1
|
Huang J, Zhang Y, Ou L, Mou J. Phosphorus and Nitrogen Dual-Doped Hollow Porous Carbon Spheres toward Enhanced Cycling Stability of Room-Temperature Na-S Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57064-57073. [PMID: 39380293 DOI: 10.1021/acsami.4c11488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Development of room-temperature sodium-sulfur (RT Na-S) batteries with satisfactory cycling life and rate capability remains challenging due to the unfavorable electric conductivity from S species, sluggish redox kinetics of S conversion, and serious shuttle effects of sodium polysulfides (NaPSs). To address these issues, a phosphorus and nitrogen dual-doped hollow porous carbon sphere (PN-HPCs) is synthesized as the S hosts, which enhances the electric conductivity, ion diffusion, and conversion of polysulfides. Such a hollow hierarchically porous structure is beneficial to accommodate the volume variations of S species and shorten the ion/electron transfer distances during electrochemical reaction process. As a result, the S@PN-HPCs600 cathode delivers noticeable cycling performance (313 mAh g-1 after 4500 cycles at 5.0 C, and capacity degeneration of only 0.01% per cycle) and rate capability (646.4 mAh g-1@1.0 and 527.5 mAh g-1@3.0 C). This work presents an efficient strategy based on structural confinement and dual-heteroatom doping engineering for long-life RT Na-S batteries.
Collapse
Affiliation(s)
- Jianlin Huang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yao Zhang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Liqi Ou
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jirong Mou
- School of Physics and Electronics, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
2
|
Wang X, Zeng Z, Dong Z, Ge P, Yang Y. Designing Urchin-Like S/SiO 2 with Regulated Pores Toward Ultra-Fast Room Temperature Sodium-Sulfur Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400164. [PMID: 38573934 DOI: 10.1002/smll.202400164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Indexed: 04/06/2024]
Abstract
Captured by high theoretical capacity and low-cost, Sodium-Sulfur (Na-S) batteries have been deemed as promising energy-storage systems. However, their electrochemical properties, containing both cycling and rate properties, still suffer from the notorious "shuttle effect" of polysulfide. Herein, through the effective regulation of pore sizes, a series of S/SiO2 cathode materials are obtained. Benefitting from the abundant pore channels of SiO2 particles, the sulfur loading is as high as 76.3%. Importantly, a suitable pore size can lead to adequate reaction and rapid diffusion behaviors, resulting in excellent electrochemical performances. Specifically, at 2.0 A g-1, the initial capacity of the as-optimized sample can be up to 1370.6 mAh g-1. Surprisingly, even after 1050 cycles, it could achieve a high reversible capacity of 1280.8 mAh g-1 with an attenuation rate of 0.089%. At 5.0 A g-1, after 500 cycles, the capacity can still remain ≈ 1132.6 mAh g-1 (capacity retention rate, 97.5%). Given this, the work is anticipated to offer an effective strategy for advanced electrodes for Na-S batteries.
Collapse
Affiliation(s)
- Xi Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, P. R. China
| | - Zihao Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, P. R. China
| | - Zeyu Dong
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, P. R. China
| | - Peng Ge
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, P. R. China
- Engineering Research Center of Ministry of Education for Carbon Emission Reduction in Metal Resource Exploitation and Utilization, Central South University, Changsha, 410083, P. R. China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha, 410083, P. R. China
| | - Yue Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, P. R. China
- Engineering Research Center of Ministry of Education for Carbon Emission Reduction in Metal Resource Exploitation and Utilization, Central South University, Changsha, 410083, P. R. China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
3
|
Zhao L, Tao Y, Zhang Y, Lei Y, Lai WH, Chou S, Liu HK, Dou SX, Wang YX. A Critical Review on Room-Temperature Sodium-Sulfur Batteries: From Research Advances to Practical Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402337. [PMID: 38458611 DOI: 10.1002/adma.202402337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/06/2024] [Indexed: 03/10/2024]
Abstract
Room-temperature sodium-sulfur (RT-Na/S) batteries are promising alternatives for next-generation energy storage systems with high energy density and high power density. However, some notorious issues are hampering the practical application of RT-Na/S batteries. Besides, the working mechanism of RT-Na/S batteries under practical conditions such as high sulfur loading, lean electrolyte, and low capacity ratio between the negative and positive electrode (N/P ratio), is of essential importance for practical applications, yet the significance of these parameters has long been disregarded. Herein, it is comprehensively reviewed recent advances on Na metal anode, S cathode, electrolyte, and separator engineering for RT-Na/S batteries. The discrepancies between laboratory research and practical conditions are elaborately discussed, endeavors toward practical applications are highlighted, and suggestions for the practical values of the crucial parameters are rationally proposed. Furthermore, an empirical equation to estimate the actual energy density of RT-Na/S pouch cells under practical conditions is rationally proposed for the first time, making it possible to evaluate the gravimetric energy density of the cells under practical conditions. This review aims to reemphasize the vital importance of the crucial parameters for RT-Na/S batteries to bridge the gaps between laboratory research and practical applications.
Collapse
Affiliation(s)
- Lingfei Zhao
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Ying Tao
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Yiyang Zhang
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Yaojie Lei
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Wei-Hong Lai
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Hua-Kun Liu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shi-Xue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yun-Xiao Wang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| |
Collapse
|
4
|
Wang T, Li W, Fu Y, Wang D, Wu L, Sun K, Liu D, Ma R, Shi Y, Yang G, Wu Y, He D. A Mott-Schottky Heterojunction with Strong Chemisorption and Fast Conversion Effects for Room-Temperature Na-S Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311180. [PMID: 38174602 DOI: 10.1002/smll.202311180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Indexed: 01/05/2024]
Abstract
The practical application of the room-temperature sodium-sulfur (RT Na-S) batteries is currently limited by low reversible capacity and serious capacity decay due to the sluggish reaction kinetics and shuttle effect. It is necessary to design a suitable sulfur host integrated with electrocatalysts to realize effective chemisorption and catalysis of sodium polysulfides (NaPSs). Herein, under the guidance of theoretical calculation, the Mott-Schottky heterojunction with a built-in electric field composed of iron (Fe) and iron disulfide (FeS2) components anchored on a porous carbon matrix (Fe/FeS2-PC) is designed and prepared. The enhanced chemisorption effect of Fe, the fast electrocatalytic effect of FeS2, and the fast transfer effect of the built-in electric field within the Fe/FeS2 heterojunction in the cathode of RT Na-S batteries work together to effectively improve the electrochemical performance. As a result, the Fe/FeS2-PC@S cathode exhibits high reversible capacity (815 mAh g-1 after 150 cycles at 0.2 A g-1) and excellent stability (516 mAh g-1 after 600 cycles at 5 A g-1, with only 0.07% decay per cycle). The design of the Fe/FeS2 heterojunction electrocatalyst provides a new strategy for the development of highly stable RT Na-S batteries.
Collapse
Affiliation(s)
- Ting Wang
- School of Materials and Energy, LONGi Institute of Future Technology, Lanzhou University, Lanzhou, 730000, China
| | - Wenqi Li
- School of Materials and Energy, LONGi Institute of Future Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yujun Fu
- School of Materials and Energy, LONGi Institute of Future Technology, Lanzhou University, Lanzhou, 730000, China
| | - Dongjiao Wang
- School of Materials and Energy, LONGi Institute of Future Technology, Lanzhou University, Lanzhou, 730000, China
| | - Liang Wu
- School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou, 730000, China
| | - Kai Sun
- School of Materials and Energy, LONGi Institute of Future Technology, Lanzhou University, Lanzhou, 730000, China
| | - Dequan Liu
- School of Materials and Energy, LONGi Institute of Future Technology, Lanzhou University, Lanzhou, 730000, China
| | - Runze Ma
- School of Materials and Energy, LONGi Institute of Future Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yujie Shi
- School of Materials and Energy, LONGi Institute of Future Technology, Lanzhou University, Lanzhou, 730000, China
| | - Gang Yang
- School of Materials and Energy, LONGi Institute of Future Technology, Lanzhou University, Lanzhou, 730000, China
| | - Ying Wu
- School of Materials and Energy, LONGi Institute of Future Technology, Lanzhou University, Lanzhou, 730000, China
| | - Deyan He
- School of Materials and Energy, LONGi Institute of Future Technology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
5
|
Luo S, Ruan J, Wang Y, Chen M, Wu L. Enhancing Conversion Kinetics through Electron Density Dual-Regulation of Catalysts and Sulfur toward Room-/Subzero-Temperature Na-S Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308180. [PMID: 38594907 DOI: 10.1002/advs.202308180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/16/2024] [Indexed: 04/11/2024]
Abstract
Room-temperature sodium-sulfur (RT Na/S) batteries have received increasing attention for the next generation of large-scale energy storage, yet they are hindered by the severe dissolution of polysulfides, sluggish redox kinetic, and incomplete conversion of sodium polysulfides (NaPSs). Herein, the study proposes a dual-modulating strategy of the electronic structure of electrocatalyst and sulfur to accelerate the conversion of NaPSs. The selenium-modulated ZnS nanocrystals with electron rearrangement in hierarchical structured spherical carbon (Se-ZnS/HSC) facilitate Na+ transport and catalyze the conversion between short-chain sulfur and Na2S. And the in situ introduced Se within S can enhance conductivity and form an S─Se bond, suppressing the "polysulfides shuttle". Accordingly, the S@Se-ZnS/HSC cathode exhibits a specific capacity of as high as 1302.5 mAh g-1 at 0.1 A g-1 and ultrahigh-rate capability (676.9 mAh g-1 at 5.0 A g-1). Even at -10 °C, this cathode still delivers a high reversible capacity of 401.2 mAh g-1 at 0.05 A g-1 and 94% of the original capacitance after 50 cycles. This work provides a novel design idea for high-performance Na/S batteries.
