1
|
Yang M, Wang L, Xie C, Lu H, Wang J, Li Y, Li H, Yang J, Zhang T, Liu S. A disposable ultrasensitive immunosensor based on MXene/NH 2-CNT modified screen-printed electrode for the detection of ovarian cancer antigen CA125. Talanta 2025; 281:126893. [PMID: 39288586 DOI: 10.1016/j.talanta.2024.126893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/24/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Cancer antigen 125 (CA125) is the gold standard biomarker for clinical diagnosis of ovarian cancer, with a threshold value of 35 U/mL in serum. In this paper, a disposable ultrasensitive immunosensor based on Ti3C2Tx-MXene/amino-functionalized carbon nanotube (NH2-CNT) modified screen-printed carbon electrode (SPCE) was constructed for the detection of the ovarian cancer antigen CA125. By optimizing the mass ratio of Ti3C2Tx to NH2-CNT, Ti3C2Tx/NH2-CNT composite with excellent electrochemical properties was prepared, which is beneficial for amplifying the initial electrochemical signal. The positively charged NH2-CNT effectively alleviated the stacking problem of Ti3C2Tx, and its amino group also facilitated the covalent immobilization of the capture antibody. Meanwhile, chitosan (CS) with excellent film-forming ability was also used to successfully enhance the adsorption of electrode material, thus improving the stability of the sensor. In addition, CS could further enhance the current signal. The prepared immunosensor exhibited excellent performance in CA125 detection with a wide linear range from 1 mU/mL to 500 U/mL, and good selectivity, reproducibility and lomg-term stability. Furthermore, the immunosensor showed satisfactory results for the detection of CA125 in clinical serum samples, which is promising for the clinical screening, early diagnosis and prognostic examination of ovarian cancer.
Collapse
Affiliation(s)
- Meiqing Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China; Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Science, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Lu Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Congkai Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Haozi Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Junhua Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Ye Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Huimin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Jifei Yang
- Changsha Sunjeen Electronic Technology Co., Ltd., Changsha, 410205, PR China
| | - Tingting Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410000, PR China.
| | - Song Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
2
|
Shao G, Huang X, Shen X, Li C, Thomas A. Metal-Organic Framework and Covalent-Organic Framework-Based Aerogels: Synthesis, Functionality, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409290. [PMID: 39467257 DOI: 10.1002/advs.202409290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs)-based aerogels are garnering significant attention owing to their unique chemical and structural properties. These materials harmoniously combine the advantages of MOFs and COFs-such as high surface area, customizable porosity, and varied chemical functionality-with the lightweight and structured porosity characteristic of aerogels. This combination opens up new avenues for advanced applications in fields where material efficiency and enhanced functionality are critical. This review provides a comparative overview of the synthetic strategies utilized to produce pristine MOF/COF aerogels as well as MOF/COF-based hybrid aerogels, which are functionalized with molecular precursors and nanoscale materials. The versatility of these aerogels positions them as promising candidates for addressing complex challenges in environmental remediation, energy storage and conversion, sustainable water-energy technologies, and chemical separations. Furthermore, this study discusses the current challenges and future prospects related to the synthesis techniques and applications of MOF/COF aerogels.
Collapse
Affiliation(s)
- Gaofeng Shao
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Energy Devices and Interface Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiaogu Huang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Energy Devices and Interface Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiaodong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Changxia Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310024, China
| | - Arne Thomas
- Institute for Chemistry, Division of Functional Materials, Technische Universität Berlin, 10623, Berlin, Germany
| |
Collapse
|
3
|
Wan S, Chen Y, Huang C, Huang Z, Liang C, Deng X, Cheng Q. Scalable ultrastrong MXene films with superior osteogenesis. Nature 2024; 634:1103-1110. [PMID: 39478209 DOI: 10.1038/s41586-024-08067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 09/18/2024] [Indexed: 11/02/2024]
Abstract
Titanium carbide MXene flakes have promising applications in aerospace, flexible electronic devices and biomedicine owing to their superior mechanical properties1 and electrical conductivity2 and good photothermal conversion3, biocompatibility4 and osteoinductivity5. It is highly desired yet very challenging to assemble MXene flakes into macroscopic high-performance materials in a scalable manner. Here we demonstrate a scalable strategy to fabricate high-performance MXene films by roll-to-roll-assisted blade coating (RBC) integrated with sequential bridging, providing good photothermal conversion and osteogenesis efficiency under near-infrared irradiation. MXene flakes were first bridged with silk sericin by hydrogen bonding and then assembled into macroscopic films using a continuous RBC process, followed by ionic bridging to freeze their aligned structure. The resultant large-scale MXene films with strong interlayer interactions are highly aligned and densified, exhibiting high tensile strength (755 MPa), toughness (17.4 MJ m-3) and electromagnetic interference (EMI) shielding capacity (78,000 dB cm2 g-1), as well as good ambient stability, photothermal conversion and bone regeneration performance. The proposed strategy not only paves a feasible way for realizing the practical applications of MXene in the fields of flexible EMI shielding materials and bone tissue engineering but also provides an avenue for the high-performance and scalable assembly of other two-dimensional flakes.
Collapse
Affiliation(s)
- Sijie Wan
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, People's Republic of China
| | - Ying Chen
- Department of Prosthodontics, The First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
- NMPA Key Laboratory for Dental Materials National Engineering, Laboratory for Digital and Material Technology of Stomatology, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Chaojie Huang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, People's Republic of China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, People's Republic of China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, People's Republic of China
| | - Zongjun Huang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, People's Republic of China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, People's Republic of China
| | - Cheng Liang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, People's Republic of China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, People's Republic of China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, People's Republic of China
| | - Xuliang Deng
- NMPA Key Laboratory for Dental Materials National Engineering, Laboratory for Digital and Material Technology of Stomatology, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China.
| | - Qunfeng Cheng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, People's Republic of China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, People's Republic of China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, People's Republic of China.
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai, People's Republic of China.
| |
Collapse
|
4
|
Fu H, Chen Z, Chen X, Jing F, Yu H, Chen D, Yu B, Hu YH, Jin Y. Modification Strategies for Development of 2D Material-Based Electrocatalysts for Alcohol Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306132. [PMID: 38044296 PMCID: PMC11462311 DOI: 10.1002/advs.202306132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Indexed: 12/05/2023]
Abstract
2D materials, such as graphene, MXenes (metal carbides and nitrides), graphdiyne (GDY), layered double hydroxides, and black phosphorus, are widely used as electrocatalyst supports for alcohol oxidation reactions (AORs) owing to their large surface area and unique 2D charge transport channels. Furthermore, the development of highly efficient electrocatalysts for AORs via tuning the structure of 2D support materials has recently become a hot area. This article provides a critical review on modification strategies to develop 2D material-based electrocatalysts for AOR. First, the principles and influencing factors of electrocatalytic oxidation of alcohols (such as methanol and ethanol) are introduced. Second, surface molecular functionalization, heteroatom doping, and composite hybridization are deeply discussed as the modification strategies to improve 2D material catalyst supports for AORs. Finally, the challenges and perspectives of 2D material-based electrocatalysts for AORs are outlined. This review will promote further efforts in the development of electrocatalysts for AORs.
Collapse
Affiliation(s)
- Haichang Fu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Zhangxin Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Xiaohe Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Fan Jing
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Hua Yu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Dan Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Binbin Yu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Yun Hang Hu
- Department of Materials Science and EngineeringMichigan Technological UniversityHoughtonMI49931USA
| | - Yanxian Jin
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| |
Collapse
|
5
|
Liu W, Jia K, Yao T, Shen L, Wang D. Graphene-Wrapped Magnetic Multichamber Ti 3C 2T x Spheres for Stable Broadband Microwave Absorption. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51118-51128. [PMID: 39271249 DOI: 10.1021/acsami.4c10905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Two-dimensional transition metal carbides/nitrides (MXenes) have aroused widespread interest in the field of microwave absorption because of their unique layered structures. However, the inherent aggregation, poor impedance matching, and low chemical stability of MXenes inevitably obstruct their practical applications. Herein, a multichamber Fe3O4/Ti3C2Tx@reduced graphene oxide (FT@RGO) hierarchical structure was constructed through self-assembly and sacrificial template strategies where the Ti3C2Tx nanosheets were assembled into hollow microspheres that were decorated with Fe3O4 nanospheres and wrapped by RGO nanosheets. The massive heterointerfaces and interior cavities favor enhanced microwave absorption performance via interfacial polarization, multiple scattering/reflections, and dielectric-magnetic synergistic effects. Consequently, the synthesized ultralight FT@RGO foam (0.009 g/cm3) presents superior microwave absorption ability with the minimum reflection loss of -50.5 dB at the matching thickness of 2.5 mm and effective absorption bandwidth of 8.0 GHz covering the frequency range of 10.0-18.0 GHz at the thickness of 2 mm. Furthermore, the encapsulation of hollow Ti3C2Tx spheres by RGO nanosheets avoids direct contact with external air, which considerably improves the stability of Ti3C2Tx and ensures the long-term application of FT@RGO foam in a conventional environment. This work provides a reference for the structural design of MXene-based materials as broadband and durable microwave absorbers.
Collapse
Affiliation(s)
- Wei Liu
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, China
| | - Kun Jia
- 33rd Institute of China Electronics Technology Group Corporation, Taiyuan 030032, China
| | - Tingting Yao
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Lazhen Shen
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, China
| | - Donghong Wang
- 33rd Institute of China Electronics Technology Group Corporation, Taiyuan 030032, China
| |
Collapse
|
6
|
Long Y, Tao Y, Lv W, Yang QH. Making 2D Materials Sparkle in Energy Storage via Assembly. Acc Chem Res 2024; 57:2689-2699. [PMID: 39190869 DOI: 10.1021/acs.accounts.4c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
ConspectusTwo-dimensional (2D) materials such as graphene and MXenes offer appealing opportunities in electrochemical energy storage due to their large surface area, tunable surface chemistry, and unique electronic properties. One of the primary challenges in utilizing these materials for practical electrodes, especially those with industrial-level thickness, is developing a highly interconnected and porous conductive network. This network is crucial for supporting continuous electron transport, rapid ion diffusion, and effective participation of all active materials in electrochemical reactions. Moreover, the demand for efficient energy storage in advanced electronic devices and electric vehicles has led to the need for not only thicker but also denser electrodes to achieve compact energy storage. Traditional densification methods often compromise between volumetric capacitance and ion-accessible surface area, which can diminish rate performance. As versatile building blocks, 2D materials can overcome these limitations through the assembly into complex superstructures such as 1D fibers, 2D thin films, and 3D porous networks, a capability less attainable by other nanomaterials.This Account explores the pathways from exfoliated 2D nanosheets to densely packed, yet porous assemblies tailored for compact energy storage. Focusing on graphene and MXenes, we delve into the intricate relationships between surface structure, assembly behaviors, and electrochemical performance. We emphasize the crucial role of surface chemistry and interfacial interactions in forming stable colloidal dispersions and subsequent macroscopic structures. Furthermore, we highlight how solvents, acting as spacers, are instrumental in microstructure formation and how capillary force-driven densification is essential for creating compact assemblies. With precise control over shrinkage, the customized dense assemblies can strike a balance between high packing density and sufficient porosity, ensuring efficient ion transport, mechanical stability, and high volumetric performance across various electrochemical energy storage technologies.Furthermore, we highlight the importance of understanding and manipulating the surface chemistry of 2D materials at the atomic level to optimize their assembly and enhance electrochemical behaviors. Advanced in situ characterizations with high temporal and spatial resolution are necessary to gain deeper insights into the complex assembly process. Moreover, the integration of machine learning and computational chemistry emerges as a promising method to predict and design new materials and assembly strategies, potentially accelerating the development of next-generation energy storage systems. Our insights into the assembly and densification of 2D materials provide a comprehensive foundation for future research and practical applications in compact, high-performance energy storage devices. This exploration sets the stage for a transformative approach to overcoming the challenges of current energy storage technologies, promising significant advancements in 2D materials in the field.
