1
|
Garg S, Ghosh A, Aggarwal P, Khan T, Singh S, Kapoor A, Singh R. Understanding the emergence of negative photoconductivity in CVD grown ReS 2 thin films by invoking the trion generation mechanism. NANOSCALE 2024. [PMID: 39434559 DOI: 10.1039/d4nr02577f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Emerging from robust coulombic interactions and diminished dielectric screening, two-dimensional transition metal dichalcogenides (2D TMDs) manifest strongly bound excitons. While these pronounced many-body effects have been observed in 2D TMDs, their impact on the materials' intrinsic photoconductive characteristics remains relatively less explored. In this study, a considerable reduction in photoconductivity in chemical vapor deposited (CVD) ReS2 thin films has been observed. Through experimental and theoretical scrutiny, it is deduced that this anomalous phenomenon stems from the possible many-body interactions within the system, wherein photoexcited electron-hole pairs combine with excess electrons to generate trions. The formation of trions reduces the effective number of carriers contributing to photocurrent, thereby attenuating the photoconductivity. This study shows the profound influence of trions on the photoconductivity behaviour of ReS2 thin films, thereby elucidating their significance in modulating optical and electrical properties crucial for optoelectronic applications.
Collapse
Affiliation(s)
- Sakshi Garg
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Abhishek Ghosh
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Pallavi Aggarwal
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Taslim Khan
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Sonika Singh
- School of Interdisciplinary Research (SIRe), Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ashok Kapoor
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Rajendra Singh
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
- Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| |
Collapse
|
2
|
Vu TV, Hiep NT, Hoa VT, Nguyen CV, Phuc HV, Hoi BD, Kartamyshev AI, Hieu NN. Piezoelectric GaGeX 2 (X = N, P, and As) semiconductors with Raman activity and high carrier mobility for multifunctional applications: a first-principles simulation. RSC Adv 2024; 14:32053-32062. [PMID: 39391622 PMCID: PMC11466001 DOI: 10.1039/d4ra06406b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
In the present work, we propose GaGeX2 (X = N, P, As) monolayers and explore their structural, vibrational, piezoelectric, electronic, and transport characteristics for multifunctional applications based on first-principles simulations. Our analyses of cohesive energy, phonon dispersion spectra, and ab initio molecular dynamics simulations indicate that the three proposed structures have good energetic, dynamic, and thermodynamic stabilities. The GaGeX2 are found as piezoelectric materials with high piezoelectric coefficient d 11 of -1.23 pm V-1 for the GaGeAs2 monolayer. Furthermore, the results from electronic band structures show that the GaGeX2 have semiconductor behaviours with moderate bandgap energies. At the Heyd-Scuseria-Ernzerhof level, the GaGeP2 and GaGeAs2 exhibit optimal bandgaps for photovoltaic applications of 1.75 and 1.15 eV, respectively. Moreover, to examine the transport features of the GaGeX2 monolayers, we calculate their carrier mobility. All three investigated GaGeX2 systems have anisotropic carrier mobility in the two in-plane directions for both electrons and holes. Among them, the GaGeAs2 monolayer shows the highest electron mobilities of 2270.17 and 1788.59 cm2 V-1 s-1 in the x and y directions, respectively. With high electron mobility, large piezoelectric coefficient, and moderate bandgap energy, the GaGeAs2 material holds potential applicability for electronic, optoelectronic, piezoelectric, and photovoltaic applications. Thus, our findings not only predict stable GaGeX2 structures but also provide promising materials to apply for multifunctional devices.
Collapse
Affiliation(s)
- Tuan V Vu
- Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University Ho Chi Minh City Vietnam
- Faculty of Mechanical - Electrical and Computer Engineering, School of Technology, Van Lang University Ho Chi Minh City Vietnam
| | - Nguyen T Hiep
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Vo T Hoa
- Department of Scientific Management and International Cooperation, Quang Nam University Quang Nam Vietnam
| | - Chuong V Nguyen
- Department of Materials Science and Engineering, Le Quy Don Technical University Hanoi 100000 Vietnam
| | - Huynh V Phuc
- Division of Physics, School of Education, Dong Thap University Cao Lanh 870000 Vietnam
| | - Bui D Hoi
- Department of Physics, University of Education, Hue Unversity Hue Vietnam
| | - A I Kartamyshev
- Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University Ho Chi Minh City Vietnam
- Faculty of Mechanical - Electrical and Computer Engineering, School of Technology, Van Lang University Ho Chi Minh City Vietnam
| | - Nguyen N Hieu
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| |
Collapse
|
3
|
Chang S, Li Z, Liu L, Wang C, Wang J, Nie A, Wen F, Mu C, Zhai K, Xiang J, Wang B, Fan Q, Xue T, Liu Z. Atomic-Level Defect Engineering in GeP Nanoflake Biosensors for Gastric Cancer Diagnosis. ACS NANO 2024; 18:27547-27556. [PMID: 39326008 DOI: 10.1021/acsnano.4c08473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Defect engineering offers a promising approach to enhance the sensitivity of biosensing materials by creating abundant chemically active sites. Despite its potential, achieving precise control and modification of these defects remains a significant challenge. Herein, we propose atomic-level defect engineering in GeP two-dimensional (2D) layered materials, following precise in situ growing Au nanoparticles on the single defect active sites for the design of ultrasensitive biosensors. The GeP-based biosensor exhibits notable capabilities for miRNA detection with excellent chemical stability, sensitivity, selectivity, and an extremely low detection limit of 28.6 aM. When applied to clinical tissue samples from gastric cancer patients, the biosensor effectively quantified the miR378c biomarker, enabling accurate stage-specific monitoring. This research not only represents a crucial advancement in the field of biosensing materials through defect engineering but also provides a promising avenue for early cancer diagnosis, staging, and monitoring.
