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024] Open
Abstract
Molecular passivation is a prominent approach for improving the performance and operation stability of halide perovskite solar cells (HPSCs). Herein, we reveal discernible effects of diammonium molecules with either an aryl or alkyl core onto Methylammonium-free perovskites. Piperazine dihydriodide (PZDI), characterized by an alkyl core-electron cloud-rich-NH terminal, proves effective in mitigating surface and bulk defects and modifying surface chemistry or interfacial energy band, ultimately leading to improved carrier extraction. Benefiting from superior PZDI passivation, the device achieves an impressive efficiency of 23.17% (area ~1 cm2) (low open circuit voltage deficit ~0.327 V) along with superior operational stability. We achieve a certified efficiency of ~21.47% (area ~1.024 cm2) for inverted HPSC. PZDI strengthens adhesion to the perovskite via -NH2I and Mulliken charge distribution. Device analysis corroborates that stronger bonding interaction attenuates the defect densities and suppresses ion migration. This work underscores the crucial role of bifunctional molecules with stronger surface adsorption in defect mitigation, setting the stage for the design of charge-regulated molecular passivation to enhance the performance and stability of HPSC.
Collapse
Affiliation(s)
- Dhruba B Khadka
- Photovoltaic Materials Group, Center for GREEN Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Yasuhiro Shirai
- Photovoltaic Materials Group, Center for GREEN Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Masatoshi Yanagida
- Photovoltaic Materials Group, Center for GREEN Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Hitoshi Ota
- Battery Research Platform, Research Center for Energy and Environmental Materials (GREEN), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, 305-0044, Japan
| | - Andrey Lyalin
- Research Center for Energy and Environmental Materials (GREEN), National Institute for Materials Science, Namiki 1-1, Tsukuba, 305-0044, Japan.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan.
| | - Tetsuya Taketsugu
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kenjiro Miyano
- Photovoltaic Materials Group, Center for GREEN Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
5
|
Penukula S, Estrada Torrejon R, Rolston N. Quantifying and Reducing Ion Migration in Metal Halide Perovskites through Control of Mobile Ions. Molecules 2023; 28:5026. [PMID: 37446688 DOI: 10.3390/molecules28135026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The presence of intrinsic ion migration in metal halide perovskites (MHPs) is one of the main reasons that perovskite solar cells (PSCs) are not stable under operation. In this work, we quantify the ion migration of PSCs and MHP thin films in terms of mobile ion concentration (No) and ionic mobility (µ) and demonstrate that No has a larger impact on device stability. We study the effect of small alkali metal A-site cation additives (e.g., Na+, K+, and Rb+) on ion migration. We show that the influence of moisture and cation additive on No is less significant than the choice of top electrode in PSCs. We also show that No in PSCs remains constant with an increase in temperature but μ increases with temperature because the activation energy is lower than that of ion formation. This work gives design principles regarding the importance of passivation and the effects of operational conditions on ion migration.
Collapse
Affiliation(s)
- Saivineeth Penukula
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Rodrigo Estrada Torrejon
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Nicholas Rolston
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
6
|
Chen R, Shen H, Chang Q, Tang Z, Nie S, Chen B, Ping T, Wu B, Yin J, Li J, Zheng N. Conformal Imidazolium 1D Perovskite Capping Layer Stabilized 3D Perovskite Films for Efficient Solar Modules. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204017. [PMID: 36372521 PMCID: PMC9798973 DOI: 10.1002/advs.202204017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Although the perovskite solar cells have been developed rapidly, the industrialization of perovskite photovoltaics is still facing challenges, especially considering their stability issues. Here, the new type of benzimidazolium salt, N,N'-dialkylbenzimidazolium iodide, is proposed and functionalized to convert the three-dimensional (3D) FACs-perovskite films into one-dimensional (1D) capping layer topped 1D/3D structure either in individual device or module levels. This conformal interface modulation demonstrates that not only can effectively stabilize FACs-based perovskite films by inhibiting the lateral and vertical iodide diffusions in devices or modules, ensuring an excellent operation and environmental stability, but also provides an excellent charge transporting channel through the well-designed 1D crystal structure. Consequently, efficient device performance with power conversion efficiency up to 24.3% is readily achieved. And the large-area perovskite solar modules with high efficiency (19.6% for the active areas of 18 cm2 ) and long-term stability (about 500 h in AM 1.5G illumination or about 1000 h under double-85 conditions) are also successfully verified.