Collapse
Affiliation(s)
- Yu Long
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Ying Tao
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wei Lv
- Shenzhen Geim Graphene Center Engineering Laboratory for Functionalized Carbon Materials Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Quan-Hong Yang
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
7
|
Bandpey M, Barz DPJ. Effects of interlayer space engineering and surface modification on the charge storage mechanisms of MXene nanomaterials: A review on recent developments. NANOSCALE 2024; 16:15078-15093. [PMID: 39072431 DOI: 10.1039/d4nr01317d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Two-dimensional MXenes were discovered in 2011 and, because of their outstanding properties, have attracted significant attention as electrode materials for supercapacitors, rechargeable batteries, and hybrid energy storage devices. Numerous studies were dedicated to identifying feasible charge storage mechanisms in MXenes and investigating the effects of structural and superficial properties on the corresponding mechanisms. The results clarify that interlayer distance and surface termination groups in MXenes significantly determine the deliverable energy and power density in respective energy storage devices. Additionally, due to van der Waals interactions, adjacent MXene sheets tend to aggregate and restack during electrode preparation or charge and discharge cycling, reducing the MXene interlayer distance and deteriorating its energy storage ability. In this review, we first summarize the different charge storage mechanisms applicable to MXenes in different energy storage devices and describe the effect of interlayer spacing and surface termination groups. Then, different interlayer space engineering methods are reviewed in terms of materials and procedures, and their impact on the electrochemical behavior and restacking tendency of MXene is described.
Collapse
Affiliation(s)
- Mohammad Bandpey
- Graphene Integrated Functional Technologies (GIFT) Research Cluster, Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada.
| | - Dominik P J Barz
- Graphene Integrated Functional Technologies (GIFT) Research Cluster, Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
8
|
Dutta P, Deb SK, Patra A, Karim GM, Majumder A, Kumar P, Iyer PK, Padma N, Maiti UN. Activating Ion Channels in Collapsed Hydrogel Derived Densified MXene Films with Cellulose Nanofibers to Overcome the Areal Versus Volumetric Capacitance Trade-Off. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400119. [PMID: 38676344 DOI: 10.1002/smll.202400119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Concomitant achievement of all three performance pillars of a supercapacitor device, namely gravimetric, areal, and volumetric capacitance is a grand challenge. Nevertheless, its fulfilment is indispensable for commercial usage. Although, high compactness is the fundamental requirement to achieve high volumetric performance, it severely affects ion transportation in thick electrodes. Such trade-off makes it extremely challenging to realize very high areal and volumetric performance simultaneously. Here, a collapsed hydrogel strategy is introduced to develop MXene/cellulose nanofiber (CNF) based densified electrodes that offer excellent ion transportation despite a massive increase in areal mass loading (>70 mg cm-2). Quasi-oriented MXene/CNF (MXCF) hydrogels are produced through an electric field-guided co-assembly technique. Ambient dehydration of these hydrogels incorporates numerous pores in the resultant compact electrodes due to crumpling of the MXene sheets, while CNF ensures connectivity among the locally blocked pores in different length scales. The resultant collapsed MXCF densified electrode shows a remarkably high areal capacitance of 16 F cm-2 while simultaneously displaying a high volumetric capacitance of 849.8 F cm-3 at an ultrahigh mass loading of up to 73.4 mg cm-2. The universality of strategy, including the co-assembly of hydrogel and its collapse, is further demonstrated to develop high-performance asymmetric and wearable devices.
Collapse
Affiliation(s)
- Pronoy Dutta
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sujit Kumar Deb
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Amalika Patra
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Golam Masud Karim
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Abhisek Majumder
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Pradip Kumar
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Bhopal, 462026, India
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
- Centre of Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Narayanan Padma
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Uday Narayan Maiti
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Centre of Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| |
Collapse
|
9
|
Agiba AM, Elsayyad N, ElShagea HN, Metwalli MA, Mahmoudsalehi AO, Beigi-Boroujeni S, Lozano O, Aguirre-Soto A, Arreola-Ramirez JL, Segura-Medina P, Hamed RR. Advances in Light-Responsive Smart Multifunctional Nanofibers: Implications for Targeted Drug Delivery and Cancer Therapy. Pharmaceutics 2024; 16:1017. [PMID: 39204362 PMCID: PMC11359459 DOI: 10.3390/pharmaceutics16081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Over the last decade, scientists have shifted their focus to the development of smart carriers for the delivery of chemotherapeutics in order to overcome the problems associated with traditional chemotherapy, such as poor aqueous solubility and bioavailability, low selectivity and targeting specificity, off-target drug side effects, and damage to surrounding healthy tissues. Nanofiber-based drug delivery systems have recently emerged as a promising drug delivery system in cancer therapy owing to their unique structural and functional properties, including tunable interconnected porosity, a high surface-to-volume ratio associated with high entrapment efficiency and drug loading capacity, and high mass transport properties, which allow for controlled and targeted drug delivery. In addition, they are biocompatible, biodegradable, and capable of surface functionalization, allowing for target-specific delivery and drug release. One of the most common fiber production methods is electrospinning, even though the relatively two-dimensional (2D) tightly packed fiber structures and low production rates have limited its performance. Forcespinning is an alternative spinning technology that generates high-throughput, continuous polymeric nanofibers with 3D structures. Unlike electrospinning, forcespinning generates fibers by centrifugal forces rather than electrostatic forces, resulting in significantly higher fiber production. The functionalization of nanocarriers on nanofibers can result in smart nanofibers with anticancer capabilities that can be activated by external stimuli, such as light. This review addresses current trends and potential applications of light-responsive and dual-stimuli-responsive electro- and forcespun smart nanofibers in cancer therapy, with a particular emphasis on functionalizing nanofiber surfaces and developing nano-in-nanofiber emerging delivery systems for dual-controlled drug release and high-precision tumor targeting. In addition, the progress and prospective diagnostic and therapeutic applications of light-responsive and dual-stimuli-responsive smart nanofibers are discussed in the context of combination cancer therapy.
Collapse
Affiliation(s)
- Ahmed M. Agiba
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Nihal Elsayyad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October for Modern Sciences and Arts University, Cairo 12451, Egypt;
| | - Hala N. ElShagea
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, Cairo 12451, Egypt;
| | - Mahmoud A. Metwalli
- El Demerdash Hospital, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Amin Orash Mahmoudsalehi
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Saeed Beigi-Boroujeni
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Omar Lozano
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico;
- Institute for Obesity Research, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Alan Aguirre-Soto
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Jose Luis Arreola-Ramirez
- Department of Bronchial Hyperresponsiveness, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City 14080, Mexico;
| | - Patricia Segura-Medina
- Department of Bronchial Hyperresponsiveness, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City 14080, Mexico;
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Mexico City 14380, Mexico
| | - Raghda Rabe Hamed
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Cairo 12566, Egypt;
| |
Collapse
|
10
|
Sun K, Ying S, Fang T, Zhou G, Liu X. Revealing the Two-Stage Charging Process in Sulfuric Acid Electrolyte by Molecular Dynamics Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15080-15091. [PMID: 38979577 DOI: 10.1021/acs.langmuir.4c01431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Two-dimensional MXene materials perform excellently in supercapacitor applications, but self-stacking and overlap limit their applications. Constructing a reasonable layered structure by combining MXene and graphene can effectively inhibit the restacking and overlap of MXene and improve the performance of supercapacitors. In this work, we studied the energy storage performance of a conventional MXene electrode and MXene/graphene composite electrode in sulfuric acid aqueous electrolyte by molecular dynamics (MD) simulation and analyzed their energy storage mechanisms. The simulation results reveal that the MXene/graphene composite electrode showed faster charge-discharge speed and larger capacity and had more obvious advantages as a cathode. The charging process of the composite cathode can be divided into two stages. In the first stage, SO42- and H3O+ enter the electrode as a whole in a nearly 1:2 ratio, and a unique three-layer structure is formed in the graphene area, while a large number of HSO4- leaves the electrode. In the second stage, SO42- with a part of H3O+ (ratio of 2:2 to 2:3) leave the electrode, and the three-layer structure is gradually destroyed. The cooperation of these two stages leads to a particular "concave" in the total energy change of the composite cathode. The introduction of graphene has brought about changes in ion distribution, migration mechanism, and energy change, making the MXene/graphene cathode show significant advantages in energy storage. This work is of great significance for understanding the microscopic energy storage mechanism of MXene/graphene-based electrodes.
Collapse
Affiliation(s)
- Kaiqing Sun
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China
| | - Shengzhe Ying
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China
| | - Timing Fang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China
| | - Guohui Zhou
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China
- Longzihu New Energy Laboratory, Henan University, Zhengzhou 450046, China
| | - Xiaomin Liu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
11
|
Cai D, Wu S, Tian Z, Guo L, Wang Y. Cation-induced Ti 3C 2T x MXene@melamine sponge aerogels with large layer spacing and high strength for high-performance supercapacitors. J Colloid Interface Sci 2024; 665:232-239. [PMID: 38522162 DOI: 10.1016/j.jcis.2024.03.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
The self-assembled aerogels are considered as an efficient strategy to address the aggregation and restacking of Ti3C2Tx MXene nanosheets for high-performance supercapacitors. However, the low mechanical strength of the MXene aerogel results in the structural collapse of the self-standing supercapacitor electrode materials. Herein, a low-cost melamine sponge (MS) absorbed different cations (H+, K+, Mg2+, Fe2+, Co2+, Ni2+ and Al3+), serves as a carrier and crosslinker for loading MXene hydrogel induced by the absorbed cations on the skeleton surface and the pores of MS, resulting in the high loading mass MXene aerogels with high mechanical strength. The experimental results show that the Mg-Ti3C2Tx@MS aerogel exhibits the maximum area capacitance of 702.22 mF cm-2 at 3 mA cm-2, and the area capacitance is still 603.12 mF cm-2 even at 100 mA cm-2, indicating the high rate capability with a capacitance retention of 85.89 %. It is worth noting that the constructed asymmetric supercapacitor with activated carbon achieves high energy densities of 104.53 μWh cm-2 and 93.87 μWh cm-2 at 800 μW cm-2 and 7999 μW cm-2, respectively. Furthermore, the asymmetric supercapacitor shows the high cycling stability with 90.2 % capacity retention after 10,000 cycles. This work provides a feasible strategy to prepare Ti3C2Tx MXene aerogels with large layer spacing and high strength for high-performance supercapacitors.