Collapse
Affiliation(s)
- Shaopeng Chang
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Zhehong Li
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lixuan Liu
- Institute of Quantum Materials and Devices, School of Electronics and Information Engineering, Tiangong University, Tianjin 300387, China
| | - Chong Wang
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Jing Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Anmin Nie
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Fusheng Wen
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Congpu Mu
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Kun Zhai
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Jianyong Xiang
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Bochong Wang
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Qing Fan
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Tianyu Xue
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Zhongyuan Liu
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
4
|
He SM, Zhuang JY, Chen CF, Liao RK, Lo ST, Lin YF, Su CY. Plasma-Driven Selenization for Electrical Property Enhancement in Janus 2D Materials. SMALL METHODS 2024; 8:e2400150. [PMID: 38660826 DOI: 10.1002/smtd.202400150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Indexed: 04/26/2024]
Abstract
The recent emergence of Janus 2D materials like SnSSe, derived from SnS2, reveals unique electrical and optical features, such as asymmetrical electronic structure, enhanced carrier mobility, and tunable bandgap. Previous theoretical studies have discuss the electronic properties of Janus SnSSe, but experimental evidence is limited. This study presents a two-step method for synthesizing Janus SnSSe, involving hydrogen plasma treatment and in situ selenization. Optimized conditions (38 W, 1.5 min, 250 °C) are determined using Raman spectroscopy and AFM analysis. XPS confirmed SnSSe's elemental composition, while KPFM reveals a significant reduction in the work function (from 5.26 down to 5.14 eV) for the first time, indicating asymmetrically induced n-type doping. Finally, field-effect transistors (FETs) derived from SnSSe exhibited significantly enhanced mobility and on-current, as well as n-type doping, compared to SnS2-based FETs. These findings lay a crucial foundation for developing high-performance 2D electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Shih-Ming He
- Optical Sciences Center, National Central University, Taoyuan, 32001, Taiwan
| | - Jia-Yung Zhuang
- Department of Mechanical Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Ciao-Fen Chen
- Department of Physics, National Chung Hsing University, Taichung, 40227, Taiwan
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Ren-Kuei Liao
- Department of Mechanical Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Shun-Tsung Lo
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Yen-Fu Lin
- Department of Physics, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Ching-Yuan Su
- Optical Sciences Center, National Central University, Taoyuan, 32001, Taiwan
- Department of Mechanical Engineering, National Central University, Taoyuan, 32001, Taiwan
- Graduate Institute of Energy Engineering, National Central University, Taoyuan, 32001, Taiwan
| |
Collapse
|
5
|
Abdullah M, Younis M, Sohail MT, Wu S, Zhang X, Khan K, Asif M, Yan P. Recent Progress of 2D Materials-Based Photodetectors from UV to THz Waves: Principles, Materials, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402668. [PMID: 39235584 DOI: 10.1002/smll.202402668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Indexed: 09/06/2024]
Abstract
Photodetectors are one of the most critical components for future optoelectronic systems and it undergoes significant advancements to meet the growing demands of diverse applications spanning the spectrum from ultraviolet (UV) to terahertz (THz). 2D materials are very attractive for photodetector applications because of their distinct optical and electrical properties. The atomic-thin structure, high carrier mobility, low van der Waals (vdWs) interaction between layers, relatively narrower bandgap engineered through engineering, and significant absorption coefficient significantly benefit the chip-scale production and integration of 2D materials-based photodetectors. The extremely sensitive detection at ambient temperature with ultra-fast capabilities is made possible with the adaptability of 2D materials. Here, the recent progress of photodetectors based on 2D materials, covering the spectrum from UV to THz is reported. In this report, the interaction of light with 2D materials is first deliberated on in terms of optical physics. Then, various mechanisms on which detectors work, important performance parameters, important and fruitful fabrication methods, fundamental optical properties of 2D materials, various types of 2D materials-based detectors, different strategies to improve performance, and important applications of photodetectors are discussed.
Collapse
Affiliation(s)
- Muhammad Abdullah
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Younis
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Tahir Sohail
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shifang Wu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiong Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Karim Khan
- Additive Manufacturing Institute, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Asif
- THz Technical Research Center of Shenzhen University, Shenzhen Key Laboratory of Micro-nano Photonic Information Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Peiguang Yan
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
6
|
Cohen-Gerassi D, Messer O, Finkelstein-Zuta G, Aviv M, Favelukis B, Shacham-Diamand Y, Sokol M, Adler-Abramovich L. Conductive Peptide-Based MXene Hydrogel as a Piezoresistive Sensor. Adv Healthc Mater 2024; 13:e2303632. [PMID: 38536070 DOI: 10.1002/adhm.202303632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Wearable pressure sensors have become increasingly popular for personal healthcare and motion detection applications due to recent advances in materials science and functional nanomaterials. In this study, a novel composite hydrogel is presented as a sensitive piezoresistive sensor that can be utilized for various biomedical applications, such as wearable skin patches and integrated artificial skin that can measure pulse and blood pressure, as well as monitor sound as a self-powered microphone. The hydrogel is composed of self-assembled short peptides containing aromatic, positively- or negatively charged amino acids combined with 2D Ti3C2Tz MXene nanosheets. This material is low-cost, facile, reliable, and scalable for large areas while maintaining high sensitivity, a wide detection range, durability, oxidation stability, and biocompatibility. The bioinspired nanostructure, strong mechanical stability, and ease of functionalization make the assembled peptide-based composite MXene-hydrogel a promising and widely applicable material for use in bio-related wearable electronics.
Collapse
Affiliation(s)
- Dana Cohen-Gerassi
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Or Messer
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gal Finkelstein-Zuta
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Moran Aviv
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- School of Mechanical Engineering, Afeka Tel Aviv Academic College of Engineering, Tel Aviv, 6910717, Israel
| | - Bar Favelukis
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yosi Shacham-Diamand
- The Scojen Institute for Synthetic Biology, Director, Reichman University, 8 University St., Herzliya, 4610101, Israel
| | - Maxim Sokol
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
7
|
Groll M, Bürger J, Caltzidis I, Jöns KD, Schmidt WG, Gerstmann U, Lindner JKN. DFT-Assisted Investigation of the Electric Field and Charge Density Distribution of Pristine and Defective 2D WSe 2 by Differential Phase Contrast Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311635. [PMID: 38703033 DOI: 10.1002/smll.202311635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/02/2024] [Indexed: 05/06/2024]
Abstract
Most properties of solid materials are defined by their internal electric field and charge density distributions which so far are difficult to measure with high spatial resolution. Especially for 2D materials, the atomic electric fields influence the optoelectronic properties. In this study, the atomic-scale electric field and charge density distribution of WSe2 bi- and trilayers are revealed using an emerging microscopy technique, differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). For pristine material, a higher positive charge density located at the selenium atomic columns compared to the tungsten atomic columns is obtained and tentatively explained by a coherent scattering effect. Furthermore, the change in the electric field distribution induced by a missing selenium atomic column is investigated. A characteristic electric field distribution in the vicinity of the defect with locally reduced magnitudes compared to the pristine lattice is observed. This effect is accompanied by a considerable inward relaxation of the surrounding lattice, which according to first principles DFT calculation is fully compatible with a missing column of Se atoms. This shows that DPC imaging, as an electric field sensitive technique, provides additional and remarkable information to the otherwise only structural analysis obtained with conventional STEM imaging.
Collapse
Affiliation(s)
- Maja Groll
- Department of Physics, University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Julius Bürger
- Department of Physics, University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Ioannis Caltzidis
- Department of Physics, University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Klaus D Jöns
- Department of Physics, University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Wolf Gero Schmidt
- Department of Physics, University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Uwe Gerstmann
- Department of Physics, University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Jörg K N Lindner
- Department of Physics, University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| |
Collapse
|
8
|
Cao E, Cao Y, Sun M. Surface Plasmonic Core-Shell Nanostructures in Surface Enhanced Raman Scattering and Photocatalysis. Anal Chem 2024; 96:11623-11638. [PMID: 38490972 DOI: 10.1021/acs.analchem.3c04761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Core-shell nanostructures are a typical material design. Usually, it consists of a core wrapped in a shell. It has attracted much attention due to its tunable structure and composition, high surface area, and high programmability. The properties and resonance frequency of their surface plasmons can be adjusted by regulating the shape, size, and composition of metal core-shell nanostructures. This interaction makes core-shell nanostructures an excellent platform for plasmon-enhanced optical effects. This Perspective explores the categories of core-shell nanostructures, their exchanges with excitons in two-dimensional materials, their spectrum-enhanced aspects, and prospects for future applications of core-shell nanostructures.