Collapse
Affiliation(s)
- Ruihao Chen
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Laboratory of GrapheneXi'an710072China
| | - Hui Shen
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Qing Chang
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Ziheng Tang
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Siqing Nie
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Bili Chen
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Tan Ping
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Binghui Wu
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Jun Yin
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Jing Li
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Nanfeng Zheng
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| |
Collapse
|
7
|
Hwang IS, Lee JY, Kim J, Pak NY, Kim J, Chung DW. Post-Treatment of Tannic Acid for Thermally Stable PEDOT:PSS Film. Polymers (Basel) 2022; 14:polym14224908. [PMID: 36433036 PMCID: PMC9692676 DOI: 10.3390/polym14224908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
As a poly (3,4-ethylenedioxythiophene) doped with poly (styrene sulfonate), PEDOT:PSS is well known for its conductive polymer in a field of organic electronics. PEDOT:PSS can be widely operated as electronics under low temperature conditions; however, the layer can be easily damaged by high temperature conditions, while in fabrication or in the operation of electronics. Therefore, enhancing the thermal stability of PEDOT:PSS can be a novel strategy for both fabrication and operating varieties. Herein, PEDOT:PSS is the surface-treated with tannic acid to increase the thermal stability. A large number of phenols in tannic acid not only provide UV absorption ability, but also thermal stability. Therefore, tannic-treated PEDOT:PSS film sustained 150 °C for 96 h because of its initial conductivity. Moreover, surface properties and its bonding nature was further examined to show that the tannic acid does not damage the electrical and film properties. The method can be widely used in the field of organic electronics, especially because of its high stability and the high performance of the devices.
Collapse
Affiliation(s)
- In-Seong Hwang
- Department of Chemical and Materials Engineering, University of Suwon, Hwaseong 18323, Korea
| | - Ju-Yeong Lee
- Department of Chemical and Materials Engineering, University of Suwon, Hwaseong 18323, Korea
| | - Jihyun Kim
- Department of Chemical and Materials Engineering, University of Suwon, Hwaseong 18323, Korea
| | - Na-Young Pak
- EverChemTech Co., Ltd., 38, Cheongwonsandan 7-gil, Mado-myeon, Hwaseong 18543, Korea
| | - Jinhyun Kim
- Department of Chemical and Materials Engineering, University of Suwon, Hwaseong 18323, Korea
- Correspondence: (J.K.); (D.-W.C.); Tel.: +82-31-220-2352 (J.K.); Tel.: +82-31-220-2156 (D.-W.C.)
| | - Dae-Won Chung
- Department of Chemical and Materials Engineering, University of Suwon, Hwaseong 18323, Korea
- Correspondence: (J.K.); (D.-W.C.); Tel.: +82-31-220-2352 (J.K.); Tel.: +82-31-220-2156 (D.-W.C.)