Collapse
Affiliation(s)
- Debin Cai
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China; Shanxi Key Laboratory of Efficient Hydrogen Storage & Production Technology and Application, North University of China, Taiyuan 030051, PR China
| | - Shuai Wu
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China; Shanxi Key Laboratory of Efficient Hydrogen Storage & Production Technology and Application, North University of China, Taiyuan 030051, PR China
| | - Zhen Tian
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China; Shanxi Key Laboratory of Efficient Hydrogen Storage & Production Technology and Application, North University of China, Taiyuan 030051, PR China
| | - Li Guo
- Shanxi Key Laboratory of Efficient Hydrogen Storage & Production Technology and Application, North University of China, Taiyuan 030051, PR China
| | - Yanzhong Wang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China; Shanxi Key Laboratory of Efficient Hydrogen Storage & Production Technology and Application, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
12
|
Shrestha S, Barvenik KJ, Chen T, Yang H, Li Y, Kesavan MM, Little JM, Whitley HC, Teng Z, Luo Y, Tubaldi E, Chen PY. Machine intelligence accelerated design of conductive MXene aerogels with programmable properties. Nat Commun 2024; 15:4685. [PMID: 38824129 PMCID: PMC11144242 DOI: 10.1038/s41467-024-49011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 05/14/2024] [Indexed: 06/03/2024] Open
Abstract
Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative robotics with machine learning to accelerate the design of conductive aerogels with programmable properties. An automated pipetting robot is operated to prepare 264 mixtures of Ti3C2Tx MXene, cellulose, gelatin, and glutaraldehyde at different ratios/loadings. After freeze-drying, the aerogels' structural integrity is evaluated to train a support vector machine classifier. Through 8 active learning cycles with data augmentation, 162 unique conductive aerogels are fabricated/characterized via robotics-automated platforms, enabling the construction of an artificial neural network prediction model. The prediction model conducts two-way design tasks: (1) predicting the aerogels' physicochemical properties from fabrication parameters and (2) automating the inverse design of aerogels for specific property requirements. The combined use of model interpretation and finite element simulations validates a pronounced correlation between aerogel density and compressive strength. The model-suggested aerogels with high conductivity, customized strength, and pressure insensitivity allow for compression-stable Joule heating for wearable thermal management.
Collapse
Affiliation(s)
- Snehi Shrestha
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Kieran James Barvenik
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Tianle Chen
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Haochen Yang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Yang Li
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Meera Muthachi Kesavan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Joshua M Little
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Hayden C Whitley
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Zi Teng
- US Department of Agriculture, Agricultural Research Service, Food Quality Laboratory and Environment Microbial Food Safety Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, 20725, USA
| | - Yaguang Luo
- US Department of Agriculture, Agricultural Research Service, Food Quality Laboratory and Environment Microbial Food Safety Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, 20725, USA
| | - Eleonora Tubaldi
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA.
- Maryland Robotics Center, College Park, MD, 20742, USA.
| | - Po-Yen Chen
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA.
- Maryland Robotics Center, College Park, MD, 20742, USA.
| |
Collapse
|
13
|
Fang K, Li P, Zhang B, Liu S, Zhao X, Kou L, Xu W, Guo X, Li J. Insights on updates in sodium alginate/MXenes composites as the designer matrix for various applications: A review. Int J Biol Macromol 2024; 269:132032. [PMID: 38702004 DOI: 10.1016/j.ijbiomac.2024.132032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/28/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Advancements in two-dimensional materials, particularly MXenes, have spurred the development of innovative composites through their integration with natural polymers such as sodium alginate (SA). Mxenes exhibit a broad specific surface area, excellent electrical conductivity, and an abundance of surface terminations, which can be combined with SA to maximize the synergistic effect of the materials. This article provides a comprehensive review of state-of-the-art techniques in the fabrication of SA/MXene composites, analyzing the resulting structural and functional enhancements with a specific focus on advancing the design of these composites for practical applications. A detailed exploration of SA/MXene composites is provided, highlighting their utility in various sectors, such as wearable electronics, wastewater treatment, biomedical applications, and electromagnetic interference (EMI) shielding. The review identifies the unique advantages conferred by incorporating MXene in these composites, examines the current challenges, and proposes future research directions to understand and optimize these promising materials thoroughly. The remarkable properties of MXenes are emphasized as crucial for advancing the performance of SA-based composites, indicating significant potential for developing high-performance composite materials.
Collapse
Affiliation(s)
- Kun Fang
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Pei Li
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China,.
| | - Bing Zhang
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Si Liu
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Xiaoyang Zhao
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Linxuan Kou
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Xiangyang Guo
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|
14
|
Zhang Y, Li J, Li X, Lv J, Xu Q, Li H. Self-validating photothermal and electrochemical dual-mode sensing based on Hg 2+ etching Ti 3C 2 MXene. Anal Chim Acta 2024; 1303:342525. [PMID: 38609266 DOI: 10.1016/j.aca.2024.342525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Mercury ions can cause serious damage to the ecological environment, and it is necessary to develop reliable and elegant mercury ion sensors. In this protocol, a label-free photothermal/electrochemical dual-mode strategy for Hg2+ is proposed based on delaminated Ti3C2 MXene nanosheets (DL-Ti3C2 MXene). Hg2+ exists in water in the form of HgCl2, Hg(OH)2, and HgClOH, and the electron-rich elements O and Cl can specifically bind to the positively charged DL-Ti3C2 MXene at the edge, and further oxidation-reduction reaction occurs to obtain TiO2/C and Hg2Cl2. In view of the reduction activity and the performance of photothermal conversion of DL-Ti3C2 MXene itself, the electrochemical and photothermal responses decrease with the increase of the logarithm of Hg2+ concentration. The corresponding linear ranges are 50 pmol L-1-500 nmol L-1 and 1 nmol L-1-50 μmol L-1, and their detection limits calculated at 3 S/N are 17.2 pmol L-1 and 0.43 nmol L-1, respectively. DL-Ti3C2 MXene has the characteristics of a wide range of raw materials, low cost, and easy preparation. In addition, the design takes full advantage of the properties of the material itself, avoids the complex assembly and detection process of conventional sensors, and enables high selectivity and sensitivity for mercury detection. In particular, the dual-mode sensing endows self-confirmation of mercury ion detection results, thereby improving the reliability of the sensor.
Collapse
Affiliation(s)
- Yanxin Zhang
- School of Chemistry and Chemical Engineering & College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Jing Li
- School of Chemistry and Chemical Engineering & College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, PR China.
| | - Xiaobing Li
- School of Chemistry and Chemical Engineering & College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Jingchun Lv
- School of Chemistry and Chemical Engineering & College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Qin Xu
- Institute of Innovation Materials and Energy, Yangzhou University, Yangzhou, 225002, PR China
| | - Hongbo Li
- School of Chemistry and Chemical Engineering & College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, PR China.
| |
Collapse
|
15
|
Jiang S, Lu L, Song Y. Recent Advances of Flexible MXene and its Composites for Supercapacitors. Chemistry 2024; 30:e202304036. [PMID: 38298129 DOI: 10.1002/chem.202304036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
MXenes have unique properties such as high electrical conductivity, excellent mechanical properties, rich surface chemistry, and convenient processability. These characteristics make them ideal for producing flexible materials with tunable microstructures. This paper reviews the laboratory research progress of flexible MXene and its composite materials for supercapacitors. And introduces the general synthesis method of MXene, as well as the preparation and properties of flexible MXene. By analyzing the current research status, the electrochemical reaction mechanism of MXene was explained from the perspectives of electrolyte and surface terminating groups. This review particularly emphasizes the composite methods of freestanding flexible MXene composite materials. The review points out that the biggest problem with flexible MXene electrodes is severe self-stacking, which reduces the number of chemically active sites, weakens ion accessibility, and ultimately lowers electrochemical performance. Therefore, it is necessary to composite MXene with other electrode materials and design a good microstructure. This review affirms the enormous potential of flexible MXene and its composite materials in the field of supercapacitors. In addition, the challenges and possible improvements faced by MXene based materials in practical applications were also discussed.
Collapse
Affiliation(s)
- Shiben Jiang
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P.R. China
| | - Linghong Lu
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P.R. China
| | - Yan Song
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P.R. China
| |
Collapse
|
16
|
Zhang L, Chen Y, Yu L, Tao X, Tang L, Ye L, Liu Y, Han L, Li H, Ling Y, Zhu G, Jin H. Efficient sulfur atom-doped three-dimensional porous MXene-assisted sodium ion batteries. Dalton Trans 2024; 53:6583-6591. [PMID: 38353272 DOI: 10.1039/d3dt04312f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Recently, it has been reported that MXene is a promising pseudocapacitive material for energy storage, primarily due to its intercalation mechanism. However, Ti3C2Tx MXenes face challenges, such as inadequate layer spacing and low specific capacity, which greatly hinder their potential as anode materials for sodium storage. In this study, MXene was doped with sulfur to create a three-dimensional porous structure that resulted in an increased layer spacing. The sulfur-doped porous MXene (SPM) demonstrated exceptional performance as sodium ion battery anodes, with a capacity of 335.2 mA h g-1 after 490 cycles at 2 A g-1 and a long-term cycling performance of 256.1 mA h g-1 even after 2480 cycles at 5 A g-1. It is worth noting that the porous structure formed after sulfur-doping exhibits superior sodium storage performance compared to previously reported MXene-based electrodes. This highlights the feasibility of the structural construction strategy, offering an effective solution for energy storage and conversion applications.
Collapse
Affiliation(s)
- Linlin Zhang
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China.
| | - Yiguang Chen
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China.
| | - Lianghao Yu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China.
| | - Xin Tao
- Key Laboratory of Leather of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Lan Tang
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China.
| | - Liangzheng Ye
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China.
| | - Yu Liu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China.
| | - Lu Han
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China.
| | - Hengzheng Li
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China.
| | - Yihan Ling
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China.
| | - Guang Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China.
| | - Huile Jin
- Key Laboratory of Leather of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
17
|
Li M, Dai X, Wang M, Bai H. Bioinspired Macroporous Materials of MXene Nanosheets: Ice-Templated Assembly and Multifunctional Applications. SMALL METHODS 2024; 8:e2300213. [PMID: 37381683 DOI: 10.1002/smtd.202300213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Biological macroporous materials, such as stems of the plants and bone of the animals, possess outstanding properties for powerful guarantee of creatures' survival through the well-aligned architecture constructed from limited components. Transition metal carbides or nitrides (MXenes), as novel 2D assemblies, have attracted numerous attentions in various applications due to their unique properties. Therefore, mimicking the bioinspired architecture with MXenes will boost the development of human-made materials with unparalleled properties. Freeze casting has been widely applied to fabricate bioinspired MXene-based materials and achieve the assembly of MXene nanosheets into 3D forms. This process solves the inherent restacking problems of MXenes, simultaneously preserving the unique properties of MXenes with a physical process. Here, the ice-templated assembly of MXene in terms of the freezing processes and their potential mechanisms is summarized. In addition, applications of MXene-based materials in electromagnetic interference shielding and absorption, energy storage and conversion, as well as piezoresistive pressure sensors are also reviewed. Finally, the current challenges and bottlenecks of ice-templated assembly of MXene are further discussed to guide the development of bioinspired MXene-based materials.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
| | - Xuangeng Dai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mengning Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
| |
Collapse
|
18
|
Wang M, Li D, Xu H, Wang L, Li Y, Li G, Li J, Han W. Flexible Ti 3 C 2 T x MXene Bonded Bio-Derived Carbon Fibers Support Tin Disulfide for Fast and Stable Sodium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305530. [PMID: 37926758 DOI: 10.1002/smll.202305530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/16/2023] [Indexed: 11/07/2023]
Abstract
High energy density and flexible electrodes, which have high mechanical properties and electrochemical stability, are critical to the development of wearable electronics. In this work, a free-standing MXene bonded SnS2 composited nitrogen-doped carbon fibers (MXene/SnS2 @NCFs) film is reported as a flexible anode for sodium-ion batteries. SnS2 nanoparticles with high-capacity properties are covalently decorated in bio-derived nitrogen-doped 1D carbon fibers (SnS2 @NCFs) and further assembled with highly conductive MXene sheets. The addition of bacterial cellulose (BC) can further improve the flexibility of the film. The unique 3D structure of points, lines, and planes can not only offset the disadvantage of low conductivity of SnS2 nanoparticles but also expand the distance between MXene sheets, which is conducive to the penetration of electrolytes. More importantly, the MXene sheets and N-doped 1D carbon fibers (NCFs) can accommodate the large volume expansion of SnS2 nanoparticles and trap polysulfide during the cycle. The MXene/SnS2 @NCFs film exhibits better sodium storage and excellent rate performance compared to the SnS2 @NCFs. The in situ XRD and ex situ (XRD, XPS, and HRTEM) techniques are used to analyze the sodiation process and to deeply study the reaction mechanism of the films. Finally, the quasi-solid-state full cells with MXene/SnS2 @NCFs and Na3 V2 (PO4 )3 @carbon cloth (NVP@CC) fully demonstrate the application potential of the flexible electrodes.