Collapse
Affiliation(s)
- Sainan Luo
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Jiafeng Ruan
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yan Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Min Chen
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Limin Wu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
6
|
Zhang W, Wang M, Zhang H, Huang X, Shen B, Song B, Fu L, Lu K. Binary Atomic Sites Enable a Confined Bidirectional Tandem Electrocatalytic Sulfur Conversion for Low-Temperature All-Solid-State Na-S Batteries. Angew Chem Int Ed Engl 2024; 63:e202317776. [PMID: 38117014 DOI: 10.1002/anie.202317776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
The broader implementation of current all-solid-state Na-S batteries is still plagued by high operation temperature and inefficient sulfur utilization. And the uncontrollable sulfur speciation pathway along with the sluggish polysulfide redox kinetics further compromise the theoretical potentials of Na-S chemistry. Herein, we report a confined bidirectional tandem electrocatalysis effect to tune polysulfide electrochemistry in a novel low-temperature (80 °C) all-solid-state Na-S battery that utilizes Na3 Zr2 Si2 PO12 ceramic membrane as a platform. The bifunctional hollow sulfur matrix consisting binary atomically dispersed MnN4 and CoN4 hotspots was fabricated using a sacrificial template process. Upon discharge, CoN4 sites activate sulfur species and catalyze long-chain to short-chain polysulfides reduction, while MnN4 centers substantially accelerate the low-kinetic Na2 S4 to Na2 S directly conversion, manipulating the uniform deposition of electroactive Na2 S and avoiding the formation of irreversible products (e.g., Na2 S2 ). The intrinsic synergy of two catalytic centers benefits the Na2 S decomposition and minimizes its activation barrier during battery recharging and then efficiently mitigate the cathodic passivation. As a result, the stable cycling of all-solid-state Na-S cell delivers an attractive reversible capacity of 1060 mAh g-1 with a high CE of 98.5 % and a high energy of 1008 Wh kgcathode -1 , comparable to the liquid electrolyte cells.
Collapse
Affiliation(s)
- Weiwei Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu, Shandong, 273165, China
| | - Mingli Wang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, 230026, China
| | - Hong Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Xianglong Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Boyuan Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Bin Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lin Fu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Ke Lu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, 230026, China
| |
Collapse
|
7
|
Wang Y, Wang Y, Xu C, Meng Y, Liu P, Huang C, Yang L, Li R, Tang S, Zeng J, Wang X. Phosphor-Doped Carbon Network Electrocatalyst Enables Accelerated Redox Kinetics of Polysulfides for Sodium-Sulfur Batteries. ACS NANO 2024; 18:3839-3849. [PMID: 38227979 DOI: 10.1021/acsnano.3c12754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Lithium-ion batteries, which have dominated large-scale energy storage for the past three decades, face limitations in energy density and cost. Sulfur, with its impressive capacity of 1675 mAh g-1 and high theoretical energy density of 1274 Wh kg-1, stands out as a promising cathode material, leading to a growing focus on sodium-sulfur (Na-S) batteries as an alternative to address lithium resource scarcity. Nevertheless, the development is restrained by poor conductivity, volume expansion of the sulfur cathode, and the shuttle effect of sodium polysulfides (Na2Sn) in the electrolytes. In this study, a facile method is designed to fabricate phosphor-doped carbon (phos-C), which is then used as a sulfur matrix. This micromesoporous phos-C network enhances sulfur utilization, increases overall cathode conductivity, and effectively mitigates the shuttling of Na2Sn. During the discharge process, phos-C can absorb soluble Na2Sn and increase the conductivity of sulfur, while serving as a reservoir for electrolyte and Na2Sn, thereby preventing their infiltration into the anode and reducing the loss of sodium. As a result, the well-designed sulfur-loaded phos-C (S/phos-C) cathode, employed in the Na-S battery, demonstrates a capacity of 1034 mAh g-1 at 0.1 C (1 C = 1675 mA g-1) and an excellent rate capability of 339 mAh g-1 at 10 C, coupled with a prolonged cycling life up to 2000 cycles at 1 C, exhibiting an ultralow capacity decay rate of 0.013% per cycle. Overall, this study introduces an efficient method for creating long-lasting Na-S batteries.
Collapse
Affiliation(s)
- Yue Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yanjun Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Chiwei Xu
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yuhang Meng
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Pengyuan Liu
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Ruiqing Li
- School of Textile & Clothing, Nantong University, Nantong 226019, People's Republic of China
| | - Shaochun Tang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Jinjue Zeng
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xuebin Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
8
|
Li Q, Yu D, Peng J, Zhang W, Huang J, Liang Z, Wang J, Lin Z, Xiong S, Wang J, Huang S. Efficient Polytelluride Anchoring for Ultralong-Life Potassium Storage: Combined Physical Barrier and Chemisorption in Nanogrid-in-Nanofiber. NANO-MICRO LETTERS 2024; 16:77. [PMID: 38190031 PMCID: PMC10774503 DOI: 10.1007/s40820-023-01318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024]
Abstract
Metal tellurides (MTes) are highly attractive as promising anodes for high-performance potassium-ion batteries. The capacity attenuation of most reported MTe anodes is attributed to their poor electrical conductivity and large volume variation. The evolution mechanisms, dissolution properties, and corresponding manipulation strategies of intermediates (K-polytellurides, K-pTex) are rarely mentioned. Herein, we propose a novel structural engineering strategy to confine ultrafine CoTe2 nanodots in hierarchical nanogrid-in-nanofiber carbon substrates (CoTe2@NC@NSPCNFs) for smooth immobilization of K-pTex and highly reversible conversion of CoTe2 by manipulating the intense electrochemical reaction process. Various in situ/ex situ techniques and density functional theory calculations have been performed to clarify the formation, transformation, and dissolution of K-pTex (K5Te3 and K2Te), as well as verifying the robust physical barrier and the strong chemisorption of K5Te3 and K2Te on S, N co-doped dual-type carbon substrates. Additionally, the hierarchical nanogrid-in-nanofiber nanostructure increases the chemical anchoring sites for K-pTex, provides sufficient volume buffer space, and constructs highly interconnected conductive microcircuits, further propelling the battery reaction to new heights (3500 cycles at 2.0 A g-1). Furthermore, the full cells further demonstrate the potential for practical applications. This work provides new insights into manipulating K-pTex in the design of ultralong-cycling MTe anodes for advanced PIBs.
Collapse
Affiliation(s)
- Qinghua Li
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Dandan Yu
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Jian Peng
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Wei Zhang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Jianlian Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zhixin Liang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Junling Wang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zeyu Lin
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Shiyun Xiong
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Jiazhao Wang
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
9
|
Zhang H, Wang L, Ma L, Liu Y, Hou B, Shang N, Zhang S, Song J, Chen S, Zhao X. Surface Crystal Modification of Na 3 V 2 (PO 4 ) 3 to Cast Intermediate Na 2 V 2 (PO 4 ) 3 Phase toward High-Rate Sodium Storage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306168. [PMID: 37997201 PMCID: PMC10797425 DOI: 10.1002/advs.202306168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The two-phase reaction of Na3 V2 (PO4 )3 - Na1 V2 (PO4 )3 in Na3 V2 (PO4 )3 (NVP) is hindered by low electronic and ionic conductivity. To address this problem, a surface-N-doped NVP encapsulating by N-doped carbon nanocage (N-NVP/N-CN) is rationally constructed, wherein the nitrogen is doped in both the surface crystal structure of NVP and carbon layer. The surface crystal modification decreases the energy barrier of Na+ diffusion from bulk to electrolyte, enhances intrinsic electronic conductivity, and releases lattice stress. Meanwhile, the porous architecture provides more active sites for redox reactions and shortens the diffusion path of ion. Furthermore, the new interphase of Na2 V2 (PO4 )3 is detected by in situ XRD and clarified by density functional theory (DFT) calculation with a lower energy barrier during the fast reversible electrochemical three-phase reaction of Na3 V2 (PO4 )3 - Na2 V2 (PO4 )3 - Na1 V2 (PO4 )3 . Therefore, as cathode of sodium-ion battery, the N-NVP/N-CN exhibited specific capacities of 119.7 and 75.3 mAh g-1 at 1 C and even 200 C. Amazingly, high capacities of 89.0, 86.2, and 84.6 mAh g-1 are achieved after overlong 10000 cycles at 20, 40, and 50 C, respectively. This approach provides a new idea for surface crystal modification to cast intermediate Na2 V2 (PO4 )3 phase for achieving excellent cycling stability and rate capability.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Chemistry, College of ScienceHebei Agricultural UniversityBaoding071001China
| | - Lei Wang
- Department of Chemical EngineeringSchool of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
| | - Linlin Ma
- Department of Chemistry, College of ScienceHebei Agricultural UniversityBaoding071001China
| | - Yahui Liu
- National Engineering Research Center of green recycling for strategic metal resourcesInstitute of Process EngineeringChinese Academy of SciencesBeijing100190P. R. China
| | - Baoxiu Hou
- Department of Chemistry, College of ScienceHebei Agricultural UniversityBaoding071001China
| | - Ningzhao Shang
- Department of Chemistry, College of ScienceHebei Agricultural UniversityBaoding071001China
| | - Shuaihua Zhang
- Department of Chemistry, College of ScienceHebei Agricultural UniversityBaoding071001China
| | - Jianjun Song
- College of PhysicsQingdao UniversityQingdao266071P. R. China
| | - Shuangqiang Chen
- Department of Chemical EngineeringSchool of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
| | - Xiaoxian Zhao
- Department of Chemistry, College of ScienceHebei Agricultural UniversityBaoding071001China
| |
Collapse
|
10
|
Meggiolaro D, Agostini M, Brutti S. Aprotic Sulfur-Metal Batteries: Lithium and Beyond. ACS ENERGY LETTERS 2023; 8:1300-1312. [PMID: 36937789 PMCID: PMC10012267 DOI: 10.1021/acsenergylett.2c02493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Metal-sulfur batteries constitute an extraordinary research playground that ranges from fundamental science to applied technologies. However, besides the widely explored Li-S system, a remarkable lack of understanding hinders advancements and performance in all other metal-sulfur systems. In fact, similarities and differences make all generalizations highly inconsistent, thus unavoidably suggesting the need for extensive research explorations for each formulation. Here we review critically the most remarkable open challenges that still hinder the full development of metal-S battery formulations, starting from the lithium benchmark and addressing Na, K, Mg, and Ca metal systems. Our aim is to draw an updated picture of the recent efforts in the field and to shed light on the most promising innovation paths that can pave the way to breakthroughs in the fundamental comprehension of these systems or in battery performance.