Collapse
Affiliation(s)
- En Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Yi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
9
|
Vu TV, Vi VTT, Hiep NT, Hoang KV, Kartamyshev AI, Phuc HV, Hieu NN. A first-principles prediction of novel Janus ZrGeZ 3H (Z = N, P, and As) monolayers: Raman active modes, piezoelectric responses, electronic properties, and carrier mobility. RSC Adv 2024; 14:21982-21990. [PMID: 38993506 PMCID: PMC11238037 DOI: 10.1039/d4ra04107k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024] Open
Abstract
In this article, an attempt is made to explore new materials for applications in piezoelectric and electronic devices. Based on density functional theory calculation, we construct three Janus ZrGeZ3H (Z = N, P, and As) monolayers and study their stability, piezoelectricity, Raman response, and carrier mobility. The results from phonon dispersion spectra, ab initio molecular dynamics simulation, and elastic coefficients confirm the structural, thermal, and mechanical stability of these proposed structures. The ZrGeZ3H monolayers are indirect band gap semiconductors with favourable band gap energy of 1.15 and 1.00 eV for the ZrGeP3H and ZrGeAs3H, respectively, from Heyd-Scuseria-Ernzerhof functional method. It is found that the Janus ZrGeZ3H monolayers possess both in-plane and out-of-plane piezoelectric coefficients, revealing that they are potential piezoelectric candidates. In addition, the carrier mobilities of electrons and holes along transport directions are anisotropic. Notably, the ZrGeP3H and ZrGeAs3H monolayers have high electron mobility of 3639.20 and 3408.37 cm2 V-1 s-1, respectively. Our findings suggest the potential application of the Janus ZrGeZ3H monolayers in the piezoelectric and electronic fields.
Collapse
Affiliation(s)
- Tuan V Vu
- Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University Ho Chi Minh City Vietnam
- Faculty of Mechanical - Electrical and Computer Engineering, School of Technology, Van Lang University Ho Chi Minh City Vietnam
| | - Vo T T Vi
- Faculty of Basic Sciences, University of Medicine and Pharmacy, Hue University Hue 530000 Vietnam
| | - Nguyen T Hiep
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Khanh V Hoang
- Phenikaa Institute for Advanced Study (PIAS), Phenikaa University Hanoi 12116 Vietnam
| | - A I Kartamyshev
- Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University Ho Chi Minh City Vietnam
- Faculty of Mechanical - Electrical and Computer Engineering, School of Technology, Van Lang University Ho Chi Minh City Vietnam
| | - Huynh V Phuc
- Division of Physics, School of Education, Dong Thap University Cao Lanh 870000 Vietnam
| | - Nguyen N Hieu
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| |
Collapse
|
10
|
Cong X, Yin H, Zheng Y, He W. Recent progress of group III-V materials-based nanostructures for photodetection. NANOTECHNOLOGY 2024; 35:382002. [PMID: 38759630 DOI: 10.1088/1361-6528/ad4cf0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/17/2024] [Indexed: 05/19/2024]
Abstract
Due to the suitable bandgap structure, efficient conversion rates of photon to electron, adjustable optical bandgap, high electron mobility/aspect ratio, low defects, and outstanding optical and electrical properties for device design, III-V semiconductors have shown excellent properties for optoelectronic applications, including photodiodes, photodetectors, solar cells, photocatalysis, etc. In particular, III-V nanostructures have attracted considerable interest as a promising photodetector platform, where high-performance photodetectors can be achieved based on the geometry-related light absorption and carrier transport properties of III-V materials. However, the detection ranges from Ultraviolet to Terahertz including broadband photodetectors of III-V semiconductors still have not been more broadly development despite significant efforts to obtain the high performance of III-V semiconductors. Therefore, the recent development of III-V photodetectors in a broad detection range from Ultraviolet to Terahertz, and future requirements are highly desired. In this review, the recent development of photodetectors based on III-V semiconductor with different detection range is discussed. First, the bandgap of III-V materials and synthesis methods of III-V nanostructures are explored, subsequently, the detection mechanism and key figures-of-merit for the photodetectors are introduced, and then the device performance and emerging applications of photodetectors are provided. Lastly, the challenges and future research directions of III-V materials for photodetectors are presented.
Collapse
Affiliation(s)
- Xiangna Cong
- College of Electronics and Information Engineering, Institute of Microelectronics, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Huabi Yin
- College of Electronics and Information Engineering, Institute of Microelectronics, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Yue Zheng
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Wenlong He
- College of Electronics and Information Engineering, Institute of Microelectronics, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
11
|
Liu S, Wang X, Xu N, Li R, Ou H, Li S, Zhu Y, Ke Y, Zhan R, Chen H, Deng S. A Flexible and Wearable Photodetector Enabling Ultra-Broadband Imaging from Ultraviolet to Millimeter-Wave Regimes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401631. [PMID: 38654695 PMCID: PMC11234453 DOI: 10.1002/advs.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Flexible and miniaturized photodetectors, offering a fast response across the ultraviolet (UV) to millimeter (MM) wave spectrum, are crucial for applications like healthcare monitoring and wearable optoelectronics. Despite their potential, developing such photodetectors faces challenges due to the lack of suitable materials and operational mechanisms. Here, the study proposes a flexible photodetector composed of a monolayer graphene connected by two distinct metal electrodes. Through the photothermoelectric effect, these asymmetric electrodes induce electron flow within the graphene channel upon electromagnetic wave illumination, resulting in a compact device with ultra-broadband and rapid photoresponse. The devices, with footprints ranging from 3 × 20 µm2 to 50 × 20 µm2, operate across a spectrum from 325 nm (UV) to 1.19 mm (MM) wave. They demonstrate a responsivity (RV) of up to 396.4 ± 5.1 mV W-1, a noise-equivalent power (NEP) of 8.6 ± 0.1 nW Hz- 0.5, and a response time as small as 0.8 ± 0.1 ms. This device facilitates direct imaging of shielded objects and material differentiation under simulated human body-wearing conditions. The straightforward device architecture, aligned with its ultra-broadband operational frequency range, is anticipated to hold significant implications for the development of miniaturized, wearable, and portable photodetectors.