Collapse
Affiliation(s)
- Mingrui Wang
- College of Physics, the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Dongdong Li
- College of Physics, the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Hao Xu
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Lili Wang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Yilin Li
- College of Physics, the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Guangshe Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Junzhi Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wei Han
- College of Physics, the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
19
|
Liu Y, Zhu Y, Xu Z, Xu X, Xue P, Jiang H, Zhang Z, Gao M, Liu H, Cheng B. Nanocellulose based ultra-elastic and durable foams for smart packaging applications. Carbohydr Polym 2024; 327:121674. [PMID: 38171661 DOI: 10.1016/j.carbpol.2023.121674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Foams with advanced sensing properties and excellent mechanical properties are promising candidates for smart packaging materials. However, the fabrication of ultra-elastic and durable foams is still challenging. Herein, we report a universal strategy to obtain ultra-elastic and durable foams by crosslinking cellulose nanofiber and MXene via strong covalent bonds and assembling the composites into anisotropic cellular structures. The obtained composite foam shows an excellent compressive strain of up to 90 % with height retention of 97.1 % and retains around 90.3 % of its original height even after 100,000 compressive cycles at 80 % strain. Their cushioning properties were systematically investigated, which are superior to that of wildly-used petroleum-based expanded polyethylene and expanded polystyrene. By employing the foam in a piezoelectric sensor, a smart cushioning packaging and pressure monitoring system is constructed to protect inner precision cargo and detect endured pressure during transportation for the first time.
Collapse
Affiliation(s)
- Yang Liu
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yaping Zhu
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zijun Xu
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xin Xu
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Pan Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Hong Jiang
- Research and Development Department, Jiangxi Changshuo Outdoor Leisure Products Co., Jiangxi 335500, PR China
| | - Zhengjian Zhang
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Meng Gao
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Hongbin Liu
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Bowen Cheng
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
20
|
Ma S, Zhao W, Liu X, Li Y, Ma P, Zhang K, Zhang Q. A novel microfluidic chip integrating with microcolumn array electrodes for rapid and ultrasensitive detection of alpha-fetoprotein. Anal Chim Acta 2024; 1291:342240. [PMID: 38280786 DOI: 10.1016/j.aca.2024.342240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Cancer posed a serious threat to human health, and early diagnosis of cancer biomarker was extremely important for the treatment and control of cancer. Electrochemistry-based assays were low-cost, responsive and easy to operate, but there were some challenges in terms of accuracy, detection limit, efficiency and portability. The combination of microfluidic devices and electrochemical methods was expected to construct a high-performance sensing platform, but long-time antigen-antibody incubation was still required. Therefore, a novel microfluidic chip needs to be developed, which has the advantages of good portability, short incubation time, high accuracy, low detection limit and great application to point-of-care testing. RESULTS A microfluidic sensor based on microcolumn array electrodes was developed, in which microcolumns could create local mixed flow to reduce the incubation time of target molecules and enhance their interaction with the sensing interface. Besides, three dimensional Mxene fibers-gold nanoparticles (3D MF-Au) was modified on the microcolumn array electrodes to increase active sites and provide more electrolyte shuttle holes. The electrolyte turbulence caused by the microcolumn array electrodes could heighten the contact between the target molecules and sensing interface and accelerate the transfer of redox pairs, thus reducing the incubation time of the target molecules and improving the electrochemical responses in synergy with the 3D MF-Au. Herein, the detection of AFP was chosen as a model, and the microfluidic sensor possessed superior performance for analysis of AFP in the range of 0.1 pg mL-1 - 200 ng mL-1 with a low detection limit (LOD) of 0.0648 pg mL-1. SIGNIFICANCE This microfluidic chip integrating with microcolumn array electrodes has been successfully implemented to detect AFP in human serum, and the results were consistent with that of electrochemical chemiluminescence method. The microfluidic chip provided a new strategy of portability, shortening incubation time and enhancing electrical signals for antigen detection of real samples, which showed great utilization potentiality in point-of-care testing.
Collapse
Affiliation(s)
- Shangshang Ma
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou, 221100, China; Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
| | - Wei Zhao
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou, 221100, China.
| | - Xutang Liu
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou, 221100, China
| | - Yifan Li
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
| | - Ping Ma
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
| | - Keying Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
| | - Qing Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China.
| |
Collapse
|
21
|
Dong B, Yu D, Lu P, Song Z, Chen W, Zhang F, Li B, Wang H, Liu W. TEMPO bacterial cellulose and MXene nanosheets synergistically promote tough hydrogels for intelligent wearable human-machine interaction. Carbohydr Polym 2024; 326:121621. [PMID: 38142077 DOI: 10.1016/j.carbpol.2023.121621] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/07/2023] [Accepted: 11/18/2023] [Indexed: 12/25/2023]
Abstract
Conductive hydrogels have received increasing attention in the field of wearable electronics, but they also face many challenges such as temperature tolerance, biocompatibility, and stability of mechanical properties. In this paper, a double network hydrogel of MXene/TEMPO bacterial cellulose (TOBC) system is proposed. Through solvent replacement, the hydrogel exhibits wide temperature tolerance (-20-60 °C) and stable mechanical properties. A large number of hydrogen bonds, MXene/TOBC dynamic three-dimensional network system, and micellar interactions endow the hydrogel with excellent mechanical properties (elongation at break ~2800 %, strength at break ~420 kPa) and self-healing ability. The introduction of tannic acid prevents the oxidation of MXene and the loss of electrical properties of the hydrogel. In addition, the sensor can also quickly (74 ms) and sensitive (gauge factor = 15.65) wirelessly monitor human motion, and the biocompatibility can well avoid the stimulation when it comes into contact with the human body. This series of research work reveals the fabrication of MXene-like flexible wearable electronic devices based on self-healing, good cell compatibility, high sensitivity, wide temperature tolerance and durability, which can be used in smart wearable, wireless monitoring, human-machine Interaction and other aspects show great application potential.
Collapse
Affiliation(s)
- Baoting Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Dehai Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China.
| | - Peng Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhaoping Song
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Wei Chen
- College of Engineering, Qufu Normal University, Rizhao 276826, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd., Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying, Shandong Province 257335, China
| | - Bin Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Huili Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Wenxia Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| |
Collapse
|
22
|
Lu B, Cheng H, Qu L. Inorganic Hydrogel Based on Low-Dimensional Nanomaterials. ACS NANO 2024; 18:2730-2749. [PMID: 38221737 DOI: 10.1021/acsnano.3c11262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Composed of three-dimensional (3D) nanoscale inorganic bones and up to 99% water, inorganic hydrogels have attracted much attention and undergone significant growth in recent years. The basic units of inorganic hydrogels could be metal nanoparticles, metal nanowires, SiO2 nanowires, graphene nanosheets, and MXene nanosheets, which are then assembled into the special porous structures by the sol-gel process or gelation via either covalent or noncovalent interactions. The high electrical and thermal conductivity, resistance to corrosion, stability across various temperatures, and high surface area make them promising candidates for diverse applications, such as energy storage, catalysis, adsorption, sensing, and solar steam generation. Besides, some interesting derivatives, such as inorganic aerogels and xerogels, can be produced through further processing, diversifying their functionalities and application domains greatly. In this context, we primarily provide a comprehensive overview of the current status of inorganic hydrogels and their derivatives, including the structures of inorganic hydrogels with various compositions, their gelation mechanisms, and their exceptional practical performance in fields related to energy and environmental applications.
Collapse
Affiliation(s)
- Bing Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- Laboratory of Flexible Electronics Technology, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, P. R. China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- Laboratory of Flexible Electronics Technology, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- Laboratory of Flexible Electronics Technology, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
23
|
Sergiienko SA, Lajaunie L, Rodríguez-Castellón E, Constantinescu G, Lopes DV, Shcherban ND, Calvino JJ, Labrincha JA, Sofer Z, Kovalevsky AV. Composite MAX phase/MXene/Ni electrodes with a porous 3D structure for hydrogen evolution and energy storage application. RSC Adv 2024; 14:3052-3069. [PMID: 38239441 PMCID: PMC10795003 DOI: 10.1039/d3ra07335a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
MXenes, a family of two-dimensional (2D) transition metal carbides, have been discovered as exciting candidates for various energy storage and conversion applications, including green hydrogen production by water splitting. Today, these materials mostly remain interesting objects for in-depth fundamental studies and scientific curiosity due to issues related to their preparation and environmental stability, limiting potential industrial applications. This work proposes a simple and inexpensive concept of composite electrodes composed of molybdenum- and titanium-containing MAX phases and MXene as functional materials. The concept is based on the modification of the initial MAX phase by the addition of metallic Ni, tuning Al- and carbon content and synthesis conditions, followed by fluoride-free etching under alkaline conditions. The proposed methodology allows producing a composite electrode with a well-developed 3D porous MAX phase-based structure acting as a support for electrocatalytic species, including MXene, and possessing good mechanical integrity. Electrochemical tests have shown a high electrochemical activity of such electrodes towards the hydrogen evolution reaction (HER), combined with a relatively high areal capacitance (up to 10 F cm-2).
Collapse
Affiliation(s)
- Sergii A Sergiienko
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague Technická 5, 166 28 Prague 6 Czech Republic
- Department of Materials and Ceramics Engineering, CICECO - Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro Portugal
| | - Luc Lajaunie
- Departamento de Ciencia de Los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz Campus Río San Pedro S/N, Puerto Real 11510 Cádiz Spain
- Instituto Universitario de Investigación de Microscopía Electrónica y Materiales (IMEYMAT), Facultad de Ciencias, Universidad de Cádiz Campus Río San Pedro S/N, Puerto Real 11510 Cádiz Spain
| | | | - Gabriel Constantinescu
- Department of Materials and Ceramics Engineering, CICECO - Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro Portugal
| | - Daniela V Lopes
- Department of Materials and Ceramics Engineering, CICECO - Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro Portugal
| | - Nataliya D Shcherban
- L. V. Pisarzhevsky Institute of Physical Chemistry of NAS of Ukraine 31 Nauki Ave. Kyiv 03028 Ukraine
| | - José J Calvino
- Departamento de Ciencia de Los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz Campus Río San Pedro S/N, Puerto Real 11510 Cádiz Spain
- Instituto Universitario de Investigación de Microscopía Electrónica y Materiales (IMEYMAT), Facultad de Ciencias, Universidad de Cádiz Campus Río San Pedro S/N, Puerto Real 11510 Cádiz Spain
| | - João A Labrincha
- Department of Materials and Ceramics Engineering, CICECO - Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro Portugal
| | - Zdenek Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague Technická 5, 166 28 Prague 6 Czech Republic
| | - Andrei V Kovalevsky
- Department of Materials and Ceramics Engineering, CICECO - Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro Portugal
| |
Collapse
|
24
|
Kiai MS, Ponnada S, Eroglu O, Mansoor M, Aslfattahi N, Nguyen V, Gadkari S, Sharma RK. Ti 3C 2T x nanosheet@Cu/Fe-MOF separators for high-performance lithium-sulfur batteries: an experimental and density functional theory study. Dalton Trans 2023; 53:82-92. [PMID: 38037690 DOI: 10.1039/d3dt03134a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Lithium-sulfur (Li-S) batteries have attracted much attention due to their superior theoretical specific capacity and high theoretical energy density. However, rapid capacity fading originating from the shuttle effect, insulating the S cathode and the dendrite formation on the Li anode restrict the practical applications of Li-S batteries. Herein, we suggest novel coatings on glass fiber separators to satisfy all high-performance Li-S battery requirements. A conductive Ti3C2Tx (MXene) nanosheet/Fe-MOF or Ti3C2Tx (MXene) nanosheet/Cu-MOF layer was coated on a glass fiber separator to act as a polysulfide trapping layer. The MXene layer with high conductivity and polar surface functional groups could confine polysulfides and accelerate the redox conversions. The porous MOF layer acts as a Li ion sieve, thereby leading to the interception of polysulfides and mitigation of Li dendrite growth. The cells with the Cu-MOF/MXenes and Fe-MOF/MXene separators display superior capacities of 1100 and 1131 mA h g-1 after 300 cycles, respectively, whereas the cell with a pure glass fiber separator delivers a very low capacity of 309 mA h g-1 after 300 cycles. With Fe-MOF/MXene and Cu-MOF/MXene configurations, the discharge capacity, coulombic efficiency, cycling stability, and electrochemical conversion reactions are significantly improved. Our ab initio calculations demonstrate that the MXene layer dissociates lithium polysulfides into adsorbed S and mobile Li ions, which explains the experimental findings.