| |
Collapse
|
8
|
Zhao X, Xu C, Wang X, Guo J, Wu M. Construction of multilevel network structured carbon nanofiber counter electrode and back interface engineering in all inorganic HTL–free perovskite solar cells. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Lee JC, Woo JH, Lee HJ, Lee M, Woo H, Baek S, Nam J, Sim JY, Park S. Microfluidic Screening-Assisted Machine Learning to Investigate Vertical Phase Separation of Small Molecule:Polymer Blend. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107596. [PMID: 34865268 DOI: 10.1002/adma.202107596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Solution-based thin-film processing is a widely utilized technique for the fabrication of various devices. In particular, the tunability of the ink composition and coating condition allows precise control of thin-film properties and device performance. Despite the advantage of having such tunability, the sheer number of possible combinations of experimental parameters render it infeasible to efficiently optimize device performance and analyze the correlation between experimental parameters and device performance. In this work, a microfluidic screening-embedded thin-film processing technique is developed, through which thin-films of varying ratios of small molecule semiconductor:polymer blend are simultaneously generated and screened in a time- and resource-efficient manner. Moreover, utilizing the thin-films of varying combinations of experimental parameters, machine learning models are trained to predict the transistor performance. Gaussian Process Regression (GPR) algorithms tuned by Bayesian optimization shows the best predictive accuracy amongst the trained models, which enables narrowing down of the combinations of experimental parameters and investigation of the degree of vertical phase separation under the predicted parameter space. The technique can serve as a guideline for elucidating the underlying complex parameter-property-performance correlations in solution-based thin-film processing, thereby accelerating the optimization of various thin-film devices in the future.
Collapse
Affiliation(s)
- Jeong-Chan Lee
- Organic and nano electronics laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Seoul, 34141, Republic of Korea
| | - Jun Hee Woo
- Organic and nano electronics laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Seoul, 34141, Republic of Korea
| | - Ho-Jun Lee
- Organic and nano electronics laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Seoul, 34141, Republic of Korea
| | - Minho Lee
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heejin Woo
- Organic and nano electronics laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Seoul, 34141, Republic of Korea
| | - Seunghyeok Baek
- Organic and nano electronics laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Seoul, 34141, Republic of Korea
| | - Jaewook Nam
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joo Yong Sim
- Department of Mechanical Systems Engineering, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Steve Park
- KI for Health Science and Technology, Saudi Aramco-KAIST CO2 Management Center, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Seoul, 34141, Republic of Korea
| |
Collapse
|
10
|
Vasilopoulou M, Soultati A, Filippatos PP, Mohd Yusoff ARB, Nazeeruddin MK, Palilis LC. Charge transport materials for mesoscopic perovskite solar cells. JOURNAL OF MATERIALS CHEMISTRY C 2022; 10:11063-11104. [DOI: 10.1039/d2tc00828a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
An overview on recent advances in the fundamental understanding of how interfaces of mesoscopic perovskite solar cells (mp-PSCs) with different architectures, upon incorporating various charge transport layers, influence their performance.
Collapse
Affiliation(s)
- Maria Vasilopoulou
- Institute of Nanoscience and Nanotechnology (INN), National Center for Scientific Research “Demokritos”, 15341 Agia Paraskevi, Attica, Greece
| | - Anastasia Soultati
- Institute of Nanoscience and Nanotechnology (INN), National Center for Scientific Research “Demokritos”, 15341 Agia Paraskevi, Attica, Greece
| | - Petros-Panagis Filippatos
- Institute of Nanoscience and Nanotechnology (INN), National Center for Scientific Research “Demokritos”, 15341 Agia Paraskevi, Attica, Greece
- Faculty of Engineering, Environment and Computing, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Abd. Rashid bin Mohd Yusoff
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Mohhamad Khadja Nazeeruddin
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| | | |
Collapse
|
11
|
Annohene G, Tepper G. Moisture Stability of Perovskite Solar Cells Processed in Supercritical Carbon Dioxide. Molecules 2021; 26:7570. [PMID: 34946650 PMCID: PMC8706609 DOI: 10.3390/molecules26247570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022] Open
Abstract
Performance degradation under environmental conditions currently limits the practical utility of perovskite-based solar cells. The moisture stability of CH3NH3PbI3 perovskite films and solar cells was measured during exposure to three different levels of relative humidity. The films were crystallized at two different temperatures with and without simultaneous exposure to supercritical carbon dioxide. The film crystallinity, optical absorption, and device photoconversion efficiency was measured over time for three relative humidity levels and both crystallization methods. It was determined that film crystallization in supercritical CO2 resulted in significant improvement in moisture stability for films processed at 50 °C, but negligible improvement in stability for films processed at 100 °C.