Collapse
Affiliation(s)
- Daniele Meggiolaro
- Computational
Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche (SCITEC-CNR), Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Marco Agostini
- Dipartimento
di Chimica e Tecnologia del Farmaco, Università
di Roma La Sapienza, P.le Aldo Moro 5, 00185 Roma, Italy
| | - Sergio Brutti
- Dipartimento
di Chimica, Università di Roma La
Sapienza, P.le Aldo Moro
5, 00185 Roma, Italy
- Consiglio
Nazionale delle Ricerche, Istituto dei Sistemi
Complessi, Piazzale Aldo
Moro 5, 00185 Roma, Italy
- GISEL-Centro
di Riferimento Nazionale per i Sistemi di Accumulo Elettrochimico
di Energia, INSTM via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
11
|
Jiang Y, Yu Z, Zhou X, Cheng X, Huang H, Liu F, Yang Y, He S, Pan H, Yang H, Yao Y, Rui X, Yu Y. Single-Atom Vanadium Catalyst Boosting Reaction Kinetics of Polysulfides in Na-S Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208873. [PMID: 36366906 DOI: 10.1002/adma.202208873] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The practical application of the room-temperature sodium-sulfur (RT Na-S) batteries is hindered by the insulated sulfur, the severe shuttle effect of sodium polysulfides, and insufficient polysulfide conversion. Herein, on the basis of first principles calculations, single-atom vanadium anchored on a 3D nitrogen-doped hierarchical porous carbon matrix (denoted as 3D-PNCV) is designed and fabricated to enhance sulfur reactivity, and adsorption and catalytic conversion performance of sodium polysulfide. The 3D-PNCV host with abundant and active V sites, hierarchical porous structure, high electrical conductivity, and strong chemical adsorption/conversion ability of V-N bonding can immobilize the polysulfides and promote reversibly catalytic conversion of polysulfides toward Na2 S. Therefore, as-fabricated RT Na-S batteries can achieve a high reversible capacity (445 mAh g-1 over 800 cycles at 5 A g-1 ) and excellent rate capability (224 mAh g-1 at 10 A g-1 ). The electrocatalysis mechanism of sodium polysulfides is further experimentally and theoretically revealed, which provides a new strategy to develop the highly stable RT Na-S batteries.
Collapse
Affiliation(s)
- Yu Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Zuxi Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - XueFeng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaolong Cheng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Huijuan Huang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fanfan Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Shengnan He
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Hai Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Yao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xianhong Rui
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
- National Synchrotron Radiation Laboratory, Hefei, Anhui, 230026, China
| |
Collapse
|
12
|
Zhang H, Song B, Zhang W, An B, Fu L, Lu S, Cheng Y, Chen Q, Lu K. Bidirectional Tandem Electrocatalysis Manipulated Sulfur Speciation Pathway for High-Capacity and Stable Na-S Battery. Angew Chem Int Ed Engl 2023; 62:e202217009. [PMID: 36494321 DOI: 10.1002/anie.202217009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
The sluggish polysulfide redox kinetics and the uncontrollable sulfur speciation pathway, leading to serious shuttling effect and high activation barrier associated with sulfur cathode. We describe here the use of core-shell structured composite matrixes containing abundant catalytic sites for nearly fully reversible cycling of sulfur cathodes for Na-S batteries. The bidirectional tandem electrocatalysis provide successive reversible conversion of both long- and short-chain polysulfides, whereas Fe2 O3 accelerates Na2 S8 /Na2 S6 to Na2 S4 conversion and the redox-active Fe(CN)6 4- -doped polypyrrole shell catalyzes Na2 S4 reduction to Na2 S. The electrochemically reactive Na2 S can be readily charged back to sulfur with minimal overpotential. Simultaneously, stable cycling of Na-S pouch cell with a high reversible capacity of 696 mAh g-1 is also demonstrated. The bidirectional confined tandem catalysis renders the manipulation of sulfur redox electrochemistry for practical Na-S cells.
Collapse
Affiliation(s)
- Hong Zhang
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bin Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Weiwei Zhang
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Bowen An
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Lin Fu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Songtao Lu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Yingwen Cheng
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Qianwang Chen
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ke Lu
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
13
|
Wang M, Zhang H, Zhang W, Chen Q, Lu K. Electrocatalysis in Room Temperature Sodium-Sulfur Batteries: Tunable Pathway of Sulfur Speciation. SMALL METHODS 2022; 6:e2200335. [PMID: 35560544 DOI: 10.1002/smtd.202200335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Benefiting from the merits of natural abundance, low cost, and ultrahigh theoretical energy density, the room temperature sodium-sulfur (RT NaS) batteries are regarded as one of the promising candidates for the next-generation scalable energy storage devices. However, the uncontrollable sulfur speciation pathways severely hinder its practical applications. Recently, various strategies have been employed to tune the conversion pathways of sulfur, such as physical confinement, chemical inhibition, and electrocatalysis. Herein, the recent advances in electrocatalytic effects manipulate sulfur speciation pathways in advanced RT NaS electrochemistry are reviewed, including the promotion of the nearly full conversion of long-chain polysulfides, short-chain polysulfides, and small sulfur molecules. The underlying catalytic modulation mechanism that fundamentally tunes the electrochemical pathway of sulfur species is comprehensively summarized along with the design strategies for catalytic active centers. Furthermore, the challenge and potential solutions to realize the quasi-solid conversion of sulfur are proposed to accelerate the real application of RT NaS batteries.
Collapse
Affiliation(s)
- Mingli Wang
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Graphene Engineering Laboratory, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Hong Zhang
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Graphene Engineering Laboratory, Anhui University, Hefei, Anhui, 230601, P. R. China
- Hefei National Laboratory for Physical Science at Microscale, Hefei, Anhui, 230026, P. R. China
- Department of Materials Science & Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wenli Zhang
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Qianwang Chen
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Graphene Engineering Laboratory, Anhui University, Hefei, Anhui, 230601, P. R. China
- Hefei National Laboratory for Physical Science at Microscale, Hefei, Anhui, 230026, P. R. China
- Department of Materials Science & Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ke Lu
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Graphene Engineering Laboratory, Anhui University, Hefei, Anhui, 230601, P. R. China
- Hefei National Laboratory for Physical Science at Microscale, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
14
|
Hao H, Wang Y, Katyal N, Yang G, Dong H, Liu P, Hwang S, Mantha J, Henkelman G, Xu Y, Boscoboinik JA, Nanda J, Mitlin D. Molybdenum Carbide Electrocatalyst In Situ Embedded in Porous Nitrogen-Rich Carbon Nanotubes Promotes Rapid Kinetics in Sodium-Metal-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106572. [PMID: 35451133 DOI: 10.1002/adma.202106572] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/30/2022] [Indexed: 06/14/2023]
Abstract
This is the first report of molybdenum carbide-based electrocatalyst for sulfur-based sodium-metal batteries. MoC/Mo2 C is in situ grown on nitrogen-doped carbon nanotubes in parallel with formation of extensive nanoporosity. Sulfur impregnation (50 wt% S) results in unique triphasic architecture termed molybdenum carbide-porous carbon nanotubes host (MoC/Mo2 C@PCNT-S). Quasi-solid-state phase transformation to Na2 S is promoted in carbonate electrolyte, with in situ time-resolved Raman, X-ray photoelectron spectroscopy, and optical analyses demonstrating minimal soluble polysulfides. MoC/Mo2 C@PCNT-S cathodes deliver among the most promising rate performance characteristics in the literature, achieving 987 mAh g-1 at 1 A g-1 , 818 mAh g-1 at 3 A g-1 , and 621 mAh g-1 at 5 A g-1 . The cells deliver superior cycling stability, retaining 650 mAh g-1 after 1000 cycles at 1.5 A g-1 , corresponding to 0.028% capacity decay per cycle. High mass loading cathodes (64 wt% S, 12.7 mg cm-2 ) also show cycling stability. Density functional theory demonstrates that formation energy of Na2 Sx (1 ≤ x ≤ 4) on surface of MoC/Mo2 C is significantly lowered compared to analogous redox in liquid. Strong binding of Na2 Sx (1 ≤ x ≤ 4) on MoC/Mo2 C surfaces results from charge transfer between the sulfur and Mo sites on carbides' surface.