Collapse
Affiliation(s)
- Maryam Sadat Kiai
- Center for BioNano Interactions, School of Chemistry, University College of Dublin, Belfield, Dublin 4, Ireland.
| | - Srikanth Ponnada
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO, 80401, USA.
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Karwad, Jodhpur-342037, India.
| | - Omer Eroglu
- Materials Science and Engineering, Istanbul Technical University, Istanbul, 34469, Turkey
| | - Mubashir Mansoor
- Metallurgical and Materials Engineering Department, Istanbul Technical University, Istanbul, Turkey
- Department of Applied Physics, Istanbul Technical University, Istanbul, Turkey
| | - Navid Aslfattahi
- Department of Fluid Mechanics and Thermodynamics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague 166 07, Czech Republic
| | - Vinh Nguyen
- TDA Research Inc, 4663 Table Mountain Dr, Golden, CO 80403, USA
| | - Siddarth Gadkari
- School of Chemistry and Chemical Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Rakesh K Sharma
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Karwad, Jodhpur-342037, India.
| |
Collapse
|
25
|
Geng X, Yang L, Song P. Application of MXene-Based Materials for Cathode in Lithium-Sulfur Batteries. Chemistry 2023:e202303451. [PMID: 38050760 DOI: 10.1002/chem.202303451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
The lithium-sulfur (Li-S) batteries have a high theoretical specific capacity of 1675 mAh ⋅ g-1 and have become the most promising high-energy storage system for the next generation batteries technology. However, their applications are hindered by insulated feature and volume expansion of sulfur, as well as the "shuttle effect" of polysulfides. MXenes own metallic conductivity and strong ability of polysulfides adsorption. Besides, their unique two-dimensional (2D) structure, large specific surface area, abundant functional groups, and adjustability are beneficial to overcome the drawbacks of the sulfur cathode. In this review, different mainstream preparation methods and excellent properties of MXenes are summarized. Significant achievements and recent progress of MXene-based cathodes and interlayers applied to Li-S cathodes are concluded later. Finally, the challenges, possible solutions and potential applications of MXenes for Li-S batteries are also presented.
Collapse
Affiliation(s)
- Xianwei Geng
- State Key Laboratory of Low-Carbon Smart Coal-Fired, Power Generation and Ultra-Clean Emission, China Energy and Technology Research Institute Co., Ltd, Nanjing, 210023, China
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Li Yang
- Department of Chemistry, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Pengfei Song
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| |
Collapse
|
26
|
Arslanoglu M, Yuan B, Panat R, Ozdoganlar OB. 3D Assembly of MXene Networks using a Ceramic Backbone with Controlled Porosity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304757. [PMID: 37660292 DOI: 10.1002/adma.202304757] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/14/2023] [Indexed: 09/04/2023]
Abstract
Transition metal carbides (MXenes) are novel 2D nanomaterials with exceptional properties, promising significant impact in applications such as energy storage, catalysis, and energy conversion. A major barrier preventing the widespread use of MXenes is the lack of methods for assembling MXene in 3D space without significant restacking, which degrades their performance. Here, this challenge is successfully overcome by introducing a novel material system: a 3D network of MXene formed on a porous ceramic backbone. The backbone dictates the network's 3D architecture while providing mechanical strength, gas/liquid permeability, and other beneficial properties. Freeze casting is used to fabricate a silica backbone with open pores and controlled porosity. Next, capilary flow is used to infiltrate MXene into the backbone from a dispersion. The system is then dried to conformally coat the pore walls with MXene, creating an interconnected 3D-MXene network. The fabrication approach is reproducible, and the MXene-infiltrated porous silica (MX-PS) system is highly conductive (e.g., 340 S m-1 ). The electrical conductivity of MX-PS is controlled by the porosity distribution, MXene concentration, and the number of infiltration cycles. Sandwich-type supercapacitors with MX-PS electrodes are shown to produce excellent areal capacitance (7.24 F cm-2 ) and energy density (0.32 mWh cm-2 ) with only 6% added MXene mass. This approach of creating 3D architectures of 2D nanomaterials will significantly impact many engineering applications.
Collapse
Affiliation(s)
- Mert Arslanoglu
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Bin Yuan
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Rahul Panat
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - O Burak Ozdoganlar
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
27
|
Hang T, Zheng J, Zou Y, Jiang S, Zhao Y, Li Z, Zhou L, Li X, Tong G, Chen Y. High-performance composite elastomers with abundant heterostructures for enhanced electromagnetic wave absorption with ultrabroad bandwidth. J Colloid Interface Sci 2023; 650:437-445. [PMID: 37418894 DOI: 10.1016/j.jcis.2023.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Two-dimensional (2D) MXene has attracted vast attention in electromagnetic wave absorption (EWA), but there remains a contradiction between maintaining impedance matching and enhancing dielectric loss. Herein, the multi-scale architectures of ecoflex/2D MXene (Ti3C2Tx)@zero-dimensional CoNi sphere@one-dimensional carbon nanotube composite elastomers were successfully constructed by simple liquid-phase reduction and thermo-curing method. The binding between the hybrids as fillers and ecoflex as a matrix greatly enhanced the EWA capability of the obtained composite elastomer and improved its mechanical properties. Owing to its good impedance matching, abundant heterostructures, and synergistic electrical and magnetic losses, this elastomer exhibited an excellent minimum reflection loss of -67 dB at 9.46 GHz under a thickness of 2.98 mm. In addition, its ultrabroad effective absorption bandwidth reached 6.07 GHz. This achievement will pave the way for the exploitation of multi-dimensional heterostructures as high-performance electromagnetic absorbers with superior EWA ability.
Collapse
Affiliation(s)
- Tianyi Hang
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Jiajia Zheng
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Yijie Zou
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuchen Zhao
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaochun Li
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Lijie Zhou
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Xiping Li
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Guoxiu Tong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yiming Chen
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
28
|
Hu J, Song F, Lian S, Liu Z, Peng X, Wang J, Li G, Wu Z, Xie X, Zhang N. Room-temperature assembled 3D macro-porous Ti 3C 2T x/RGO hybrid hydrogel and the application as the self-standing electrode for sodium-ion storage. J Colloid Interface Sci 2023; 650:1225-1234. [PMID: 37478739 DOI: 10.1016/j.jcis.2023.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
Assembling two-dimensional (2D) MXene nanosheets into monolithic three-dimensional (3D) structures is an efficient pathway to transfer the nanoscale properties to practical applications. Nevertheless, the majority of the preparation schemes described in the literature are carried out at relatively high temperatures, which inevitably leads to the notorious high-temperature oxidation issue of MXenes. Preparing MXene-based hydrogels at lower temperatures or even room temperature is of great research importance. In this study, we report a novel and efficient room-temperature gelation method for fabricating 3D macro-porous Ti3C2Tx MXene/reduced graphene oxide (RGO) hybrid hydrogels, using anhydrous sodium sulfide (Na2S) as the primary reducing agent and l-cysteine as the auxiliary crosslinker. This room-temperature preparation technique successfully prevents the oxidation issue of MXenes and generates porous aerogels with excellent structural robustness after freeze-drying. As the self-standing anode for sodium-ion storage, the optimized 3D Ti3C2Tx MXene/RGO electrode possesses a specific capacity of 152 mAh/g at 0.1 A/g and good cycling stability with no significant capacity degradation after 500 cycles, which is significantly higher than that of the vacuum-filtered MXene film. This work demonstrates a straightforward room-temperature gelation method for constructing 3D MXene-based hydrogels to avoid the oxidation of MXenes, and casts new insight on the mechanism of the graphene oxide (GO)-assisted gelation.
Collapse
Affiliation(s)
- Jian Hu
- College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Fei Song
- College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Shuhan Lian
- College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Zhichao Liu
- College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Xiangqi Peng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Jie Wang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Guohao Li
- College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Zhenjun Wu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Xiuqiang Xie
- College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Nan Zhang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
29
|
Chhattal M, Rosenkranz A, Zaki S, Ren K, Ghaffar A, Gong Z, Grützmacher PG. Unveiling the tribological potential of MXenes-current understanding and future perspectives. Adv Colloid Interface Sci 2023; 321:103021. [PMID: 37866121 DOI: 10.1016/j.cis.2023.103021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/05/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023]
Abstract
Reducing energy consumption and CO2 emissions by improving the tribological performance of mechanical systems relies on the development of new lubrication concepts. Two-dimensional (2D) materials have been the subject of extensive tribological research due to their unique physical and chemical properties. 2D transition metal carbides, nitrides, and carbonitrides (MXenes), with their tuneable chemistry and structure, are a relatively new addition to the family of 2D materials. MXenes' good strength and stiffness, easy-to-shear ability, capability to form wear-resistant tribofilms, and the possibility to control their surface chemistry make them appealing candidates to be explored for tribological purposes. This review provides a comprehensive overview of MXenes' tribology, covering their structure-property relationship, synthesis approaches, deposition methods to generate MXene coatings for tribological purposes, and their fundamental tribological mechanisms. Furthermore, detailed insights into studies exploring MXenes' tribological performance from the nano- to the macro-scale are presented with special emphasis on their use as self-lubricating solid lubricants, lubricant additives, and reinforcement phases in composites.