Collapse
Affiliation(s)
| | - Gary Tepper
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA;
| |
Collapse
|
12
|
Gueye I, Shirai Y, Khadka DB, Seo O, Hiroi S, Yanagida M, Miyano K, Sakata O. Chemical and Electronic Investigation of Buried NiO 1-δ, PCBM, and PTAA/MAPbI 3-xCl x Interfaces Using Hard X-ray Photoelectron Spectroscopy and Transmission Electron Microscopy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50481-50490. [PMID: 34644495 DOI: 10.1021/acsami.1c11215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Identification and profiling of molecular fragments generated over the lifespan of halide perovskite solar cells are needed to overcome the stability issues associated with these devices. Herein, we report the characterization of buried CH3NH3PbI3-xClx (HaP)-transport layer (TL) interfaces. By using hard X-ray photoelectron spectroscopy in conjunction with transmission electron microscopy, we reveal that the chemical decomposition of HaP is TL-dependent. With NiO1-δ, phenyl-C61-butyric acid methyl ester (PCBM), or poly(bis(4-phenyl) (2,4,6-trimethylphenyl)amine) (PTAA) as TLs, probing depth analysis shows that the degradation takes place at the interface (HaP/TL) rather than the HaP bulk area. From core-level data analysis, we identified iodine migration toward the PCBM- and PTAA-TLs. Unexpected diffusion of nitrogen inside NiO1-δ-TL was also found for the HaP/NiO1-δ sample. With a HaP/PCBM junction, HaP is dissociated to PbI2, whereas HaP/PTAA contact favored the formation of CH3I. The low stability of HaP solar cells in the PTAA-TL system is attributed to the formation of CH3I and iodide ion vacancies. Improved stability observed with NiO1-δ-TL is related to weak dissociation of stoichiometric HaP. Here, we provide a new insight to further distinguish different mechanisms of degradation to improve the long-term stability and performance of HaP solar cells.
Collapse
Affiliation(s)
- Ibrahima Gueye
- Synchrotron X-ray Group, Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Synchrotron X-ray Station at SPring-8, Research Network and Facility Services Division, NIMS, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Yasuhiro Shirai
- Centre for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Dhruba B Khadka
- Centre for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Okkyun Seo
- Synchrotron X-ray Group, Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Synchrotron X-ray Station at SPring-8, Research Network and Facility Services Division, NIMS, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Satoshi Hiroi
- Synchrotron X-ray Group, Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Synchrotron X-ray Station at SPring-8, Research Network and Facility Services Division, NIMS, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Masatoshi Yanagida
- Centre for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kenjiro Miyano
- Centre for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Osami Sakata
- Synchrotron X-ray Group, Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Synchrotron X-ray Station at SPring-8, Research Network and Facility Services Division, NIMS, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Nagatsuta, Midori, Yokohama 226-8502, Japan
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI), Kouto, Sayo, Hyogo 679-5198, Japan
| |
Collapse
|
13
|
Kim D, Muckley ES, Creange N, Wan TH, Ann MH, Quattrocchi E, Vasudevan RK, Kim JH, Ciucci F, Ivanov IN, Kalinin SV, Ahmadi M. Exploring Transport Behavior in Hybrid Perovskites Solar Cells via Machine Learning Analysis of Environmental-Dependent Impedance Spectroscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2002510. [PMID: 34155825 PMCID: PMC8336513 DOI: 10.1002/advs.202002510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 04/14/2021] [Indexed: 06/13/2023]
Abstract
Hybrid organic-inorganic perovskites are one of the promising candidates for the next-generation semiconductors due to their superlative optoelectronic properties. However, one of the limiting factors for potential applications is their chemical and structural instability in different environments. Herein, the stability of (FAPbI3 )0.85 (MAPbBr3 )0.15 perovskite solar cell is explored in different atmospheres using impedance spectroscopy. An equivalent circuit model and distribution of relaxation times (DRTs) are used to effectively analyze impedance spectra. DRT is further analyzed via machine learning workflow based on the non-negative matrix factorization of reconstructed relaxation time spectra. This exploration provides the interplay of charge transport dynamics and recombination processes under environment stimuli and illumination. The results reveal that in the dark, oxygen atmosphere induces an increased hole concentration with less ionic character while ionic motion is dominant under ambient air. Under 1 Sun illumination, the environment-dependent impedance responses show a more striking effect compared with dark conditions. In this case, the increased transport resistance observed under oxygen atmosphere in equivalent circuit analysis arises due to interruption of photogenerated hole carriers. The results not only shed light on elucidating transport mechanisms of perovskite solar cells in different environments but also offer an effective interpretation of impedance responses.