Collapse
Affiliation(s)
- Hongchang Hao
- Materials Science and Engineering Program and Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Yixian Wang
- Materials Science and Engineering Program and Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Naman Katyal
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Guang Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Hui Dong
- Materials Science and Engineering Program and Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Pengcheng Liu
- Materials Science and Engineering Program and Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jagannath Mantha
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Graeme Henkelman
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yixin Xu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, NY, 11790, USA
| | | | - Jagjit Nanda
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - David Mitlin
- Materials Science and Engineering Program and Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| |
Collapse
|
15
|
Wang Y, Huang XL, Liu H, Qiu W, Feng C, Li C, Zhang S, Liu HK, Dou SX, Wang ZM. Nanostructure Engineering Strategies of Cathode Materials for Room-Temperature Na-S Batteries. ACS NANO 2022; 16:5103-5130. [PMID: 35377602 DOI: 10.1021/acsnano.2c00265] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Room-temperature sodium-sulfur (RT Na-S) batteries are considered to be a competitive electrochemical energy storage system, due to their advantages in abundant natural reserves, inexpensive materials, and superb theoretical energy density. Nevertheless, RT Na-S batteries suffer from a series of critical challenges, especially on the S cathode side, including the insulating nature of S and its discharge products, volumetric fluctuation of S species during the (de)sodiation process, shuttle effect of soluble sodium polysulfides, and sluggish conversion kinetics. Recent studies have shown that nanostructural designs of S-based materials can greatly contribute to alleviating the aforementioned issues via their unique physicochemical properties and architectural features. In this review, we review frontier advancements in nanostructure engineering strategies of S-based cathode materials for RT Na-S batteries in the past decade. Our emphasis is focused on delicate and highly efficient design strategies of material nanostructures as well as interactions of component-structure-property at a nanosize level. We also present our prospects toward further functional engineering and applications of nanostructured S-based materials in RT Na-S batteries and point out some potential developmental directions.
Collapse
Affiliation(s)
- Ye Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Xiang Long Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Hanwen Liu
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Weiling Qiu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Chi Feng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Ce Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Shaohui Zhang
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronic Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, P.R. China
| | - Hua Kun Liu
- Institute of Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Shi Xue Dou
- Institute of Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P.R. China
| |
Collapse
|
16
|
Zhou X, Yu Z, Yao Y, Jiang Y, Rui X, Liu J, Yu Y. A High-Efficiency Mo 2 C Electrocatalyst Promoting the Polysulfide Redox Kinetics for Na-S Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200479. [PMID: 35142394 DOI: 10.1002/adma.202200479] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Room-temperature sodium-sulfur (RT Na-S) batteries, as promising next-generation energy storage candidates, are drawing more and more attention due to the high energy density and abundant elements reserved in the earth. However, the native downsides of RT Na-S batteries (i.e., enormous volume changes, the polysulfide shuttle, and the insulation and low reactivity of S) impede their further application. To conquer these challenges, hierarchical porous hollow carbon polyhedrons embedded with uniform Mo2 C nanoparticles are designed deliberately as the host for S. The micro- and mesoporous hollow carbon indeed dramatically enhances the reactivity of the S cathodes and accommodates the volume changes. Meanwhile, the highly conductive dispersed Mo2 C has a strong chemical adsorption to polysulfides and catalyzes the transformation of polysulfides, which can effectively inhibit the dissolution of polysulfides and accelerate the reaction kinetics. Thus, the as-prepared S cathode can display a high reversible capacity (1098 mAh g-1 at 0.2 A g-1 after 120 cycles) and superior rate performance (483 mAh g-1 at 10.0 A g-1 ). This work provides a new method to boost the performance of RT Na-S batteries.
Collapse
Affiliation(s)
- Xuefeng Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zuxi Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Yao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Jiang
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, PR China
| | - Xianhong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiaqin Liu
- Institute of Industry & Equipment Technology, Key Laboratory of Advanced Functional Materials & Devices of Anhui Province, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yan Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
- National Synchrotron Radiation Laboratory, Hefei, Anhui, 230026, China
| |
Collapse
|
17
|
Xu L, Li H, Zhao G, Sun Y, Wang H, Guo H. Ni 3FeN functionalized carbon nanofibers boosting polysulfide conversion for Li-S chemistry. RSC Adv 2022; 12:6930-6937. [PMID: 35424588 PMCID: PMC8982135 DOI: 10.1039/d1ra09041k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/10/2022] [Indexed: 11/21/2022] Open
Abstract
Limiting the shuttle effect of polysulfides is an important means to realizing high energy density lithium-sulfur batteries (Li-S). In this study, an efficient electrocatalyst (CNFs@Ni3FeN) is synthesized by anchoring Ni3FeN in the carbon nanofibers (CNFs). The CNFs@Ni3FeN shows electrocatalytic activity and enhances the conversion of polysulfides. After assembling a battery, a high initial capacity (1452 mA h g-1) and favorable long-time cycling stability (100 cycles) with a capacity retention rate of 83% are obtained by the electrocatalysis of Ni3FeN. Compared with unmodified CNFs, the cycling stability of CNFs@Ni3FeN can be greatly improved. The catalytic mechanism is further deduced by X-ray photoelectron spectroscopy (XPS). Our work will inspire the rational design of CNFs@support hybrids for various electrocatalysis applications.
Collapse
Affiliation(s)
- Lufu Xu
- School of Materials and Energy, Yunnan University Kunming 650091 China
| | - Huani Li
- School of Materials and Energy, Yunnan University Kunming 650091 China
| | - Genfu Zhao
- School of Materials and Energy, Yunnan University Kunming 650091 China
| | - Yongjiang Sun
- School of Materials and Energy, Yunnan University Kunming 650091 China
| | - Han Wang
- School of Materials and Energy, Yunnan University Kunming 650091 China
| | - Hong Guo
- School of Materials and Energy, Yunnan University Kunming 650091 China
| |
Collapse
|
18
|
Cathode host engineering for non-lithium (Na, K and Mg) sulfur/selenium batteries: A state-of-the-art review. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Cheng M, Yan R, Yang Z, Tao X, Ma T, Cao S, Ran F, Li S, Yang W, Cheng C. Polysulfide Catalytic Materials for Fast-Kinetic Metal-Sulfur Batteries: Principles and Active Centers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102217. [PMID: 34766470 PMCID: PMC8805578 DOI: 10.1002/advs.202102217] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/18/2021] [Indexed: 05/05/2023]
Abstract
Benefiting from the merits of low cost, ultrahigh-energy densities, and environmentally friendliness, metal-sulfur batteries (M-S batteries) have drawn massive attention recently. However, their practical utilization is impeded by the shuttle effect and slow redox process of polysulfide. To solve these problems, enormous creative approaches have been employed to engineer new electrocatalytic materials to relieve the shuttle effect and promote the catalytic kinetics of polysulfides. In this review, recent advances on designing principles and active centers for polysulfide catalytic materials are systematically summarized. At first, the currently reported chemistries and mechanisms for the catalytic conversion of polysulfides are presented in detail. Subsequently, the rational design of polysulfide catalytic materials from catalytic polymers and frameworks to active sites loaded carbons for polysulfide catalysis to accelerate the reaction kinetics is comprehensively discussed. Current breakthroughs are highlighted and directions to guide future primary challenges, perspectives, and innovations are identified. Computational methods serve an ever-increasing part in pushing forward the active center design. In summary, a cutting-edge understanding to engineer different polysulfide catalysts is provided, and both experimental and theoretical guidance for optimizing future M-S batteries and many related battery systems are offered.
Collapse
Affiliation(s)
- Menghao Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Rui Yan
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zhao Yang
- State Key Laboratory of Advanced Processing and Recycling of Non‐Ferrous MetalsLanzhou University of TechnologyLanzhouGansu730050P. R. China
| | - Xuefeng Tao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Tian Ma
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Sujiao Cao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non‐Ferrous MetalsLanzhou University of TechnologyLanzhouGansu730050P. R. China
| | - Shuang Li
- Department of ChemistryTechnische Universität BerlinHardenbergstraße 40Berlin10623Germany
| | - Wei Yang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustrasse 3Berlin14195Germany
| |
Collapse
|
20
|
Wang H, Qi Y, Xiao F, Liu P, Li Y, Bao SJ, Xu MW. Tessellated N-doped carbon/CoSe2 as trap-catalyst sulfur hosts for room-temperature sodium-sulfur batteries. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00057a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The construction of highly conductive structure with excellent adsorption-catalytic properties to accelerate electron transfer and suppress polysulfides shuttle is considered as an effective strategy to achieve well-behaved sodium-sulfur batteries. Herein,...