Collapse
Affiliation(s)
- Muhammad Chhattal
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andreas Rosenkranz
- Department of Chemical Engineering, Biotechnology, and Materials, FCFM, Universidad de Chile, Santiago, Chile
| | - Sana Zaki
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, Dublin 4, Ireland
| | - Kexin Ren
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Abdul Ghaffar
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenbin Gong
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Philipp G Grützmacher
- Department of Engineering Design and Product Development, TU Wien, Vienna 1060, Austria.
| |
Collapse
|
30
|
Jung Y, Seok SH, Jung KW, Park J, Kwon SY, Choi JW. Nitrogen-Doped Titanium Carbide (Ti 3 C 2 T x ) MXene Nanosheet Stack For Long-Term Stability and Efficacy in Au and Ag Recovery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305247. [PMID: 37518852 DOI: 10.1002/smll.202305247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/01/2023] [Indexed: 08/01/2023]
Abstract
The development of efficient adsorbents for the practical recovery of precious metals from electronic waste is vital to advanced energy/environment industries. Ti3 C2 Tx MXene-based materials are promising adsorbents for aqueous environments; however, the highly defective and super hydrophilic nature of the MXene surface hinders its practical applications. Here, we report that nitrogen-doped MXene (N-MXene) nanosheet stacks, prepared via high-energy planetary ball milling under N2 purging, exhibited a long-term stable and excellent recovery capability for Au and Ag ions via the nitrogenation of defective vacancies. Notably, these microscale nanosheets could facilitate the sustainable production of Au and Ag from secondary sources, exhibiting a high recovery rate and capability (1198 mg g-1 for Au and 1528 mg g-1 for Ag), long-term stable storability (21 d), and high selectivity (Kd of 1.67 × 106 for Au and 2.07 × 107 for Ag). Furthermore, the reversible redox chemistry of N-MXene facilitated its repeated use in adsorption/desorption cycles.
Collapse
Affiliation(s)
- Youngkyun Jung
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Shi-Hyun Seok
- Department of Materials Science and Engineering and Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kyung-Won Jung
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jaeeun Park
- Department of Materials Science and Engineering and Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Soon-Yong Kwon
- Department of Materials Science and Engineering and Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jae-Woo Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| |
Collapse
|
31
|
Yang Q, Li M, Chen R, Gao D, Wang Z, Qin C, Yang W, Liu H, Zhang P. Enhanced Mechanical Strength of Metal Ion-Doped MXene-Based Double-Network Hydrogels for Highly Sensitive and Durable Flexible Sensors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37890050 DOI: 10.1021/acsami.3c12048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Development of conductive hydrogels with high sensitivity and excellent mechanical properties remains a challenge for constructing flexible sensor devices. Herein, a universal strategy is presented for enhancing the mechanical strength of Mxene-based double-network hydrogels through metal ion coordination effects. Polyacrylamide (PAM)/sodium alginate (SA)/Mxene double-network (PSM-DN) hydrogels were prepared by metal ion impregnation of PAM/SA/Mxene (PSM) hydrogels. High electrical conductivity is achieved due to MXene nanosheets, while the strong coordination bond between metal ions and SA constructs a second network that increases the mechanical strength of the hydrogel by an order of magnitude. Mechanical tests demonstrated that the elastic modulus of hydrogels matches that of human tissues. Hence, they can be used as a highly sensitive electronic skin sensor to recognize the movement of different joints in humans and also as a pressure sensing interface to recognize characters for anticounterfeiting and information transfer. This work can promote the practical application of conductive hydrogels in high-tech fields, such as flexible electronic skin and interface interaction.
Collapse
Affiliation(s)
- Qin Yang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mingzi Li
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Rong Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dahang Gao
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhen Wang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chuanjian Qin
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenjing Yang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hu Liu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Pengsheng Zhang
- Biomaterials Research Center, Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, China
| |
Collapse
|
32
|
Deshmukh S, Ghosh K, Pykal M, Otyepka M, Pumera M. Laser-Induced MXene-Functionalized Graphene Nanoarchitectonics-Based Microsupercapacitor for Health Monitoring Application. ACS NANO 2023; 17:20537-20550. [PMID: 37792563 PMCID: PMC10604107 DOI: 10.1021/acsnano.3c07319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Microsupercapacitors (micro-SCs) with mechanical flexibility have the potential to complement or even replace microbatteries in the portable electronics sector, particularly for portable biomonitoring devices. The real-time biomonitoring of the human body's physical status using lightweight, flexible, and wearable micro-SCs is important to consider, but the main limitation is, however, the low energy density of micro-SCs as compared to microbatteries. Here using a temporally and spatially controlled picosecond pulsed laser, we developed high-energy-density micro-SCs integrated with a force sensing device to monitor a human body's radial artery pulses. The photochemically synthesized spherical laser-induced MXene (Ti3C2Tx)-derived oxide nanoparticles uniformly attached to laser-induced graphene (LIG) act as active electrode materials for micro-SCs. The molecular dynamics simulations and detailed spectroscopic analysis reveal the synergistic interfacial interaction mechanism of Ti-O-C covalent bonding between MXene and LIG. The incorporation of MXene nanosheets improves the graphene sheet alignment and ion transport while minimizing self-restacking. Furthermore, the micro-SCs based on a nano-MXene-LIG hybrid demonstrate high mechanical flexibility, durability, ultrahigh energy density (21.16 × 10-3 mWh cm-2), and excellent capacitance (∼100 mF cm-2 @ 10 mV s-1) with long cycle life (91% retention after 10 000 cycles). Such a single-step roll-to-roll highly reproducible manufacturing technique using a picosecond pulsed laser to induce MXene-derived spherical oxide nanoparticles (size of quantum dots) attached uniformly to laser-induced graphene for biomedical device fabrication is expected to find a wide range of applications.
Collapse
Affiliation(s)
- Sujit Deshmukh
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Kalyan Ghosh
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Martin Pykal
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- IT4Innovations, VŠB-Technical University
Ostrava, 17. listopadu
2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Martin Pumera
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Faculty
of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic
- Department
of Chemical and Biomolecular Engineering, Yonsei University, 50
Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Department
of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| |
Collapse
|
33
|
Wang P, Wang B, Wang R. Progress in the Synthesis Process and Electrocatalytic Application of MXene Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6816. [PMID: 37895797 PMCID: PMC10608629 DOI: 10.3390/ma16206816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023]
Abstract
With their rich surface chemistry, high electrical conductivity, variable bandgap, and thermal stability, 2D materials have been developed for effective electrochemical energy conversion systems over the past decade. Due to the diversity brought about by the use of transition metals and C/N pairings, the 2D material MXene has found excellent applications in many fields. Among the various applications, many breakthroughs have been made in electrocatalytic applications. Nevertheless, related studies on topics such as the factors affecting the material properties and safer and greener preparation methods have not been reported in detail. Therefore, in this paper, we review the relevant preparation methods of MXene and the safer, more environmentally friendly preparation techniques in detail, and summarize the progress of research on MXene-based materials as highly efficient electrocatalysts in the electrocatalytic field of hydrogen precipitation reaction, nitrogen reduction reaction, oxygen precipitation reaction, oxygen reduction reaction, and carbon dioxide reduction reaction. We also discuss the technology related to MXene materials for hydrogen storage. The main challenges and opportunities for MXene-based materials, which constitute a platform for next-generation electrocatalysis in basic research and practical applications, are highlighted. This paper aims to promote the further development of MXenes and related materials for electrocatalytic applications.
Collapse
Affiliation(s)
- Peng Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Bingquan Wang
- School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rui Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
34
|
Zarepour A, Karasu Ç, Mir Y, Nematollahi MH, Iravani S, Zarrabi A. Graphene- and MXene-based materials for neuroscience: diagnostic and therapeutic applications. Biomater Sci 2023; 11:6687-6710. [PMID: 37646462 DOI: 10.1039/d3bm01114c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
MXenes and graphene are two-dimensional materials that have gained increasing attention in neuroscience, particularly in sensing, theranostics, and biomedical engineering. Various composites of graphene and MXenes with fascinating thermal, optical, magnetic, mechanical, and electrical properties have been introduced to develop advanced nanosystems for diagnostic and therapeutic applications, as exemplified in the case of biosensors for neurotransmitter detection. These biosensors display high sensitivity, selectivity, and stability, making them promising tools for neuroscience research. MXenes have been employed to create high-resolution neural interfaces for neuroelectronic devices, develop neuro-receptor-mediated synapse devices, and stimulate the electrophysiological maturation of neural circuits. On the other hand, graphene/derivatives exhibit therapeutic applicability in neuroscience, as exemplified in the case of graphene oxide for targeted delivery of therapeutic agents to the brain. While MXenes and graphene have potential benefits in neuroscience, there are also challenges/limitations associated with their use, such as toxicity, environmental impacts, and limited understanding of their properties. In addition, large-scale production and commercialization as well as optimization of reaction/synthesis conditions and clinical translation studies are very important aspects. Thus, it is important to consider the use of these materials in neuroscience research and conduct further research to obtain an in-depth understanding of their properties and potential applications. By addressing issues related to biocompatibility, long-term stability, targeted delivery, electrical interfaces, scalability, and cost-effectiveness, MXenes and graphene have the potential to greatly advance the field of neuroscience and pave the way for innovative diagnostic and therapeutic approaches for neurological disorders. Herein, recent advances in therapeutic and diagnostic applications of graphene- and MXene-based materials in neuroscience are discussed, focusing on important challenges and future prospects.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey.
| | - Çimen Karasu
- Cellular Stress Response and Signal Transduction Research Laboratory, Department of Medical Pharmacology, Faculty of Medicine, Gazi University, 06500 Ankara, Turkey
| | - Yousof Mir
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Hadi Nematollahi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey.
| |
Collapse
|
35
|
Uzunoglu A, Gunes Altuntas E, Huseyin Ipekci H, Ozoglu O. Two-Dimensional (2D) materials in the detection of SARS-CoV-2. Microchem J 2023; 193:108970. [PMID: 37342763 PMCID: PMC10265934 DOI: 10.1016/j.microc.2023.108970] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 06/23/2023]
Abstract
The SARS-CoV-2 pandemic has resulted in a devastating effect on human health in the last three years. While tremendous effort has been devoted to the development of effective treatment and vaccines against SARS-CoV-2 and controlling the spread of it, collective health challenges have been encountered along with the concurrent serious economic impacts. Since the beginning of the pandemic, various detection methods like PCR-based methods, isothermal nucleic acid amplification-based (INAA) methods, serological methods or antibody tests, and evaluation of X-ray chest results have been exploited to diagnose SARS-CoV-2. PCR-based detection methods in these are considered gold standards in the current stage despite their drawbacks, including being high-cost and time-consuming procedures. Furthermore, the results obtained from the PCR tests are susceptible to sample collection methods and time. When the sample is not collected properly, obtaining a false result may be likely. The use of specialized lab equipment and the need for trained people for the experiments pose additional challenges in PCR-based testing methods. Also, similar problems are observed in other molecular and serological methods. Therefore, biosensor technologies are becoming advantageous with their quick response, high specificity and precision, and low-cost characteristics for SARS-CoV-2 detection. In this paper, we critically review the advances in the development of sensors for the detection of SARS-CoV-2 using two-dimensional (2D) materials. Since 2D materials including graphene and graphene-related materials, transition metal carbides, carbonitrides, and nitrides (MXenes), and transition metal dichalcogenides (TMDs) play key roles in the development of novel and high-performance electrochemical (bio)sensors, this review pushes the sensor technologies against SARS-CoV-2 detection forward and highlights the current trends. First, the basics of SARS-CoV-2 detection are described. Then the structure and the physicochemical properties of the 2D materials are explained, which is followed by the development of SARS-CoV-2 sensors by exploiting the exceptional properties of the 2D materials. This critical review covers most of the published papers in detail from the beginning of the outbreak.