Collapse
Affiliation(s)
- Dohyung Kim
- Joint Institute for Advanced Materials, Department of Materials Science and EngineeringUniversity of TennesseeKnoxvilleTN37996USA
| | - Eric S. Muckley
- The Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Nicole Creange
- Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighNC27606USA
| | - Ting Hei Wan
- Department of Mechanical and Aerospace EngineeringThe Hong Kong University of Science and TechnologyHong Kong
| | - Myung Hyun Ann
- Department of Molecular Science and TechnologyAjou UniversitySuwon16499Republic of Korea
| | - Emanuele Quattrocchi
- Department of Mechanical and Aerospace EngineeringThe Hong Kong University of Science and TechnologyHong Kong
| | - Rama K. Vasudevan
- The Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Jong H. Kim
- Department of Molecular Science and TechnologyAjou UniversitySuwon16499Republic of Korea
| | - Francesco Ciucci
- Department of Mechanical and Aerospace EngineeringThe Hong Kong University of Science and TechnologyHong Kong
- Department of Chemical and Biomolecular EngineeringThe Hong Kong University of Science and TechnologyHong Kong
| | - Ilia N. Ivanov
- The Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Sergei V. Kalinin
- The Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Mahshid Ahmadi
- Joint Institute for Advanced Materials, Department of Materials Science and EngineeringUniversity of TennesseeKnoxvilleTN37996USA
| |
Collapse
|
14
|
|
15
|
Kim SW, Kim G, Moon CS, Yang TY, Seo J. Metal-Free Phthalocyanine as a Hole Transporting Material and a Surface Passivator for Efficient and Stable Perovskite Solar Cells. SMALL METHODS 2021; 5:e2001248. [PMID: 34928076 DOI: 10.1002/smtd.202001248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Indexed: 06/14/2023]
Abstract
Perovskite solar cells in an n-i-p structure record high power conversion efficiency, but issues of insufficient thermal stability and the high cost of p-type hole transporting materials have been raised as drawbacks. H2 -phthalocyanine (Pc) is introduced as a hole transport material to ensure the thermal stability and simultaneously have served surface passivation effects on hybrid halide perovskites as a Lewis base. Pyrrolic nitrogen in the Pc reacts with uncoordinated Pb2+ ions on the perovskite surface. Upon enhancing the interfacial interaction between phthalocyanine and the perovskite, the open circuit voltage in devices increases as compared to that of devices using a metal-phthalocyanine complex. While the phthalocyanine-applied device maintains superior thermal long-term stability, the power conversion efficiency also exceeds 20%.