Collapse
|
21
|
Guo Y, Zhang D, Bai Z, Yang Y, Wang Y, Cheng J, Chu PK, Luo Y. MXene nanofibers confining MnO x nanoparticles: a flexible anode for high-speed lithium ion storage networks. Dalton Trans 2021; 51:1423-1433. [PMID: 34951612 DOI: 10.1039/d1dt03718h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electron and ion conductivities of anode materials such as MnOx affect critically the properties of anodes in Li-ion batteries. Herein, a three-dimensional (3D) nanofiber network (MnOx-MXene/CNFs) for high-speed electron and ion transport with a MnOx surface anchored and embedded inside is designed via electrospinning manganese ion-modified MXene nanosheets and subsequent carbonization. Ion transport analysis reveals improved Li+ transport on the MnOx-MXene/CNF electrode and first-principles density functional theory (DFT) calculation elucidates the Li+ adsorption and storage mechanism. The surface-anchored MnOx nanoparticles form extremely strong bonds with the nanofibers, and the internally embedded MnOx nanoparticles, due to the fiber confinement effect, ensure the structural stability during charging and discharging, achieving the so-called dual stabilization strategies for cyclic fluctuation. By electrospinning, self-restacking of MXene flakes can be prevented, thereby giving rise to a larger surface area and more accessible active sites on the flexible anode. Benefiting from the 3D network with excellent conductivity and stability, at high current densities, the MnOx-MXene/CNF anode exhibits outstanding electrochemical characteristics. Even after 2000 cycles, a reversible capacity of 1098 mA h g-1 can be obtained at 2 A g-1 with only 0.007208% decay rate. The MnOx-MXene/CNF anode also shows a significant rate performance such as 1268 mA h g-1 at 2 A g-1 and 1137 mA h g-1 at 5 A g-1 corresponding to an area specific capacity of 2.536 mA h cm-2 at 4 mA cm-2 and 2.274 mA h cm-2 at 10 mA cm-2, respectively. The results indicate that the MnOx-MXene/CNF anode has excellent Li-ion storage properties and great commercial potential.
Collapse
Affiliation(s)
- Ying Guo
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Deyang Zhang
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Zuxue Bai
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Ya Yang
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Yangbo Wang
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Jinbing Cheng
- Henan International Joint Laboratory of MXene Materials Microstructure, College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, P. R. China
| | - Paul K Chu
- Department of Physics, Department of Materials Science & Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yongsong Luo
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China. .,Henan International Joint Laboratory of MXene Materials Microstructure, College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, P. R. China
| |
Collapse
|
22
|
Qi Y, Li QJ, Wu Y, Bao SJ, Li C, Chen Y, Wang G, Xu M. A Fe 3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature Na-S batteries. Nat Commun 2021; 12:6347. [PMID: 34732738 PMCID: PMC8566531 DOI: 10.1038/s41467-021-26631-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
The practical application of room-temperature Na-S batteries is hindered by the low sulfur utilization, inadequate rate capability and poor cycling performance. To circumvent these issues, here, we propose an electrocatalyst composite material comprising of N-doped nanocarbon and Fe3N. The multilayered porous network of the carbon accommodates large amounts of sulfur, decreases the detrimental effect of volume expansion, and stabilizes the electrodes structure during cycling. Experimental and theoretical results testify the Fe3N affinity to sodium polysulfides via Na-N and Fe-S bonds, leading to strong adsorption and fast dissociation of sodium polysulfides. With a sulfur content of 85 wt.%, the positive electrode tested at room-temperature in non-aqueous Na metal coin cell configuration delivers a reversible capacity of about 1165 mA h g-1 at 167.5 mA g-1, satisfactory rate capability and stable capacity of about 696 mA h g-1 for 2800 cycles at 8375 mA g-1.
Collapse
Affiliation(s)
- Yuruo Qi
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing, 400715, PR China
| | - Qing-Jie Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yuanke Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing, 400715, PR China
| | - Shu-Juan Bao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing, 400715, PR China
| | - Changming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing, 400715, PR China
| | - Yuming Chen
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, PR China.
| | - Guoxiu Wang
- Center for Clean Energy Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Maowen Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
23
|
Huang XL, Dou SX, Wang ZM. Metal-based electrocatalysts for room-temperature Na-S batteries. MATERIALS HORIZONS 2021; 8:2870-2885. [PMID: 34569582 DOI: 10.1039/d1mh01326b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Room-temperature sodium-sulfur (RT Na-S) batteries have recently captured intensive research attention from the community and are regarded as one of promising next-generation energy storage devices since they not only integrate the advantages in high abundance and low commercial cost of elemental Na/S but also exhibit exceptionally high theoretical capacity and energy density. Whereas, the notorious shuttle effect of soluble intermediates and sluggish kinetics remain two main obstacles for RT Na-S batteries to step into new developmental stage. Recently, impressive advancements of metal-based electrocatalysts have offered a viable solution to stabilize S cathodes and unlocked new opportunities for RT Na-S batteries. Here, we underline the recent progress on metal-based electrocatalysts for RT Na-S batteries for the first time by shedding light on this emerging but promising field. The involved metal-based electrocatalysts include metals, metal oxides, metal sulfides, metal carbides, and other metal-based catalytic species. Our emphasis is focused on the discussion of design, fabrication, and properties of these electrocatalysts as well as interactions between electrocatalysts and sodium polysulfides. Otherwise, some potential electrocatalysts for RT Na-S batteries are pointed out as well. At last, perspectives for the future development of RT Na-S batteries with S cathode electrocatalysts are offered.
Collapse
Affiliation(s)
- Xiang Long Huang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China.
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, NSW 2500, Australia.
| | - Zhiming M Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China.
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.
| |
Collapse
|
24
|
Li Y, Wang X, Wang L, Jia D, Yang Y, Liu X, Sun M, Zhao Z, Qiu J. Ni@Ni 3N Embedded on Three-Dimensional Carbon Nanosheets for High-Performance Lithium/Sodium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48536-48545. [PMID: 34609835 DOI: 10.1021/acsami.1c11793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lithium-sulfur (Li-S) batteries are recognized as one of the most promising next-generation energy storage devices, but their practical application is greatly limited by several obstacles, such as the highly insulating nature and sluggish redox kinetics of sulfur and the dissolution of lithium polysulfides. Herein, three-dimensional carbon nanosheet frameworks anchored with Ni@Ni3N heterostructure nanoparticles (denoted Ni@Ni3N/CNS) are designed and fabricated by a chemical blowing and thermal nitridation strategy. It is demonstrated that the Ni@Ni3N heterostructure can effectively accelerate polysulfide conversion and promote the chemical trapping of polysulfides. Meanwhile, the carbon nanosheet frameworks of Ni@Ni3N/CNS establish a highly conductive network for fast electron transportation. The cells with Ni@Ni3N heterostructures as the catalyst in the cathode show excellent electrochemical performance, revealing stable cycling over 600 cycles with a low-capacity fading rate of 0.04% per cycle at 0.5 C and high-rate capability (594 mAh g-1 at 3 C). Furthermore, Ni@Ni3N/CNS can also work well in room-temperature sodium-sulfur (RT-Na/S) batteries, delivering a high specific capacity (454 mAh g-1 after 400 cycles at 0.5 C). This work provides a rational way to prepare the metal-metal nitride heterostructures to enhance the performance both of Li-S and RT-Na/S batteries.
Collapse
Affiliation(s)
- Yong Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuzhen Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Luxiang Wang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, China
| | - Dianzeng Jia
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, China
| | - Yongzhen Yang
- Key Lab of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xuguang Liu
- Key Lab of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Minghui Sun
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zongbin Zhao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jieshan Qiu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
25
|
Wang L, Wang H, Zhang S, Ren N, Wu Y, Wu L, Zhou X, Yao Y, Wu X, Yu Y. Manipulating the Electronic Structure of Nickel via Alloying with Iron: Toward High-Kinetics Sulfur Cathode for Na-S Batteries. ACS NANO 2021; 15:15218-15228. [PMID: 34423643 DOI: 10.1021/acsnano.1c05778] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The sluggish conversion kinetics and severe shuttle effect in room-temperature Na-S (RT Na-S) batteries cause knotty issues, such as poor rate performance, fast capacity decay as well as low Coulombic efficiency, which seriously impede their practical application. Therefore, exploiting cost-effective and efficient electrocatalysts for absorbing soluble long-chain sodium polysulfides (NaPSs) and expediting NaPSs conversion is of paramount importance. Herein, catalyst mining is first conducted by density functional theory calculations, which reveal that the alloying of Fe into Ni can tailor the electronic structure, leading to lower reaction energy barrier for polysulfide conversion. Based on this, FeNi3@hollow porous carbon spheres (FeNi3@HC) as a promising sulfur host for RT Na-S batteries are rationally designed and fabricated. As expected, the S@FeNi3@HC cathode exhibits an excellent cycling stability (591 mAh g-1 after 500 cycles at 2 A g-1) and outstanding rate performance (383 mAh g-1 at 5 A g-1). Our work demonstrates an effective strategy (i.e., alloying strategy with a rich electron state) to design superior electrocatalysts for RT Na-S batteries.