Collapse
Affiliation(s)
- Shaojing Liu
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Ximiao Wang
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Ningsheng Xu
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Runli Li
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Hai Ou
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Shangdong Li
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Yongsheng Zhu
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Yanlin Ke
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Runze Zhan
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Huanjun Chen
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
12
|
Panisilvam J, Lee HY, Byun S, Fan D, Kim S. Two-dimensional material-based memristive devices for alternative computing. NANO CONVERGENCE 2024; 11:25. [PMID: 38937391 PMCID: PMC11211314 DOI: 10.1186/s40580-024-00432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Two-dimensional (2D) materials have emerged as promising building blocks for next generation memristive devices, owing to their unique electronic, mechanical, and thermal properties, resulting in effective switching mechanisms for charge transport. Memristors are key components in a wide range of applications including neuromorphic computing, which is becoming increasingly important in artificial intelligence applications. Crossbar arrays are an important component in the development of hardware-based neural networks composed of 2D materials. In this paper, we summarize the current state of research on 2D material-based memristive devices utilizing different switching mechanisms, along with the application of these devices in neuromorphic crossbar arrays. Additionally, we discuss the challenges and future directions for the field.
Collapse
Affiliation(s)
- Jey Panisilvam
- Department of Electrical and Electronic Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, 3000, Australia
| | - Ha Young Lee
- Department of Electrical and Electronic Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, 3000, Australia
| | - Sujeong Byun
- Department of Electrical and Electronic Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, 3000, Australia
| | - Daniel Fan
- Department of Electrical and Electronic Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, 3000, Australia
| | - Sejeong Kim
- Department of Electrical and Electronic Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, 3000, Australia.
| |
Collapse
|
13
|
Pham PV, Mai TH, Dash SP, Biju V, Chueh YL, Jariwala D, Tung V. Transfer of 2D Films: From Imperfection to Perfection. ACS NANO 2024; 18:14841-14876. [PMID: 38810109 PMCID: PMC11171780 DOI: 10.1021/acsnano.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 05/31/2024]
Abstract
Atomically thin 2D films and their van der Waals heterostructures have demonstrated immense potential for breakthroughs and innovations in science and technology. Integrating 2D films into electronics and optoelectronics devices and their applications in electronics and optoelectronics can lead to improve device efficiencies and tunability. Consequently, there has been steady progress in large-area 2D films for both front- and back-end technologies, with a keen interest in optimizing different growth and synthetic techniques. Parallelly, a significant amount of attention has been directed toward efficient transfer techniques of 2D films on different substrates. Current methods for synthesizing 2D films often involve high-temperature synthesis, precursors, and growth stimulants with highly chemical reactivity. This limitation hinders the widespread applications of 2D films. As a result, reports concerning transfer strategies of 2D films from bare substrates to target substrates have proliferated, showcasing varying degrees of cleanliness, surface damage, and material uniformity. This review aims to evaluate, discuss, and provide an overview of the most advanced transfer methods to date, encompassing wet, dry, and quasi-dry transfer methods. The processes, mechanisms, and pros and cons of each transfer method are critically summarized. Furthermore, we discuss the feasibility of these 2D film transfer methods, concerning their applications in devices and various technology platforms.
Collapse
Affiliation(s)
- Phuong V. Pham
- Department
of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - The-Hung Mai
- Department
of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Saroj P. Dash
- Department
of Microtechnology and Nanoscience, Chalmers
University of Technology, Gothenburg 41296, Sweden
| | - Vasudevanpillai Biju
- Research
Institute for Electronic Science, Hokkaido
University, Hokkaido 001-0020, Japan
| | - Yu-Lun Chueh
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - Deep Jariwala
- Department
of Electrical and Systems Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Vincent Tung
- Department
of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
14
|
Hlushchenko D, Olszewski J, Martynkien T, Łukomski M, Gemza K, Karasiński P, Zięba M, Baraniecki T, Duda Ł, Bachmatiuk A, Guzik M, Kudrawiec R. Waveguide-Coupled Light Photodetector Based on Two-Dimensional Molybdenum Disulfide. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28874-28885. [PMID: 38795034 PMCID: PMC11163399 DOI: 10.1021/acsami.4c04854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
The integration of transition metal dichalcogenides with photonic structures such as sol-gel SiOx:TiOy optical waveguides (WGs) makes possible the fabrication of photonic devices with the desired characteristics in the visible spectral range. In this study, we propose and experimentally demonstrate a MoS2-based photodetector integrated with a sol-gel SiOx:TiOy WG. Based on the spectroscopic measurements performed for our device, we concluded that the light entering the WG is almost completely channeled out from the WG and absorbed by the MoS2 flake, which is deposited on the WG. Therefore, this device works as a photodetector. The light coupling into the MoS2 region in this device construction is due to the high contrast of refractive index between the van der Waals crystal and the sol-gel WG, which is ∼4 and ∼1.8, respectively. The obtained MoS2-based photodetectors exhibit a photoresponsivity of 0.3 A W-1 (n-type MoS2) and 7.53 mA W-1 (p-type MoS2) at a bias voltage of 2 V. These results reveal great potential in the integration of sol-gel WGs with van der Waals crystals in optoelectronic applications.
Collapse
Affiliation(s)
- Daria Hlushchenko
- Łukasiewicz
Research Network-PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland
- Faculty
of Fundamental Problems of Science and Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Jacek Olszewski
- Faculty
of Fundamental Problems of Science and Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Tadeusz Martynkien
- Faculty
of Fundamental Problems of Science and Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Michał Łukomski
- Faculty
of Fundamental Problems of Science and Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Karolina Gemza
- Faculty
of Fundamental Problems of Science and Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Pawel Karasiński
- Department
of Optoelectronics, Silesian University
of Technology, ul. B. Krzywoustego 2, 44-100 Gliwice, Poland
| | - Magdalena Zięba
- Department
of Optoelectronics, Silesian University
of Technology, ul. B. Krzywoustego 2, 44-100 Gliwice, Poland
| | - Tomasz Baraniecki
- Łukasiewicz
Research Network-PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland
| | - Łukasz Duda
- Łukasiewicz
Research Network-PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland
- Faculty
of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Alicja Bachmatiuk
- Łukasiewicz
Research Network-PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland
| | - Małgorzata Guzik
- Łukasiewicz
Research Network-PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland
- Faculty
of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Robert Kudrawiec
- Łukasiewicz
Research Network-PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland
- Faculty
of Fundamental Problems of Science and Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| |
Collapse
|
15
|
Trallero-Giner C, Santiago-Pérez DG, Tkachenko DV, Marques GE, Fomin VM. Raman scattering owing to magneto-polaron states in monolayer transition metal dichalcogenides. Sci Rep 2024; 14:12857. [PMID: 38834720 DOI: 10.1038/s41598-024-63179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
Magneto-optical measurements are fundamental research tools that allow for studying the hitherto unexplored optical transitions and the related applications of topological two-dimensional (2D) transition metal dichalcogenides (TMDs). A theoretical model is developed for the first-order magneto-resonant Raman scattering in a monolayer of TMD. A significant number of avoided crossing points involving optical phonons in the magneto-polaron (MP) spectrum, a superposition of the electron and hole states in the excitation branches, and their manifestations in optical transitions at various light scattering configurations are unique features for these 2D structures. The Raman intensity reveals three resonant splittings of double avoided-crossing levels. The three excitation branches are present in the MP spectrum provoked by the coupling of the Landau levels in the conduction and valence bands via an out-of-plane A 1 -optical phonon mode. The energy gaps at the anticrossing points in the MP scattering spectrum are revealed as a function of the electron and hole optical deformation potential constants. The resonant MP Raman scattering efficiency profile allows for quantifying the relative contribution of the conduction and valence bands in the formation of MPs. The results obtained are a guideline for controlling MP effects on the magneto-optical properties of TMD semiconductors, which open pathways to novel optoelectronic devices based on 2D TMDs.