Collapse
Affiliation(s)
- Seung-Woo Kim
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Geunjin Kim
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Chan Su Moon
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Tae-Youl Yang
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Jangwon Seo
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| |
Collapse
|
16
|
Akin S, Dong B, Pfeifer L, Liu Y, Graetzel M, Hagfeldt A. Organic Ammonium Halide Modulators as Effective Strategy for Enhanced Perovskite Photovoltaic Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004593. [PMID: 34026455 PMCID: PMC8132166 DOI: 10.1002/advs.202004593] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/03/2021] [Indexed: 05/28/2023]
Abstract
Despite rapid improvements in efficiency, long-term stability remains a challenge limiting the future up-scaling of perovskite solar cells (PSCs). Although several approaches have been developed to improve the stability of PSCs, applying ammonium passivation materials in bilayer configuration PSCs has drawn intensive research interest due to the potential of simultaneously improving long-term stability and boosting power conversion efficiency (PCE). This review focuses on the recent advances of improving n-i-p PSCs photovoltaic performance by employing ammonium halide-based molecular modulators. The first section briefly summarizes the challenges of perovskite materials by introducing the degradation mechanisms associated with the hygroscopic nature and ion migration issues. Then, recent reports regarding the roles of overlayers formed from ammonium-based passivation agents are discussed on the basis of ligand and halide effects. This includes both the formation of 2D perovskite films as well as purely organic passivating layers. Finally, the last section provides future perspectives on the use of organic ammonium halides within bilayer-architecture PSCs to improve the photovoltaic performances. Overall, this review provides a roadmap on current demands and future research directions of molecular modulators to address the critical limitations of PSCs, to mitigate the major barriers on the pathway toward future up-scaling applications.
Collapse
Affiliation(s)
- Seckin Akin
- Department of Metallurgical and Materials EngineeringKaramanoglu Mehmetbey UniversityKaramanTurkey
| | - Bitao Dong
- Laboratory of Photomolecular ScienceÉcole Polytechnique Fédérale de LausanneStation 6LausanneCH‐1015Switzerland
| | - Lukas Pfeifer
- Laboratory of Photonics and InterfacesDepartment of Chemistry and Chemical EngineeringÉcole Polytechnique Fédérale de LausanneLausanneCH‐1015Switzerland
| | - Yuhang Liu
- Laboratory of Photonics and InterfacesDepartment of Chemistry and Chemical EngineeringÉcole Polytechnique Fédérale de LausanneLausanneCH‐1015Switzerland
| | - Michael Graetzel
- Laboratory of Photonics and InterfacesDepartment of Chemistry and Chemical EngineeringÉcole Polytechnique Fédérale de LausanneLausanneCH‐1015Switzerland
| | - Anders Hagfeldt
- Laboratory of Photomolecular ScienceÉcole Polytechnique Fédérale de LausanneStation 6LausanneCH‐1015Switzerland
| |
Collapse
|
17
|
Kim G, Min H, Lee KS, Lee DY, Yoon SM, Seok SI. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 2020; 370:108-112. [DOI: 10.1126/science.abc4417] [Citation(s) in RCA: 554] [Impact Index Per Article: 138.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022]
Abstract
High-efficiency lead halide perovskite solar cells (PSCs) have been fabricated with α-phase formamidinium lead iodide (FAPbI3) stabilized with multiple cations. The alloyed cations greatly affect the bandgap, carrier dynamics, and stability, as well as lattice strain that creates unwanted carrier trap sites. We substituted cesium (Cs) and methylenediammonium (MDA) cations in FA sites of FAPbI3 and found that 0.03 mol fraction of both MDA and Cs cations lowered lattice strain, which increased carrier lifetime and reduced Urbach energy and defect concentration. The best-performing PSC exhibited power conversion efficiency >25% under 100 milliwatt per square centimeter AM 1.5G illumination (24.4% certified efficiency). Unencapsulated devices maintained >80% of their initial efficiency after 1300 hours in the dark at 85°C.