Collapse
Affiliation(s)
- Lifeng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haiyun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shipeng Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710127, P.R. China
| | - Naiqing Ren
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ying Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Liang Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xuefeng Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu Yao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaojun Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yan Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
- National Synchrotron Radiation Laboratory, Hefei, Anhui 230026, China
| |
Collapse
|
26
|
Wu Y, Wu L, Wu S, Yao Y, Feng Y, Yu Y. Status and Challenges of Cathode Materials for Room‐Temperature Sodium–Sulfur Batteries. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ying Wu
- Hefei National Laboratory for Physical Sciences at the Microscale Department of Materials Science and Engineering CAS Key Laboratory of Materials for Energy Conversion University of Science and Technology of China Hefei Anhui 230026 China
| | - Liang Wu
- Hefei National Laboratory for Physical Sciences at the Microscale Department of Materials Science and Engineering CAS Key Laboratory of Materials for Energy Conversion University of Science and Technology of China Hefei Anhui 230026 China
| | - Shufan Wu
- Hefei National Laboratory for Physical Sciences at the Microscale Department of Materials Science and Engineering CAS Key Laboratory of Materials for Energy Conversion University of Science and Technology of China Hefei Anhui 230026 China
| | - Yu Yao
- Hefei National Laboratory for Physical Sciences at the Microscale Department of Materials Science and Engineering CAS Key Laboratory of Materials for Energy Conversion University of Science and Technology of China Hefei Anhui 230026 China
| | - Yuezhan Feng
- Key Laboratory of Materials Processing and Mold (Zhengzhou University) Ministry of Education Zhengzhou University Zhengzhou 450002 China
| | - Yan Yu
- Hefei National Laboratory for Physical Sciences at the Microscale Department of Materials Science and Engineering CAS Key Laboratory of Materials for Energy Conversion University of Science and Technology of China Hefei Anhui 230026 China
- National Synchrotron Radiation Laboratory Hefei Anhui 230026 China
| |
Collapse
|
27
|
Li S, Han Y, Ge P, Yang Y. Recent Advances of Catalytic Effects in Cathode Materials for Room-Temperature Sodium-Sulfur Batteries. Chempluschem 2021; 86:1461-1471. [PMID: 34533897 DOI: 10.1002/cplu.202100328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/01/2021] [Indexed: 11/10/2022]
Abstract
Electrocatalysts in room-temperature sodium-sulfur (RT-Na/S) have captured numerous attention. But, they suffered from shuttle effect and surface passivation. RT-Na/S show inferior energy-storage abilities, ascribed to the larger radii of Na-ions. Herein, the vigorous review is displayed from different kinds of metal-based traits, containing single metal, metal-based samples, and multifunctional hybrids. Through the controlling of structures and composition, the conversion reaction about liquid/solid phases would be enhanced, accompanied by the enhancements of cycling stabilities and rate properties, which enables the break-through of practical applications. The in-depth influences of catalytic effects on the Na-S reaction mechanism and the corresponding electrochemical performance in recently representative works are systematically reviewed. Particularly, this review is anticipated to propose potential research directions for further enhancement of RT-Na/S batteries.
Collapse
Affiliation(s)
- Sijie Li
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, 060-0814, Sapporo, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 305-0044, Tsukuba, Japan
| | - Yu Han
- Comprehensive Energy Research Center, Institute of Science and Technology, China Three Gorges Corporation, 100038, Beijing, P. R. China
| | - Peng Ge
- School of Resource Processing and Bioengineering, Central South University, 410083, Changsha, P. R. China
| | - Yue Yang
- School of Resource Processing and Bioengineering, Central South University, 410083, Changsha, P. R. China
| |
Collapse
|
28
|
Luo S, Ruan J, Wang Y, Hu J, Song Y, Chen M, Wu L. Flower-Like Interlayer-Expanded MoS 2- x Nanosheets Confined in Hollow Carbon Spheres with High-Efficiency Electrocatalysis Sites for Advanced Sodium-Sulfur Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101879. [PMID: 34342120 DOI: 10.1002/smll.202101879] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/01/2021] [Indexed: 06/13/2023]
Abstract
The room-temperature sodium-sulfur (RT-Na/S) battery is one of the most promising technologies for low-cost energy storage. However, application of RT-Na/S batteries is currently impeded by severe shuttle effects and volume expansion that limits both energy density and cycling stability. Herein, first, the first-principal calculation is used to find that the introduction of sulfur vacancies in MoS2 can effectively enhance polysulfide adsorption and catalytic ability as well as both the ion and electron conductivities. Then, unique MoS2- x /C composite spheres are further designed and synthesized with flower-like few-layer and interlayer-enlarged MoS2- x nanosheets space-confined in hollow carbon nanospheres by a "ship-in-a-bottle" strategy. With this novel design, the mass loading of S in the MoS2- x /C composite can be reached to as high as 75 wt%. Owing to the synergetic effect of interlayer-expanded and few-layer MoS2- x nanosheets and hollow carbon spheres matrix with high electronic/Na+ conductivity, the RT-Na/S batteries deliver highly stable cycle durability (capacity retention of 85.2% after 100 cycles at 0.1 A g-1 ) and remarkable rate capability (415.7 mAh g-1 at 2 A g-1 ) along with high energy density. This design strategy of defect- and interlayer-engineering may find wide applications in synthesizing electrode materials for high-performance RT-Na/S batteries.
Collapse
Affiliation(s)
- Sainan Luo
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jiafeng Ruan
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yan Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jiaming Hu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yun Song
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Min Chen
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Limin Wu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
29
|
Zhou J, Xu S, Yang Y. Strategies for Polysulfide Immobilization in Sulfur Cathodes for Room-Temperature Sodium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100057. [PMID: 34110676 DOI: 10.1002/smll.202100057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Room-temperature sodium-sulfur batteries are one of the most attractive energy storage systems due to their low cost and ultrahigh energy density (2600 W h kg-1 ). During the charge/discharge process, the sulfur can react with sodium via a multistep redox reaction to obtain a high specific capacity (1675 mA h g-1 ). However, these batteries face the difficult challenge of the "shuttle effect," which hinders their practical application. Many strategies have been employed to address this issue on sulfur electrodes, such as intact physical confinement, chemical inhibition, and electrocatalysis. In this review, the mechanisms of the abovementioned strategies are summarized, the remaining issues are clarified, and research directions are proposed for developing advanced sodium-sulfur batteries.
Collapse
Affiliation(s)
- Jiahui Zhou
- Division of Chemical Engineering, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Shengming Xu
- Division of Chemical Engineering, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Yue Yang
- Department of Mineral Engineering, School of Minerals Processing and Bioengineering, Central South University, 932 Lushan Road, Changsha, 410083, China
| |
Collapse
|
30
|
Mou J, Li Y, Liu T, Zhang W, Li M, Xu Y, Zhong L, Pan W, Yang C, Huang J, Liu M. Metal-Organic Frameworks-Derived Nitrogen-Doped Porous Carbon Nanocubes with Embedded Co Nanoparticles as Efficient Sulfur Immobilizers for Room Temperature Sodium-Sulfur Batteries. SMALL METHODS 2021; 5:e2100455. [PMID: 34927873 DOI: 10.1002/smtd.202100455] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/01/2021] [Indexed: 06/14/2023]
Abstract
Room temperature sodium-sulfur (RT Na-S) batteries are considered a promising candidate for energy-storage due to their high energy-density and low-cost. However, the shutting effect of polysulfides and sluggish kinetics of sulfur redox reactions still severely limit their practical implementation. Herein, a new type of 3D hierarchical porous carbonaceous nanocubes is reported as efficient sulfur hosts, composed of carbon nanotubes (CNT) and Co nanoparticles (NPs) uniformly embedded into a nitrogen-doped carbon matrix (NC). Because of the high specific surface area, large degree of graphitization, and the synergetic effects between Co NPs and N-doping, the as-designed CNTs/Co@NC electrodes not only significantly increase polysulfides immobilization, but also efficiently catalyze sulfur redox reactions, as confirmed by experimental results and DFT calculations. When tested in a RT Na-S battery, the S@CNTs/Co@NC-0.25 cathode demonstrates outstanding electrochemical performance, achieving high initial specific capacity of 1200.3 mAh g-1 at 0.1 C, remarkable rate capability up to 5.0 C (474.2 mAh g-1 ), and superior cyclic performance of 450.5 mAh g-1 (292 mAh g-1 ) after 400 cycles at 1.0 C (5.0 C). The integration of a 3D hierarchical porous architecture with well-dispersed Co NPs of an electro-catalyst provides valuable insights based on structure-adsorption-catalysis engineering for advanced RT Na-S batteries.