Collapse
Affiliation(s)
- C Trallero-Giner
- Departamento de Física, Universidade Federal de São Carlos, São Carlos, São Paulo, 13.565-905, Brazil
| | - D G Santiago-Pérez
- Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, 62209, Cuernavaca, Morelos, Mexico
| | - D V Tkachenko
- Pridnestrovian State University, 25 October Str., 128, 3300, Tiraspol, Republic of Moldova
| | - G E Marques
- Departamento de Física, Universidade Federal de São Carlos, São Carlos, São Paulo, 13.565-905, Brazil
| | - V M Fomin
- Institute for Emerging Electronic Technologies (IET), Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstraβe 20, 01069, Dresden, Germany.
- Faculty of Physics and Engineering, Moldova State University, Str. A. Mateevici 60, 2009, Chişinău, Republic of Moldova.
| |
Collapse
|
16
|
Ferdous N, Islam MS, Park J. A resilient type-III broken gap Ga 2O 3/SiC van der Waals heterogeneous bilayer with band-to-band tunneling effect and tunable electronic property. Sci Rep 2024; 14:12748. [PMID: 38830949 PMCID: PMC11148157 DOI: 10.1038/s41598-024-63354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
The potential of van der Waals (vdW) heterostructure to incorporate the outstanding features of stacked materials to meet a variety of application requirements has drawn considerable attention. Due to the unique quantum tunneling mechanisms, a type-III broken-gap obtained from vdW heterostructure is a promising design strategy for tunneling field-effect transistors. Herein, a unique Ga2O3/SiC vdW bilayer heterostructure with inherent type-III broken gap band alignment has been revealed through first-principles calculation. The underlying physical mechanism to form the broken gap band alignment is thoroughly studied. Due to the overlapping band structures, a tunneling window of 0.609 eV has been created, which enables the charges to tunnel from the VBM of the SiC layer to the CBM of the Ga2O3 layer and fulfills the required condition for band-to-band tunneling. External electric field and strain can be applied to tailor the electronic behavior of the bilayer heterostructure. Positive external electric field and compressive vertical strain enlarge the tunneling window and enhance the band-to-band tunneling (BTBT) scheme while negative electric field and tensile vertical strain shorten the BTBT window. Under external electric field as well as vertical and biaxial strain, the Ga2O3/SiC vdW hetero-bilayer maintains the type-III band alignment, revealing its capability to tolerate the external electric field and strain with resilience. All these results provide a compelling platform of the Ga2O3/SiC vdW bilayer to design high performance tunneling field effect transistor.
Collapse
Affiliation(s)
- Naim Ferdous
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV, 89557, USA
| | - Md Sherajul Islam
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV, 89557, USA.
- Department of Electrical and Electronic Engineering, Khulna University of Engineering and Technology, Khulna, 9203, Bangladesh.
| | - Jeongwon Park
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV, 89557, USA
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, K1N6N5, Canada
| |
Collapse
|
17
|
Li Z, Yan Y, Xu CY, Li Y, Geng Y. Nanoskiving of van der Waals Materials toward Edge/Basal Plane Contact Heterojunctions for High-Performance Photodetection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27640-27649. [PMID: 38759102 DOI: 10.1021/acsami.4c03196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
The unique features of edges in van der Waals materials may lead to edge-basal plane contacts that could provide new opportunities for electronic and optoelectronic devices. However, few studies have addressed edge/basal plane contact heterojunctions owing to the formidable challenges in integrating edges with the basal plane to form a heterojunction. Here, taking the example of black phosphorus (BP)/ReS2, a heterojunction with contact between the edge and the basal plane was successfully achieved by the introduction of a nanoskiving technique to fabricate BP edges with controlled orientation, followed by the dry transfer of a ReS2 flake. The deformation of BP during the nanoskiving process was clearly revealed, where interlayer slipping in the BP determined the formation of the edges. The edge/basal plane contact heterojunctions based on BP/ReS2 exhibited a reverse-rectifying behavior upon contact, and a high rectifying current was attributed to direct tunneling and Fowler-Nordheim tunneling in low and high bias regimes, respectively. As a photodetector, the heterojunction diode demonstrated an impressive responsivity of 65 A/W, a rapid response time (<10 ms), and polarization-sensitive detection under 532 nm illumination without gate biasing.
Collapse
Affiliation(s)
- Zihan Li
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150001, Heilongjiang, PR China
- Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, PR China
| | - Yongda Yan
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150001, Heilongjiang, PR China
- Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, PR China
| | - Cheng Yan Xu
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150001, Heilongjiang, PR China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yang Li
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150001, Heilongjiang, PR China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yanquan Geng
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150001, Heilongjiang, PR China
- Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, PR China
| |
Collapse
|
18
|
Zhang Y, He Q, Yang H, Li Z, Jiang H, Zhang Y, Luo X, Zheng Y. Liquid-Metal-Based Spin-Coating Exfoliation for Atomically Thin Metal Oxide Synthesis. NANO LETTERS 2024; 24:6247-6254. [PMID: 38709758 DOI: 10.1021/acs.nanolett.4c00757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Two-dimensional (2D) semiconductors possess exceptional electronic, optical, and magnetic properties, making them highly desirable for widespread applications. However, conventional mechanical exfoliation and epitaxial growth methods are insufficient in meeting the demand for atomically thin films covering large areas while maintaining high quality. Herein, leveraging liquid metal oxidation reaction, we propose a motorized spin-coating exfoliation strategy to efficiently produce large-area 2D metal oxide (2DMO) semiconductors with high crystallinity, atomically thin thickness, and flat surfaces on diverse substrates. Moreover, we realized a 2D gallium oxide-based deep ultraviolet solar-blind photodetector featuring a metal-semiconductor-metal structure, showcasing high responsivity (8.24 A W-1) at 254 nm and excellent sensitivity (4.3 × 1012 cm Hz1/2 W-1). This novel liquid-metal-based spin-coating exfoliation strategy offers great potential for synthesizing atomically thin 2D semiconductors, opening new avenues for future functional electronic and optical applications.