Collapse
Affiliation(s)
- Aytekin Uzunoglu
- Faculty of Engineering, Metallurgical & Materials Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Evrim Gunes Altuntas
- Ankara University, Biotechnology Institute, Gumusdere Campus, 06135, Ankara, Turkey
| | - Hasan Huseyin Ipekci
- Faculty of Engineering, Metallurgical & Materials Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Ozum Ozoglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, 16059 Bursa, Turkey
| |
Collapse
|
36
|
Pan J, Zhou X, Gong H, Lin Z, Xiang H, Liu X, Chen X, Li H, Liu T, Liu S. Covalently Functionalized MoS 2 Initiated Gelation of Hydrogels for Flexible Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37466084 DOI: 10.1021/acsami.3c03234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Transition metal dichalcogenides (TMDs), with superior mechanical and electrical conductivity, are one of the most promising two-dimensional materials for creating a generation of intelligent and flexible electronic devices. However, due to the high van der Waals and electrostatic attraction, TMD nanomaterials tend to aggregate in dispersants to achieve a stable state, thus severely limiting their further applications. Surface chemical modification is a common strategy for improving the dispersity of TMD nanomaterials; however, there are still constraints such as limited functionalization methods, low grafting rate, and difficult practice application. Thus, it is challenging to develop innovative surface modification systems. Herein, we covalently modify an olefin molecule on surface-inert MoS2, and the modified MoS2 can be used as not only a catalyst for hydrogel polymerization, but also a cross-linker in the hydrogel network. Specifically, allyl is covalently grafted onto chemically exfoliated MoS2, and this modified MoS2 can be uniformly dispersed in polar solvents (such as acetone, N,N-dimethylformamide, and ethanol), remaining stable for more than 2 weeks. The allyl-modified MoS2 can catalyze the polymerization of polyacrylamide hydrogel and then integrate in the network, which increases the tensile strength of the composite hydrogel. The flexible sensor based on the composite hydrogel exhibits an ideal operating range of 600% and a quick response time of 150 ms. At the same time, the flexible device can also track the massive axial stretching movements of human joints, making it a reliable option for the next wave of wearable sensing technology.
Collapse
Affiliation(s)
- Jia Pan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Xionglin Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Huimin Gong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, P. R. China
| | - Haiyan Xiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Xiao Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Xuli Chen
- College of Materials Science and Engineering, Hunan University, South Lushan Road, Changsha 410082, Hunan, P. R. China
| | - Huimin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, P. R. China
| | - Song Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| |
Collapse
|
37
|
Liu Y, Liu X, Dong S, Zhang X, Wei Y, Lv L, He S. Tuning the pore size distribution of Ti3C2T porous film for high capacity supercapacitor electrode. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
38
|
Xu T, Song Q, Liu K, Liu H, Pan J, Liu W, Dai L, Zhang M, Wang Y, Si C, Du H, Zhang K. Nanocellulose-Assisted Construction of Multifunctional MXene-Based Aerogels with Engineering Biomimetic Texture for Pressure Sensor and Compressible Electrode. NANO-MICRO LETTERS 2023; 15:98. [PMID: 37038023 PMCID: PMC10086089 DOI: 10.1007/s40820-023-01073-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/10/2023] [Indexed: 05/24/2023]
Abstract
Multifunctional architecture with intriguing structural design is highly desired for realizing the promising performances in wearable sensors and flexible energy storage devices. Cellulose nanofiber (CNF) is employed for assisting in building conductive, hyperelastic, and ultralight Ti3C2Tx MXene hybrid aerogels with oriented tracheid-like texture. The biomimetic hybrid aerogels are constructed by a facile bidirectional freezing strategy with CNF, carbon nanotube (CNT), and MXene based on synergistic electrostatic interaction and hydrogen bonding. Entangled CNF and CNT "mortars" bonded with MXene "bricks" of the tracheid structure produce good interfacial binding, and superior mechanical strength (up to 80% compressibility and extraordinary fatigue resistance of 1000 cycles at 50% strain). Benefiting from the biomimetic texture, CNF/CNT/MXene aerogel shows ultralow density of 7.48 mg cm-3 and excellent electrical conductivity (~ 2400 S m-1). Used as pressure sensors, such aerogels exhibit appealing sensitivity performance with the linear sensitivity up to 817.3 kPa-1, which affords their application in monitoring body surface information and detecting human motion. Furthermore, the aerogels can also act as electrode materials of compressive solid-state supercapacitors that reveal satisfactory electrochemical performance (849.2 mF cm-2 at 0.8 mA cm-2) and superior long cycle compression performance (88% after 10,000 cycles at a compressive strain of 30%).
Collapse
Affiliation(s)
- Ting Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Qun Song
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Kun Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Huayu Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Junjie Pan
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Wei Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Lin Dai
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Meng Zhang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Yaxuan Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- State Key Laboratory of Bio-Based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan, 250353, People's Republic of China.
| | - Haishun Du
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
39
|
Zhang Y, Ruan K, Zhou K, Gu J. Controlled Distributed Ti 3 C 2 T x Hollow Microspheres on Thermally Conductive Polyimide Composite Films for Excellent Electromagnetic Interference Shielding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211642. [PMID: 36703618 DOI: 10.1002/adma.202211642] [Citation(s) in RCA: 78] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Flexible multifunctional polymer-based electromagnetic interference (EMI) shielding composite films have important applications in the fields of 5G communication technology, wearable electronic devices, and artificial intelligence. Based on the design of a porous/multilayered structure and using polyimide (PI) as the matrix and polymethyl methacrylate (PMMA) microspheres as the template, flexible (Fe3 O4 /PI)-Ti3 C2 Tx -(Fe3 O4 /PI) composite films with controllable pore sizes and distribution of Ti3 C2 Tx hollow microspheres are successfully prepared by sacrificial template method. Owing to the porous/multilayered structure, when the pore size of the Ti3 C2 Tx hollow microspheres is 10 µm and the mass ratio of PMMA/Ti3 C2 Tx is 2:1, the (Fe3 O4 /PI)-Ti3 C2 Tx -(Fe3 O4 /PI) composite film has the most excellent EMI shielding performance, with EMI shielding effectiveness (EMI SE) of 85 dB. It is further verified by finite element simulation that the composite film has an excellent shielding effect on electromagnetic waves. In addition, the composite film has good thermal conductivity (thermal conductivity coefficient of 3.49 W (m·K)-1 ) and mechanical properties (tensile strength of 65.3 MPa). This flexible (Fe3 O4 /PI)-Ti3 C2 Tx -(Fe3 O4 /PI) composite film with excellent EMI shielding performance, thermal conductivity, and mechanical properties has demonstrated great potential for applications in EMI shielding protection for high-power, portable, and wearable flexible electronic devices.
Collapse
Affiliation(s)
- Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Kunpeng Ruan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Kun Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
40
|
Ding YZ, Zhang YD, Shi YP. Transition metal composites for selective analysis of vitamin B 2 in rice by ultrahigh-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2023; 1693:463881. [PMID: 36857984 DOI: 10.1016/j.chroma.2023.463881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
A novel amino-functionalized zinc ferrite nanoparticles/MXene (ZnFe2O4-NH2/MXene composite which consist of ZnFe2O4-NH2 and single/few layers MXene was designed and synthesized as an efficient extractant for analysis of vitamin B2 in rice first combined with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). As a result, the single/few layer MXene was tightly attached to the spherical ZnFe2O4-NH2 nanoparticles by electrostatic self-assembly interaction, which present large specific surface area and fast mass transfer rate. The relevant experimental parameters, including the pH of the solution, extraction time, adsorbent amount, desorption solvent, desorption solvent volume and desorption time were investigated and optimized. Under optimum conditions, the ZnFe2O4-NH2/MXene composite exhibited excellent selectivity and adsorption capacity for vitamin B2 through hydrogen bonding interactions and the metal-π complexation interaction. The adsorption kinetics, isotherms, and thermodynamic studies were systemically investigated to evaluate the adsorption mechanism and characteristics, which ascribed to chemical adsorption, monolayer adsorption and a spontaneous endothermic process. Furthermore, the performance of the proved method was validated with the good linear correlation coefficient (r = 0.999), low limit of detection (0.86 ng·mL-1) and the limit of quantification (2.98 ng·mL-1), satisfactory recoveries (81.7-102.5%) and reasonable accuracy (RSD<7.8%). The theoretical and technological underpinning for investigating the kinship amongst vitamin alterations and the degree of rice storage was set using this suggested approach to assess vitamin B2 in rice from various years.
Collapse
Affiliation(s)
- Yu-Zhu Ding
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yi-Da Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
41
|
Lai QT, Zhao XH, Sun QJ, Tang Z, Tang XG, Roy VAL. Emerging MXene-Based Flexible Tactile Sensors for Health Monitoring and Haptic Perception. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300283. [PMID: 36965088 DOI: 10.1002/smll.202300283] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Due to their potential applications in physiological monitoring, diagnosis, human prosthetics, haptic perception, and human-machine interaction, flexible tactile sensors have attracted wide research interest in recent years. Thanks to the advances in material engineering, high performance flexible tactile sensors have been obtained. Among the representative pressure sensing materials, 2D layered nanomaterials have many properties that are superior to those of bulk nanomaterials and are more suitable for high performance flexible sensors. As a class of 2D inorganic compounds in materials science, MXene has excellent electrical, mechanical, and biological compatibility. MXene-based composites have proven to be promising candidates for flexible tactile sensors due to their excellent stretchability and metallic conductivity. Therefore, great efforts have been devoted to the development of MXene-based composites for flexible sensor applications. In this paper, the controllable preparation and characterization of MXene are introduced. Then, the recent progresses on fabrication strategies, operating mechanisms, and device performance of MXene composite-based flexible tactile sensors, including flexible piezoresistive sensors, capacitive sensors, piezoelectric sensors, triboelectric sensors are reviewed. After that, the applications of MXene material-based flexible electronics in human motion monitoring, healthcare, prosthetics, and artificial intelligence are discussed. Finally, the challenges and perspectives for MXene-based tactile sensors are summarized.
Collapse
Affiliation(s)
- Qin-Teng Lai
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 511400, P. R. China
| | - Xin-Hua Zhao
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, P. R. China
| | - Qi-Jun Sun
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 511400, P. R. China
| | - Zhenhua Tang
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 511400, P. R. China
| | - Xin-Gui Tang
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 511400, P. R. China
| | - Vellaisamy A L Roy
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, 999077, P. R. China
| |
Collapse
|
42
|
Chai N, Qi Y, Gu Q, Chen J, Lu M, Zhang X, Zhang B. CoO x nanoparticles loaded on carbon spheres with synergistic effects for effective inhibition of shuttle effect in Li-S batteries. NANOSCALE 2023; 15:5327-5336. [PMID: 36811914 DOI: 10.1039/d2nr07194k] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lithium-sulfur (Li-S) batteries, as one of the new energy storage batteries, show immense potential due to their high theoretical specific capacity and theoretical energy density. However, there are still some problems to be solved, among which the shuttle effect of lithium polysulfides is one extremely serious issue with respect to the industrial application of Li-S batteries. Rational design of electrode materials with effective catalytic conversion ability is an effective route to accelerate the conversion of lithium polysulfides (LiPSs). Herein, considering the adsorption and catalysis of LiPSs, CoOx nanoparticles (NPs) loaded on carbon sphere composites (CoOx/CS) were designed and constructed as cathode materials. The CoOx NPs obtained, with ultralow weight ratio and uniform distribution, consist of CoO, Co3O4, and metallic Co. The polar CoO and Co3O4 enable chemical adsorption towards LiPSs through Co-S coordination, and the conductive metallic Co can improve electronic conductivity and reduce impedance, which is beneficial for ion diffusion at the cathode. Based on these synergistic effects, the CoOx/CS electrode exhibits accelerated redox kinetics and enhanced catalytic activity for conversion of LiPSs. Consequently, the CoOx/CS cathode delivers improved cycling performance, with an initial capacity of 980.8 mA h g-1 at 0.1C and a reversible specific capacity of 408.4 mA h g-1 after 200 cycles, along with enhanced rate performance. This work provides a facile route to construct cobalt-based catalytic electrodes for Li-S batteries, and promotes understanding of the LiPSs conversion mechanism.