Collapse
Affiliation(s)
- Gwisu Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Korea
| | - Hanul Min
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Korea
| | - Kyoung Su Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Korea
| | - Do Yoon Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Korea
| | - So Me Yoon
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Korea
| | - Sang Il Seok
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Korea
| |
Collapse
|
18
|
Gil B, Kim J, Yun AJ, Park K, Cho J, Park M, Park B. CuCrO 2 Nanoparticles Incorporated into PTAA as a Hole Transport Layer for 85 °C and Light Stabilities in Perovskite Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1669. [PMID: 32858913 PMCID: PMC7558584 DOI: 10.3390/nano10091669] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/03/2022]
Abstract
High-mobility inorganic CuCrO2 nanoparticles are co-utilized with conventional poly(bis(4-phenyl)(2,5,6-trimethylphenyl)amine) (PTAA) as a hole transport layer (HTL) for perovskite solar cells to improve device performance and long-term stability. Even though CuCrO2 nanoparticles can be readily synthesized by hydrothermal reaction, it is difficult to form a uniform HTL with CuCrO2 alone due to the severe agglomeration of nanoparticles. Herein, both CuCrO2 nanoparticles and PTAA are sequentially deposited on perovskite by a simple spin-coating process, forming uniform HTL with excellent coverage. Due to the presence of high-mobility CuCrO2 nanoparticles, CuCrO2/PTAA HTL demonstrates better carrier extraction and transport. A reduction in trap density is also observed by trap-filled limited voltages and capacitance analyses. Incorporation of stable CuCrO2 also contributes to the improved device stability under heat and light. Encapsulated perovskite solar cells with CuCrO2/PTAA HTL retain their efficiency over 90% after ~900-h storage in 85 °C/85% relative humidity and under continuous 1-sun illumination at maximum-power point.
Collapse
Affiliation(s)
- Bumjin Gil
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea
| | - Alan Jiwan Yun
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea
| | - Kimin Park
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea
| | - Jaemin Cho
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea
| | - Minjun Park
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Byungwoo Park
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
19
|
Gong S, Li H, Chen Z, Shou C, Huang M, Yang S. CsPbI 2Br Perovskite Solar Cells Based on Carbon Black-Containing Counter Electrodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34882-34889. [PMID: 32657578 DOI: 10.1021/acsami.0c08006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
CsPbI2Br perovskite solar cells (PSCs) based on carbon electrodes (CEs) are considered to be low-cost and thermally stable devices. Nevertheless, the insufficient contact and energy level mismatch between the CsPbI2Br layer and CE hinder the further enhancement of the cell efficiency. Herein, a carbon black (CB) interlayer was introduced between the perovskite layer and CE. The hole extraction was facilitated due to the larger contact area and suitable energy band alignment in the CsPbI2Br/CB interface. Further investigation indicated the diffusion of CB nanoparticles from the CE or CB layer to the CsPbI2Br film after a certain period of time. We disclosed the formation of a CB-CsPbI2Br bulk heterojunction structure due to the carbon diffusion, which resulted in an efficiency enhancement. As a result, a record efficiency of 13.13% is achieved for carbon-based inorganic PSCs. This work also reveals that the diffusion of CB nanoparticles in CB-containing PSCs is universal and inevitable, although this kind of diffusion results in the enhancement of cell efficiency.
Collapse
Affiliation(s)
- Shuiping Gong
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 588 Heshuo Road, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Li
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 588 Heshuo Road, Shanghai 201899, China
| | - Zongqi Chen
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 588 Heshuo Road, Shanghai 201899, China
| | - Chunhui Shou
- Key Laboratory of Solar Energy Utilization & Energy Saving Technology of Zhejiang Province, Zhejiang Energy Group R&D, Hangzhou, Zhejiang 310003, China
| | - Mianji Huang
- Key Laboratory of Solar Energy Utilization & Energy Saving Technology of Zhejiang Province, Zhejiang Energy Group R&D, Hangzhou, Zhejiang 310003, China
| | - Songwang Yang
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 588 Heshuo Road, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|