Collapse
Affiliation(s)
- Yingyi Zhang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Qinming He
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Hui Yang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhishen Li
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - He Jiang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Luo
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Yue Zheng
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
19
|
Liu X, Geng X, Dun G, Wang Z, Du J, Xie D, Yang Y, Ren T. Single Crystal Perovskite/Graphene Self-Driven Photodetector with Fast Response Speed. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2599. [PMID: 38893863 PMCID: PMC11173920 DOI: 10.3390/ma17112599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Recently, the combination of two-dimensional (2D) materials and perovskites has gained increasing attention in optoelectronic applications owing to their excellent optical and electrical characteristics. Here, we report a self-driven photodetector consisting of a monolayer graphene sheet and a centimeter-sized CH3NH3PbBr3 single crystal, which was prepared using an optimized wet transfer method. The photodetector exhibits a short response time of 2/30 μs by virtue of its high-quality interface, which greatly enhances electron-hole pair separation in the heterostructure under illumination. In addition, a responsivity of ~0.9 mA/W and a detectivity over 1010 Jones are attained at zero bias. This work inspires new methods for preparing large-scale high-quality perovskite/2D material heterostructures, and provides a new direction for the future enhancement of perovskite optoelectronics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tianling Ren
- The Beijing National Research Center for Information Science and Technology (BNRist), School of Integrated Circuits, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Teng C, Zhang X, Tang J, Ren A, Deng G, Wu J, Wang Z. Multiplexable all-optical nonlinear activator for optical computing. OPTICS EXPRESS 2024; 32:18161-18174. [PMID: 38858979 DOI: 10.1364/oe.522087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/13/2024] [Indexed: 06/12/2024]
Abstract
As an alternative solution to surpass electronic neural networks, optical neural networks (ONNs) offer significant advantages in terms of energy consumption and computing speed. Despite the optical hardware platform could provide an efficient approach to realizing neural network algorithms than traditional hardware, the lack of optical nonlinearity limits the development of ONNs. Here, we proposed and experimentally demonstrated an all-optical nonlinear activator based on the stimulated Brillouin scattering (SBS). Utilizing the exceptional carrier dynamics of SBS, our activator supports two types of nonlinear functions, saturable absorption and rectified linear unit (Relu) models. Moreover, the proposed activator exhibits large dynamic response bandwidth (∼11.24 GHz), low nonlinear threshold (∼2.29 mW), high stability, and wavelength division multiplexing identities. These features have potential advantages for the physical realization of optical nonlinearities. As a proof of concept, we verify the performance of the proposed activator as an ONN nonlinear mapping unit via numerical simulations. Simulation shows that our approach achieves comparable performance to the activation functions commonly used in computers. The proposed approach provides support for the realization of all-optical neural networks.
Collapse
|
21
|
Liang Y, Liu M, Tang F, Guo Y, Zhang H, Liu S, Yang Y, Zhao G, Tan T, Yao B. Harnessing sub-comb dynamics in a graphene-sensitized microresonator for gas detection. FRONTIERS OF OPTOELECTRONICS 2024; 17:12. [PMID: 38689035 PMCID: PMC11061063 DOI: 10.1007/s12200-024-00115-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024]
Abstract
Since their inception, frequency combs generated in microresonators, known as microcombs, have sparked significant scientific interests. Among the various applications leveraging microcombs, soliton microcombs are often preferred due to their inherent mode-locking capability. However, this choice introduces additional system complexity because an initialization process is required. Meanwhile, despite the theoretical understanding of the dynamics of other comb states, their practical potential, particularly in applications like sensing where simplicity is valued, remains largely untapped. Here, we demonstrate controllable generation of sub-combs that bypasses the need for accessing bistable regime. And in a graphene-sensitized microresonator, the sub-comb heterodynes produce stable, accurate microwave signals for high-precision gas detection. By exploring the formation dynamics of sub-combs, we achieved 2 MHz harmonic comb-to-comb beat notes with a signal-to-noise ratio (SNR) greater than 50 dB and phase noise as low as - 82 dBc/Hz at 1 MHz offset. The graphene sensitization on the intracavity probes results in exceptional frequency responsiveness to the adsorption of gas molecules on the graphene of microcavity surface, enabling detect limits down to the parts per billion (ppb) level. This synergy between graphene and sub-comb formation dynamics in a microcavity structure showcases the feasibility of utilizing microcombs in an incoherent state prior to soliton locking. It may mark a significant step toward the development of easy-to-operate, systemically simple, compact, and high-performance photonic sensors.
Collapse
Affiliation(s)
- Yupei Liang
- Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education), University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Mingyu Liu
- Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education), University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Fan Tang
- Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education), University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yanhong Guo
- Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education), University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hao Zhang
- Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education), University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Shihan Liu
- Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education), University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yanping Yang
- Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education), University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Guangming Zhao
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Teng Tan
- Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education), University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Baicheng Yao
- Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education), University of Electronic Science and Technology of China, Chengdu, 611731, China.
- Engineering Center of Integrated Optoelectronic & Radio Meta-Chips, University of Electronic Science and Technology, Chengdu, 611731, China.
| |
Collapse
|
22
|
He W, Wu D, Kong L, Yu P, Yang G. Giant Negative Photoresponse in van der Waals Graphene/AgBiP 2Se 6/Graphene Trilayer Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312541. [PMID: 38252894 DOI: 10.1002/adma.202312541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/17/2024] [Indexed: 01/24/2024]
Abstract
The positive photoconductive (PPC) effect is a well-established primary detection mechanism employed by photodetectors. In contrast, the negative photoconductive (NPC) effect is not extensively investigated thus far, and research on the NPC effect is still in its early stage. Herein, a quaternary van der Waals material, AgBiP2Se6 atomic layers, is discovered to achieve a giant NPC effect. Through experimental observations in a Graphene/AgBiP2Se6/ Graphene-based vertical photodetector, an irreversible conversion is identified from common PPC photoresponse to atypical NPC photoresponse. Notably, this device demonstrates an exceptionally high negative responsivity (R) of 4.9 × 105 A W-1, surpassing the previous records for NPC photodetectors. Additionally, it exhibits remarkable optoelectronic performances, including an external quantum efficiency of 1.3 × 108% and a detectivity (D) of 3.60 × 1012 Jones. The exceptionally high NPC photoresponse observed in this device can be attributed to the swift suppression of photogenerated free carriers at robust recombination centers situated at significant depths, induced by the elevated drain-source voltage bias. The remarkably high NPC photoresponse also positions AgBiP2Se6 as a promising 2D material for multifunctional optoelectronic devices and an excellent platform for systematic exploration of the NPC effect.