Collapse
Affiliation(s)
- Ning Chai
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China.
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Yujie Qi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Qinhua Gu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Junnan Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Ming Lu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
- The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Xia Zhang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China.
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| |
Collapse
|
43
|
Shuai TY, Zhan QN, Xu HM, Huang CJ, Zhang ZJ, Li GR. Recent advances in the synthesis and electrocatalytic application of MXene materials. Chem Commun (Camb) 2023; 59:3968-3999. [PMID: 36883557 DOI: 10.1039/d2cc06418a] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
MXenes are a class of two-dimensional materials with a graphene-like structure, which have excellent optical, biological, thermodynamic, electrical and magnetic properties. Due to the diversity resulting from the combination of transition metals and C/N, the MXene family has expanded to more than 30 members and been applied in many fields with broad application prospects. Among their applications, electrocatalytic applications have achieved many breakthroughs. Therefore, in this review, we summarize the reports on the preparation of MXenes and their application in electrocatalysis published in the last five years and describe the two main methods for the preparation of MXenes, i.e., bottom-up and top to bottom synthesis. Different methods may change the structure or surface termination of MXenes, and accordingly affect their electrocatalytic performance. Furthermore, we highlight the application of MXenes in the electrocatalytic hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), nitrogen reduction reaction (NRR), and multi-functionalization. It can be concluded that the electrocatalytic properties of MXenes can be modified by changing the type of functional groups or doping. Also, MXenes can be compounded with other materials to produce electronic coupling and improve the catalytic activity and stability of the resulting composites. In addition, Mo2C and Ti3C2 are two types of MXene materials that have been widely studied in the field of electrocatalysis. At present, research on the synthesis of MXenes is focused on carbides, whereas research on nitrides is rare, and there are no synthesis methods meeting the requirements of green, safety, high efficiency and industrialization simultaneously. Therefore, it is very important to explore environmentally friendly industrial production routes and devote more research efforts to the synthesis of MXene nitrides.
Collapse
Affiliation(s)
- Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
44
|
Geng X, Liu C, Sun Y, Zhao C, Jiang Z, Lim EG, Wang Y, Mitrovic I, Yang L, Song P. Sulfydryl-modified MXene as a sulfur host for highly stable Li-S batteries. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
45
|
Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging. Nat Commun 2022; 13:7340. [PMID: 36446803 PMCID: PMC9708659 DOI: 10.1038/s41467-022-35226-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Titanium carbide MXene combines high mechanical and electrical properties and low infrared emissivity, making it of interest for flexible electromagnetic interference (EMI) shielding and thermal camouflage film materials. Conventional wisdom holds that large MXene is the preferable building block to assemble high-performance films. However, the voids in the films comprising large MXene degrade their properties. Although traditional crosslinking strategies can diminish the voids, the electron transport between MXene flakes is usually disrupted by the insulating polymer bonding agents, reducing the electrical conductivity. Here we demonstrate a sequential densification strategy to synergistically remove the voids between MXene flakes while strengthening the interlayer electron transport. Small MXene flakes were first intercalated to fill the voids between multilayer large flakes, followed by interfacial bridging of calcium ions and borate ions to eliminate the remaining voids, including those between monolayer flakes. The obtained MXene films are compact and exhibit high tensile strength (739 MPa), Young's modulus (72.4 GPa), electrical conductivity (10,336 S cm-1), and EMI shielding capacity (71,801 dB cm2 g-1), as well as excellent oxidation resistance and thermal camouflage performance. The presented strategy provides an avenue for the high-performance assembly of other two-dimensional flakes.
Collapse
|
46
|
Wang L, Ma Z, Qiu H, Zhang Y, Yu Z, Gu J. Significantly Enhanced Electromagnetic Interference Shielding Performances of Epoxy Nanocomposites with Long-Range Aligned Lamellar Structures. NANO-MICRO LETTERS 2022; 14:224. [PMID: 36378424 PMCID: PMC9666581 DOI: 10.1007/s40820-022-00949-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/07/2022] [Indexed: 05/13/2023]
Abstract
High‑efficiency electromagnetic interference (EMI) shielding materials are of great importance for electronic equipment reliability, information security and human health. In this work, bidirectional aligned Ti3C2Tx@Fe3O4/CNF aerogels (BTFCA) were firstly assembled by bidirectional freezing and freeze-drying technique, and the BTFCA/epoxy nanocomposites with long-range aligned lamellar structures were then prepared by vacuum-assisted impregnation of epoxy resins. Benefitting from the successful construction of bidirectional aligned three-dimensional conductive networks and electromagnetic synergistic effect, when the mass fraction of Ti3C2Tx and Fe3O4 are 2.96 and 1.48 wt%, BTFCA/epoxy nanocomposites show outstanding EMI shielding effectiveness of 79 dB, about 10 times of that of blended Ti3C2Tx@Fe3O4/epoxy (8 dB) nanocomposites with the same loadings of Ti3C2Tx and Fe3O4. Meantime, the corresponding BTFCA/epoxy nanocomposites also present excellent thermal stability (Theat-resistance index of 198.7 °C) and mechanical properties (storage modulus of 9902.1 MPa, Young's modulus of 4.51 GPa and hardness of 0.34 GPa). Our fabricated BTFCA/epoxy nanocomposites would greatly expand the applications of MXene and epoxy resins in the fields of information security, aerospace and weapon manufacturing, etc.
Collapse
Affiliation(s)
- Lei Wang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, People's Republic of China
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Zhonglei Ma
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Hua Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Ze Yu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
47
|
Gholamirad F, Ge J, Sadati M, Wang G, Taheri-Qazvini N. Tuning the Self-Assembled Morphology of Ti 3C 2T x MXene-Based Hybrids for High-Performance Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49158-49170. [PMID: 36269799 DOI: 10.1021/acsami.2c14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hybrid materials based on transition metal carbide and nitride (MXene) nanosheets have great potential for electromagnetic interference (EMI) shielding due to their excellent electrical conductivity. However, the performance of final products depends not only on the properties of constituent components but also on the morphology of the assembly. Here, via the controlled diffusion of positively charged poly(allylamine hydrochloride) (PAH) chains into the negatively charged Ti3C2Tx MXene suspension, MXene/PAH hybrids in the forms of thin films, porous structures, and fibers with distinguished internal morphologies are obtained. Our results confirm that PAH chains could effectively enhance the oxidation stability and integrity of wet and dry MXene structures. The flexibility to tune the structures allows for a thorough discussion of the relations between the morphology, electrical conductivity, and EMI shielding mechanism of the hybrids in a wide range of electrical conductivity (2.5 to 3347 S·cm-1) and thickness (7.7 to 1900 μm) values. The analysis of thin films shows the direct impact of the polymer content on the alignment and compactness of MXene nanosheets regulating the films' electrical conductivity/EMI shielding effectiveness. The colloidal behavior of the initial MXene suspension determines the interconnection of MXene nanosheets in MXene/PAH porous assemblies and the final electrical properties. In addition to the internal morphology, examining the laminated MXene/PAH fibers with geometrically different arrangements demonstrates the role of conductive network configuration on EMI shielding performance. These findings provide insights into tuning the EMI shielding effectiveness via the charge-driven bottom-up assembly of electrically conductive MXene/polyelectrolyte hybrids.
Collapse
Affiliation(s)
- Farivash Gholamirad
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Jinqun Ge
- Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Monirosadat Sadati
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Guoan Wang
- Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Nader Taheri-Qazvini
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina29208, United States
| |
Collapse
|
48
|
Zhang Z, Gao S, Hu Y, Chen X, Cheng C, Fu X, Zhang S, Wang X, Che Y, Zhang C, Chai R. Ti 3 C 2 T x MXene Composite 3D Hydrogel Potentiates mTOR Signaling to Promote the Generation of Functional Hair Cells in Cochlea Organoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203557. [PMID: 36117048 PMCID: PMC9661825 DOI: 10.1002/advs.202203557] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Indexed: 05/24/2023]
Abstract
Organoids have certain cellular composition and physiological features in common with real organs, making them promising models of organ formation, function, and diseases. However, Matrigel, the commonly used animal-derived matrices in which they are developed, has limitations in mechanical adjustability and providing complex physicochemical signals. Here, the incorporation of Ti3 C2 Tx MXene nanomaterial into Matrigel regulates the properties of Matrigel and exhibits satisfactory biocompatibility. The Ti3 C2 Tx MXene Matrigel composites (MXene-Matrigel) regulate the development of Cochlear Organoids (Cochlea-Orgs), particularly in promoting the formation and maturation of organoid hair cells. Additionally, regenerated hair cells in MXene-Matrigel are functional and exhibit better electrophysiological properties compared to hair cells in Matrigel. MXene-Matrigel potentiates the amycin (mTOR) signaling pathway to promote hair cell differentiation, and mTOR signaling inhibition restrains hair cell differentiation. Moreover, MXene-Matrigel facilitates innervation establishment between regenerated hair cells and spiral ganglion neurons (SGNs) growing from the Cochlea modiolus in a co-culture system, as well as promotes synapse formation efficiency. The approach overcomes some limitations of the Matrigel-dependent culture system and greatly accelerates the application of nanomaterials in organoid development and research on therapies for hearing loss.
Collapse
Affiliation(s)
- Zhong Zhang
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096P. R. China
- Department of Biochemistry and Molecular BiologyBiomedicine Discovery InstituteMonash UniversitySuzhou215123P. R. China
| | - Shan Gao
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096P. R. China
| | - Yang‐Nan Hu
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096P. R. China
| | - Xin Chen
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096P. R. China
| | - Cheng Cheng
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096P. R. China
| | - Xiao‐Long Fu
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096P. R. China
- Shandong Provincial HospitalShandong First Medical UniversityJinan250021P. R. China
| | - Sha‐Sha Zhang
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096P. R. China
| | - Xin‐Lin Wang
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096P. R. China
| | - Yu‐Wei Che
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096P. R. China
| | - Chen Zhang
- Department of NeurobiologySchool of Basic Medical SciencesBeijing Key Laboratory of Neural Regeneration and RepairAdvanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100069P. R. China
| | - Ren‐Jie Chai
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096P. R. China
| |
Collapse
|
49
|
Parra-Muñoz N, Soler M, Rosenkranz A. Covalent functionalization of MXenes for tribological purposes - a critical review. Adv Colloid Interface Sci 2022; 309:102792. [DOI: 10.1016/j.cis.2022.102792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/01/2022]
|
50
|
Yang Y, Li K, Wang Y, Wu Z, Russell TP, Shi S. MXene-Based Porous Monoliths. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3792. [PMID: 36364567 PMCID: PMC9654234 DOI: 10.3390/nano12213792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
In the past decade, a thriving family of 2D nanomaterials, transition-metal carbides/nitrides (MXenes), have garnered tremendous interest due to its intriguing physical/chemical properties, structural features, and versatile functionality. Integrating these 2D nanosheets into 3D monoliths offers an exciting and powerful platform for translating their fundamental advantages into practical applications. Introducing internal pores, such as isotropic pores and aligned channels, within the monoliths can not only address the restacking of MXenes, but also afford a series of novel and, in some cases, unique structural merits to advance the utility of the MXene-based materials. Here, a brief overview of the development of MXene-based porous monoliths, in terms of the types of microstructures, is provided, focusing on the pore design and how the porous microstructure affects the application performance.
Collapse
Affiliation(s)
- Yang Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaijuan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yaxin Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhanpeng Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Thomas P. Russell
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|