Collapse
Affiliation(s)
- Jirong Mou
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yijuan Li
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ting Liu
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Wenjia Zhang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Mei Li
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yuting Xu
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Lei Zhong
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Wenhao Pan
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Chenghao Yang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jianlin Huang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Meilin Liu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| |
Collapse
|
31
|
Tang W, Aslam MK, Xu M. Towards high performance room temperature sodium-sulfur batteries: Strategies to avoid shuttle effect. J Colloid Interface Sci 2021; 606:22-37. [PMID: 34384963 DOI: 10.1016/j.jcis.2021.07.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/27/2022]
Abstract
Room temperature sodium-sulfur battery has high theoretical specific energy and low cost, so it has good application prospect. However, due to the disadvantageous reaction between soluble intermediate polysulfides and sodium anode, the capacity drops sharply, which greatly limits its practical application. In recent years, various strategies have been formulated to address the problem of polysulfides dissolution. This perspective article provides an overview of the research progress on research progress of novel cathode materials, multifunctional host, new electrolyte systems and modified separator/interlayer/anode. The challenge and prospect of the advanced strategies to suppress the polysulfides shuttle for long-life and high-efficiency room temperature sodium-sulfur batteries are proposed.
Collapse
Affiliation(s)
- Wenwen Tang
- Key Laboratory of Luminescent and Real Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, PR China; Chongqing Key Lab for Advanced Materials and Clean Energies of Technologies, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Muhammad Kashif Aslam
- Key Laboratory of Luminescent and Real Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, PR China; Chongqing Key Lab for Advanced Materials and Clean Energies of Technologies, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Maowen Xu
- Key Laboratory of Luminescent and Real Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, PR China; Chongqing Key Lab for Advanced Materials and Clean Energies of Technologies, School of Materials and Energy, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
32
|
Ma Y, Guo J, Chen Y, Yi Y, Zhu G. Electrochemical sensing of phenolics based on copper/cobalt/nitrogen co-doped hollow nanocarbon spheres. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
33
|
Liu X, Tan Y, Wang W, Wei P, Seh ZW, Sun Y. Ultrafine Sodium Sulfide Clusters Confined in Carbon Nano-polyhedrons as High-Efficiency Presodiation Reagents for Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27057-27065. [PMID: 34080839 DOI: 10.1021/acsami.1c05144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sodium loss at the anode in the initial sodiation process significantly reduces the energy density of sodium-ion batteries (SIBs). Here, a high-capacity Na2S/C nanocomposite featuring ultrafine Na2S nanoclusters (<2 nm) confined in ZIF-8-derived microporous N-doped carbon is fabricated and employed as a cathode presodiation reagent to compensate for this sodium loss and increase the energy density of SIBs. The ultrafine size of Na2S enables fast reaction kinetics for sodium extraction and the carbon matrix provides good electronic conductivity. Also, the overall particle size of the Na2S/C nanocomposite (∼40 nm) is close to that of conductive additive. The above features enable it to replace a partial amount of conductive additive and compensate for the sodium loss at the anode concurrently. As a demonstration, the Na3V2(PO4)3 electrode with 5 wt % Na2S/C and 5 wt % carbon black was fabricated, and it displayed a 19 mAh g-1 higher initial charge specific capacity than that of the counterpart with 10% carbon black without the addition of Na2S/C, realizing an increased energy density from 178 to 263 Wh kg-1 in the full cell configuration pairing with a hard carbon anode. Moreover, a stable cycling performance up to 200 cycles with an average capacity loss of 0.024 mAh g-1 per cycle was achieved for the presodiated Na3V2(PO4)3 electrode.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuchen Tan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenyu Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Wei
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Yongming Sun
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
34
|
Zhu W, Cheng Y, Wang C, Pinna N, Lu X. Transition metal sulfides meet electrospinning: versatile synthesis, distinct properties and prospective applications. NANOSCALE 2021; 13:9112-9146. [PMID: 34008677 DOI: 10.1039/d1nr01070k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
One-dimensional (1D) electrospun nanomaterials have attracted significant attention due to their unique structures and outstanding chemical and physical properties such as large specific surface area, distinct electronic and mass transport, and mechanical flexibility. Over the past years, the integration of metal sulfides with electrospun nanomaterials has emerged as an exciting research topic owing to the synergistic effects between the two components, leading to novel and interesting properties in energy, optics and catalysis research fields for example. In this review, we focus on the recent development of the preparation of electrospun nanomaterials integrated with functional metal sulfides with distinct nanostructures. These functional materials have been prepared via two efficient strategies, namely direct electrospinning and post-synthesis modification of electrospun nanomaterials. In this review, we systematically present the chemical and physical properties of the electrospun nanomaterials integrated with metal sulfides and their application in electronic and optoelectronic devices, sensing, catalysis, energy conversion and storage, thermal shielding, adsorption and separation, and biomedical technology. Additionally, challenges and further research opportunities in the preparation and application of these novel functional materials are also discussed.
Collapse
Affiliation(s)
- Wendong Zhu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Ya Cheng
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Nicola Pinna
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
35
|
|
36
|
Wang Y, Lai Y, Chu J, Yan Z, Wang YX, Chou SL, Liu HK, Dou SX, Ai X, Yang H, Cao Y. Tunable Electrocatalytic Behavior of Sodiated MoS 2 Active Sites toward Efficient Sulfur Redox Reactions in Room-Temperature Na-S Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100229. [PMID: 33733506 DOI: 10.1002/adma.202100229] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Room-temperature (RT) sodium-sulfur (Na-S) batteries hold great promise for large-scale energy storage due to the advantages of high energy density, low cost, and resource abundance. The research progress on RT Na-S batteries, however, has been greatly hindered by the sluggish kinetics of the sulfur redox reactions. Herein, an elaborate multifunctional architecture, consisting of N-doped carbon skeletons and tunable MoS2 sulfiphilic sites, is fabricated via a simple one-pot reaction followed by in situ sulfurization. Beyond the physical confinement and chemical binding of polarized N-doped carbonaceous microflowers, the MoS2 active sites play a key role in catalyzing polysulfide redox reactions, especially the conversion from long-chain Na2 Sn (4 ≤ n ≤ 8) to short-chain Na2 S2 and Na2 S. Significantly, the electrocatalytic activity of MoS2 can be tunable via adjusting the discharge depth. It is remarkable that the sodiated MoS2 exhibits much stronger binding energy and electrocatalytic behavior compared to MoS2 sites, effectively enhancing the formation of the final Na2 S product. Consequently, the S cathode achieves superior electrochemical performance in RT Na-S batteries, delivering a high capacity of 774.2 mAh g-1 after 800 cycles at 0.2 A g-1 , and an ultrahigh capacity retention with a capacity decay rate of only 0.0055% per cycle over 2800 cycles.
Collapse
Affiliation(s)
- Yanxia Wang
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, New South Wales, 2500, Australia
| | - Yangyang Lai
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Jun Chu
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Zichao Yan
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, New South Wales, 2500, Australia
| | - Yun-Xiao Wang
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, New South Wales, 2500, Australia
| | - Shu-Lei Chou
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, New South Wales, 2500, Australia
| | - Hua-Kun Liu
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, New South Wales, 2500, Australia
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, New South Wales, 2500, Australia
| | - Xinping Ai
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Hanxi Yang
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Yuliang Cao
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
37
|
Wang L, Wang T, Peng L, Wang Y, Zhang M, Zhou J, Chen M, Cao J, Fei H, Duan X, Zhu J, Duan X. The promises, challenges and pathways to room-temperature sodium-sulfur batteries. Natl Sci Rev 2021; 9:nwab050. [PMID: 35401989 PMCID: PMC8986459 DOI: 10.1093/nsr/nwab050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 11/28/2022] Open
Abstract
Room-temperature sodium-sulfur batteries (RT-Na-S batteries) are attractive for large-scale energy storage applications owing to their high storage capacity as well as the rich abundance and low cost of the materials. Unfortunately, their practical application is hampered by severe challenges, such as low conductivity of sulfur and its reduced products, volume expansion, polysulfide shuttling effect and Na dendrite formation, which can lead to rapid capacity fading. The review discusses the Na-S-energy-storage chemistry, highlighting its promise, key challenges and potential strategies for large-scale energy storage systems. Specifically, we review the electrochemical principles and the current technical challenges of RT-Na-S batteries, and discuss the strategies to address these obstacles. In particular, we give a comprehensive review of recent progresses in cathodes, anodes, electrolytes, separators and cell configurations, and provide a forward-looking perspective on strategies toward robust high-energy-density RT-Na-S batteries.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, China
| | - Tao Wang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, China
| | - Lele Peng
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Yiliu Wang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, China
| | - Meng Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, China
| | - Jian Zhou
- State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, China
| | - Maoxin Chen
- State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, China
| | - Jinhui Cao
- State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, China
| | - Huilong Fei
- State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, China
| | - Xidong Duan
- State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, China
| | - Jian Zhu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
38
|
Ma Q, Zhong W, Du G, Qi Y, Bao SJ, Xu M, Li C. Multi-step Controllable Catalysis Method for the Defense of Sodium Polysulfide Dissolution in Room-Temperature Na-S Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11852-11860. [PMID: 33656849 DOI: 10.1021/acsami.0c21267] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Room-temperature (RT) sodium-sulfur batteries hold great promise for the development of efficient, low-cost, and environmentally friendly energy storage systems. Nevertheless, the dissolution of long-chain polysulfides is a huge obstacle. In this work, a composite cathode which integrates Ni/Co bimetal nanoparticles as the catalyst and carbon spheres with abundant channels as the host is prepared for RT Na-S batteries. Moreover, a valuable strategy to reduce the dissolution of polysulfides by accurately regulating the two-step reaction kinetics of polysulfide transformation (from Na2S to long-chain polysulfides and then from polysulfides to sulfur) is presented. Through adjusting the ratio of Ni and Co, the optimal cathode with a Ni/Co ratio of 1:2 can retard the first conversion of Na2S to polysulfides and simultaneously accelerate the subsequent transformation of polysulfides to sulfur. In this case, the soluble polysulfides can immediately transform to solid sulfur as soon as it appears, thus avoiding the shuttle of polysulfides. The galvanostatic intermittent titration method and in situ Raman are employed to supervise the transformation of polysulfides during the discharge/charge process. As a result, the composite shows excellent performance as the cathode of RT liquid/quasi-solid-state Na-S batteries in terms of specific capacities, rate capability, and cycle stability.