Collapse
Affiliation(s)
- Wei He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P.R. China
| | - Dong Wu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P.R. China
| | - Lingling Kong
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P.R. China
| | - Peng Yu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P.R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P.R. China
| |
Collapse
|
23
|
Wang Y, Wang Y, Lan C, Zhou L, Kang J, Zheng W, Xue T, Li Y, Yuan X, Xiao S, Li H, He J. Interfacial Charge Transfer for Enhancing Nonlinear Saturable Absorption in WS 2/graphene Heterostructure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306096. [PMID: 38225721 DOI: 10.1002/advs.202306096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Interlayer charge-transfer (CT) in 2D atomically thin vertical stacks heterostructures offers an unparalleled new approach to regulation of device performance in optoelectronic and photonics applications. Despite the fact that the saturable absorption (SA) in 2D heterostructures involves highly efficient optical modulation in the space and time domain, the lack of explicit SA regulation mechanism at the nanoscale prevents this feature from realizing nanophotonic modulation. Here, the enhancement of SA response via CT in WS2/graphene vertical heterostructure is proposed and the related mechanism is demonstrated through simulations and experiments. Leveraging this mechanism, CT-induced SA enhancement can be expanded to a wide range of nonlinear optical modulation applications for 2D materials. The results suggest that CT between 2D heterostructures enables efficient nonlinear optical response regulation.
Collapse
Affiliation(s)
- Yiduo Wang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Yingwei Wang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Changyong Lan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Li Zhou
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Jianlong Kang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Wanxin Zheng
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Tianyu Xue
- Center for High-Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Yejun Li
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Xiaoming Yuan
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Si Xiao
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Heping Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jun He
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| |
Collapse
|
24
|
Yan Q, Weng Y, Wang S, Zhou Z, Hu Y, Li Q, Xue J, Feng Z, Luo Z, Feng R, You L, Fang L. Ambient Degradation Anisotropy and Mechanism of van der Waals Ferroelectric NbOI 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9051-9059. [PMID: 38348475 DOI: 10.1021/acsami.3c18018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The spontaneous centrosymmetry-breaking and robust room-temperature ferroelectricity in niobium oxide dihalides spurs a flurry of explorations into its promising second-order nonlinear optical properties, and promises potential applications in nonvolatile electro-optical and optoelectronic devices. However, the ambient stability of the niobium oxide dihalides remains questionable, which overshadows their future development. In this work, the chemical degradation of NbOI2 is comprehensively investigated using combined chemical and optical microscopies in conjunction with spectroscopies. We unveil the highly anisotropic degradation kinetics of NbOI2 driven by the hydrolysis process of the unstable dangling iodine bonds dominantly on the (010) facet and progressing along the c axis. Knowing its degradation mechanism, the NbOI2 flake can then be stabilized by the hexagonal boron nitride encapsulation, which isolates the air moisture. These findings provide direct insights into the ambient instability of NbOI2, and they deliver possible solutions to circumvent this issue, which are essential for its practical integration in photonic and electronic devices.
Collapse
Affiliation(s)
- Qingyu Yan
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Yuyan Weng
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Shun Wang
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Zhou Zhou
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Yiqi Hu
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Qiankun Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Jinshuo Xue
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Zhijian Feng
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Zhongshen Luo
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Runcang Feng
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Lu You
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Liang Fang
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| |
Collapse
|
25
|
Liu A, Zhang X, Liu Z, Li Y, Peng X, Li X, Qin Y, Hu C, Qiu Y, Jiang H, Wang Y, Li Y, Tang J, Liu J, Guo H, Deng T, Peng S, Tian H, Ren TL. The Roadmap of 2D Materials and Devices Toward Chips. NANO-MICRO LETTERS 2024; 16:119. [PMID: 38363512 PMCID: PMC10873265 DOI: 10.1007/s40820-023-01273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 02/17/2024]
Abstract
Due to the constraints imposed by physical effects and performance degradation, silicon-based chip technology is facing certain limitations in sustaining the advancement of Moore's law. Two-dimensional (2D) materials have emerged as highly promising candidates for the post-Moore era, offering significant potential in domains such as integrated circuits and next-generation computing. Here, in this review, the progress of 2D semiconductors in process engineering and various electronic applications are summarized. A careful introduction of material synthesis, transistor engineering focused on device configuration, dielectric engineering, contact engineering, and material integration are given first. Then 2D transistors for certain electronic applications including digital and analog circuits, heterogeneous integration chips, and sensing circuits are discussed. Moreover, several promising applications (artificial intelligence chips and quantum chips) based on specific mechanism devices are introduced. Finally, the challenges for 2D materials encountered in achieving circuit-level or system-level applications are analyzed, and potential development pathways or roadmaps are further speculated and outlooked.
Collapse
Affiliation(s)
- Anhan Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Xiaowei Zhang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Ziyu Liu
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yuning Li
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Xueyang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin Li
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Yue Qin
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Chen Hu
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanqing Qiu
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Han Jiang
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yang Wang
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yifan Li
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Jun Tang
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Jun Liu
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Hao Guo
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China.
| | - Tao Deng
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China.
- IMECAS-HKUST-Joint Laboratory of Microelectronics, Beijing, 100029, People's Republic of China.
| | - He Tian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China.
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China.
| |
Collapse
|
26
|
Ye S, Zhang H, Lai H, Xu J, Yu L, Ye Z, Yang L. MXene: A wonderful nanomaterial in antibacterial. Front Bioeng Biotechnol 2024; 12:1338539. [PMID: 38361792 PMCID: PMC10867285 DOI: 10.3389/fbioe.2024.1338539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Increasing bacterial infections and growing resistance to available drugs pose a serious threat to human health and the environment. Although antibiotics are crucial in fighting bacterial infections, their excessive use not only weakens our immune system but also contributes to bacterial resistance. These negative effects have caused doctors to be troubled by the clinical application of antibiotics. Facing this challenge, it is urgent to explore a new antibacterial strategy. MXene has been extensively reported in tumor therapy and biosensors due to its wonderful performance. Due to its large specific surface area, remarkable chemical stability, hydrophilicity, wide interlayer spacing, and excellent adsorption and reduction ability, it has shown wonderful potential for biopharmaceutical applications. However, there are few antimicrobial evaluations on MXene. The current antimicrobial mechanisms of MXene mainly include physical damage, induced oxidative stress, and photothermal and photodynamic therapy. In this paper, we reviewed MXene-based antimicrobial composites and discussed the application of MXene in bacterial infections to guide further research in the antimicrobial field.