Collapse
Affiliation(s)
- Qianru Ma
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Wei Zhong
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Guangyuan Du
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Yuruo Qi
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Shu-Juan Bao
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Maowen Xu
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Changming Li
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
39
|
Guo Y, Zhang D, Yang Y, Wang Y, Bai Z, Chu PK, Luo Y. MXene-encapsulated hollow Fe 3O 4 nanochains embedded in N-doped carbon nanofibers with dual electronic pathways as flexible anodes for high-performance Li-ion batteries. NANOSCALE 2021; 13:4624-4633. [PMID: 33605964 DOI: 10.1039/d0nr09228b] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fe3O4 is one of the promising anode materials in Li-ion batteries and a potential alternative to graphite due to the high specific capacity, natural abundance, environmental benignity, non-flammability, and better safety. Nevertheless, the sluggish intrinsic reaction kinetics and huge volume variation severely limit the reversible capacity and cycling life. In order to overcome these hurdles and enhance the cycling life of Fe3O4, a one-dimensional (1D) nanochain structure composed of 2D Ti3C2-encapsulated hollow Fe3O4 nanospheres homogeneously embedded in N-doped carbon nanofibers (Fe3O4@MXene/CNFs) is designed and demonstrated as a high-performance anode in Li-ion batteries. The distinctive 1D nanochain structure not only inherits the high electrochemical activity of Fe3O4, but also exhibits excellent electron and ion conductivity. The Ti3C2 layer on the Fe3O4 hollow nanospheres forms the primary electron transport pathway and the N-doped carbon nanofiber network provides the secondary transport pathway. At the same time, Ti3C2 flakes partially accommodate the large volume change of Fe3O4 during Li+ insertion/extraction. Density functional theory (DFT) calculations demonstrate that the Fe3O4@MXene/CNFs electrode can efficiently enhance the adsorption of Li+ to promote Li+ storage. As a result of the electrospinning process, self-restacking of Ti3C2 flakes and aggregation of Fe3O4 nanospheres can be prevented resulting in a larger surface area and more accessible active sites on the flexible anode. The Fe3O4@MXene/CNFs anode has remarkable electrochemical properties at high current densities. For example, a reversible capacity of 806 mA h g-1 can be achieved at 2 A g-1 even after 500 cycles, corresponding to an area specific capacity of 1.612 mA h cm-2 at 4 mA cm-2 and a capacity as high as 613 mA h g-1 is retained at 5 A g-1, corresponding to an area capacity of 1.226 mA h cm-2 at 10 mA cm-2. The results indicate that the Fe3O4@MXene/CNFs anode has excellent properties for Li-ion storage.
Collapse
Affiliation(s)
- Ying Guo
- Key Laboratory of Microelectronics and Energy of Henan Province, Henan Joint International Research Laboratory of New Energy Storage Technology, Engineering Research Center for MXene Energy Storage Materials of Henan Province, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Deyang Zhang
- Key Laboratory of Microelectronics and Energy of Henan Province, Henan Joint International Research Laboratory of New Energy Storage Technology, Engineering Research Center for MXene Energy Storage Materials of Henan Province, Xinyang Normal University, Xinyang 464000, P. R. China. and Department of Physics, Department of Materials Science & Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Ya Yang
- Key Laboratory of Microelectronics and Energy of Henan Province, Henan Joint International Research Laboratory of New Energy Storage Technology, Engineering Research Center for MXene Energy Storage Materials of Henan Province, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Yangbo Wang
- Key Laboratory of Microelectronics and Energy of Henan Province, Henan Joint International Research Laboratory of New Energy Storage Technology, Engineering Research Center for MXene Energy Storage Materials of Henan Province, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Zuxue Bai
- Key Laboratory of Microelectronics and Energy of Henan Province, Henan Joint International Research Laboratory of New Energy Storage Technology, Engineering Research Center for MXene Energy Storage Materials of Henan Province, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Paul K Chu
- Department of Physics, Department of Materials Science & Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yongsong Luo
- Key Laboratory of Microelectronics and Energy of Henan Province, Henan Joint International Research Laboratory of New Energy Storage Technology, Engineering Research Center for MXene Energy Storage Materials of Henan Province, Xinyang Normal University, Xinyang 464000, P. R. China. and College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
40
|
Du W, Shen K, Qi Y, Gao W, Tao M, Du G, Bao SJ, Chen M, Chen Y, Xu M. Efficient Catalytic Conversion of Polysulfides by Biomimetic Design of "Branch-Leaf" Electrode for High-Energy Sodium-Sulfur Batteries. NANO-MICRO LETTERS 2021; 13:50. [PMID: 34138227 PMCID: PMC8187676 DOI: 10.1007/s40820-020-00563-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/13/2020] [Indexed: 05/30/2023]
Abstract
Rechargeable room temperature sodium-sulfur (RT Na-S) batteries are seriously limited by low sulfur utilization and sluggish electrochemical reaction activity of polysulfide intermediates. Herein, a 3D "branch-leaf" biomimetic design proposed for high performance Na-S batteries, where the leaves constructed from Co nanoparticles on carbon nanofibers (CNF) are fully to expose the active sites of Co. The CNF network acts as conductive "branches" to ensure adequate electron and electrolyte supply for the Co leaves. As an effective electrocatalytic battery system, the 3D "branch-leaf" conductive network with abundant active sites and voids can effectively trap polysulfides and provide plentiful electron/ions pathways for electrochemical reaction. DFT calculation reveals that the Co nanoparticles can induce the formation of a unique Co-S-Na molecular layer on the Co surface, which can enable a fast reduction reaction of the polysulfides. Therefore, the prepared "branch-leaf" CNF-L@Co/S electrode exhibits a high initial specific capacity of 1201 mAh g-1 at 0.1 C and superior rate performance.
Collapse
Affiliation(s)
- Wenyan Du
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China
| | - Kangqi Shen
- Beijing Computational Science Research Center, Beijing, 100193, People's Republic of China
| | - Yuruo Qi
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China
| | - Wei Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China
| | - Mengli Tao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China
| | - Guangyuan Du
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China
| | - Shu-Juan Bao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China
| | - Mingyang Chen
- Center for Green Innovation, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Yuming Chen
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, People's Republic of China.
| | - Maowen Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
41
|
Yang Q, Yang T, Gao W, Qi Y, Guo B, Zhong W, Jiang J, Xu M. An MXene-based aerogel with cobalt nanoparticles as an efficient sulfur host for room-temperature Na–S batteries. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00939c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A network-like MG-Co composite with adsorption and catalysis for Na2Sx is synthesized as a S host for room temperature Na–S batteries, exhibiting excellent electrochemical performance.
Collapse
Affiliation(s)
- Qiuju Yang
- Key Laboratory of Luminescent and Real Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Tingting Yang
- Key Laboratory of Luminescent and Real Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Wei Gao
- Key Laboratory of Luminescent and Real Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Yuruo Qi
- Key Laboratory of Luminescent and Real Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Bingshu Guo
- Key Laboratory of Luminescent and Real Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Wei Zhong
- Key Laboratory of Luminescent and Real Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Jian Jiang
- Key Laboratory of Luminescent and Real Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Maowen Xu
- Key Laboratory of Luminescent and Real Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| |
Collapse
|
42
|
Meng X, Zhang J, Chen Q, Hou L, Yuan C. Polyacrylamide hydrogel-derived three-dimensional hierarchical porous N,S co-doped carbon frameworks for electrochemical capacitors. NEW J CHEM 2020. [DOI: 10.1039/d0nj04942e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polyacrylamide hydrogel-derived 3D porous hierarchical N,S co-doped carbon frameworks are purposefully fabricated, and exhibit superior electrochemical capacitance in both alkaline and acidic electrolytes.
Collapse
Affiliation(s)
- Xiaotang Meng
- School of Material Science & Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Jinyang Zhang
- School of Material Science & Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Qiuli Chen
- School of Material Science & Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Linrui Hou
- School of Material Science & Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Changzhou Yuan
- School of Material Science & Engineering
- University of Jinan
- Jinan
- P. R. China
| |
Collapse
|