Collapse
Affiliation(s)
- Surong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Huichao Zhang
- Stomatology College of Chifeng University, Chifeng, China
| | - Huiyan Lai
- College of Chemistry and Chemical Engineering, Xiamen University, and Discipline of Intelligent Instrument and Equipment, Xiamen, China
| | - Jingyu Xu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ling Yu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zitong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Luyi Yang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
27
|
Kim DH, Shin DH, Lee H. Self-powered semitransparent WS 2/LaVO 3vertical-heterostructure photodetectors by employing interfacial hexagonal boron nitride. NANOTECHNOLOGY 2024; 35:155202. [PMID: 38154129 DOI: 10.1088/1361-6528/ad1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Two-dimensional (2D) semiconductor and LaVO3materials with high absorption coefficients in the visible light region are attractive structures for high-performance photodetector (PD) applications. Insulating 2D hexagonal boron nitride (h-BN) with a large band gap and excellent transmittance is a very attractive material as an interface between 2D/semiconductor heterostructures. We first introduce WS2/h-BN/LaVO3semitransparent PD. The photo-current/dark current ratio of the device exhibits a delta-function characteristic of 4 × 105at 0 V, meaning 'self-powered'. The WS2/h-BN/LaVO3PD shows up to 0.27 A W-1responsivity (R) and 4.6 × 1010cm Hz1/2W-1detectivity (D*) at 730 nm. Especially, it was confirmed that theD* performance improved by about 5 times compared to the WS2/LaVO3device at zero bias. Additionally, it is suggested that the PD maintains 87% of its initialRfor 2000 h under the atmosphere with a temperature of 25 °C and humidity of 30%. Based on the above results, we suggest that the WS2/h-BN/LaVO3heterojunction is promising as a self-powered optoelectronic device.
Collapse
Affiliation(s)
- Da Hee Kim
- Department of Applied Physics, Kyung Hee University, Yongin 17104, Republic of Korea
- Education Institute for Frontier, Science and Technology (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Dong Hee Shin
- Department of Smart Sensors Engineering, Andong National University, Andong, Gyeongbuk, 36729, Republic of Korea
| | - Hosun Lee
- Department of Applied Physics, Kyung Hee University, Yongin 17104, Republic of Korea
- Education Institute for Frontier, Science and Technology (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
28
|
Liu Q, Cui S, Bian R, Pan E, Cao G, Li W, Liu F. The Integration of Two-Dimensional Materials and Ferroelectrics for Device Applications. ACS NANO 2024; 18:1778-1819. [PMID: 38179983 DOI: 10.1021/acsnano.3c05711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In recent years, there has been growing interest in functional devices based on two-dimensional (2D) materials, which possess exotic physical properties. With an ultrathin thickness, the optoelectrical and electrical properties of 2D materials can be effectively tuned by an external field, which has stimulated considerable scientific activities. Ferroelectric fields with a nonvolatile and electrically switchable feature have exhibited enormous potential in controlling the electronic and optoelectronic properties of 2D materials, leading to an extremely fertile area of research. Here, we review the 2D materials and relevant devices integrated with ferroelectricity. This review starts to introduce the background about the concerned themes, namely 2D materials and ferroelectrics, and then presents the fundamental mechanisms, tuning strategies, as well as recent progress of the ferroelectric effect on the optical and electrical properties of 2D materials. Subsequently, the latest developments of 2D material-based electronic and optoelectronic devices integrated with ferroelectricity are summarized. Finally, the future outlook and challenges of this exciting field are suggested.
Collapse
Affiliation(s)
- Qing Liu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313099, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Silin Cui
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313099, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Renji Bian
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313099, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Er Pan
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313099, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guiming Cao
- School of Information Science and Technology, Xi Chang University, 615013 Xi'an, China
| | - Wenwu Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Fucai Liu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313099, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
29
|
Rani A, Ren W, Lee HJ, Hong SH, Kim TG. Synthesis, Properties, and Application of Ultrathin and Flexible Tellurium Nanorope Films: Beyond Conventional 2D Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300557. [PMID: 37641190 DOI: 10.1002/smll.202300557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/09/2023] [Indexed: 08/31/2023]
Abstract
Nanomaterials that can be easily processed into thin films are highly desirable for their wide range of applicability in electrical and optical devices. Currently, Te-based 2D materials are of interest because of their superior electrical properties compared to transition metal dichalcogenide materials. However, the large-scale manufacturing of these materials is challenging, impeding their commercialization. This paper reports on ultrathin, large-scale, and highly flexible Te and Te-metal nanorope films grown via low-power radiofrequency sputtering for a short period at 25 °C. Additionally, the feasibility of such films as transistor channels and flexible transparent conductive electrodes is discussed. A 20 nm thick Te-Ni-nanorope-channel-based transistor exhibits a high mobility (≈450 cm2 V-1 s-1 ) and on/off ratio (105 ), while 7 nm thick Te-W nanorope electrodes exhibit an extremely low haze (1.7%) and sheet resistance (30 Ω sq-1 ), and high transmittance (86.4%), work function (≈4.9 eV), and flexibility. Blue organic light-emitting diodes with 7 nm Te-W anodes exhibit significantly higher external quantum efficiencies (15.7%), lower turn-on voltages (3.2 V), and higher and more uniform viewing angles than indium-tin-oxide-based devices. The excellent mechanical flexibility and easy coating capability offered by Te nanoropes demonstrate their superiority over conventional nanomaterials and provide an effective outlet for multifunctional devices.
Collapse
Affiliation(s)
- Adila Rani
- School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02842, Republic of Korea
| | - Wanqi Ren
- School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02842, Republic of Korea
| | - Ho Jin Lee
- School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02842, Republic of Korea
| | - Seok Hee Hong
- School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02842, Republic of Korea
| | - Tae Geun Kim
- School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02842, Republic of Korea
| |
Collapse
|
30
|
Xu K, Holbrook M, Holtzman LN, Pasupathy AN, Barmak K, Hone JC, Rosenberger MR. Validating the Use of Conductive Atomic Force Microscopy for Defect Quantification in 2D Materials. ACS NANO 2023; 17:24743-24752. [PMID: 38095969 DOI: 10.1021/acsnano.3c05056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Defects significantly affect the electronic, chemical, mechanical, and optical properties of two-dimensional (2D) materials. Thus, it is critical to develop a method for convenient and reliable defect quantification. Scanning transmission electron microscopy (STEM) and scanning tunneling microscopy (STM) possess the required atomic resolution but have practical disadvantages. Here, we benchmark conductive atomic force microscopy (CAFM) by a direct comparison with STM in the characterization of transition metal dichalcogenides (TMDs). The results conclusively demonstrate that CAFM and STM image identical defects, giving results that are equivalent both qualitatively (defect appearance) and quantitatively (defect density). Further, we confirm that CAFM can achieve single-atom resolution, similar to that of STM, on both bulk and monolayer samples. The validation of CAFM as a facile and accurate tool for defect quantification provides a routine and reliable measurement that can complement other standard characterization techniques.
Collapse
Affiliation(s)
- Kaikui Xu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Madisen Holbrook
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Luke N Holtzman
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Abhay N Pasupathy
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Katayun Barmak
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - James C Hone
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Matthew R Rosenberger
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
31
|
Saliba M, Atanas JP, Howayek TM, Habchi R. Molybdenum disulfide, exfoliation methods and applications to photocatalysis: a review. NANOSCALE ADVANCES 2023; 5:6787-6803. [PMID: 38059039 PMCID: PMC10696921 DOI: 10.1039/d3na00741c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
This review provides a deep analysis of the mechanical and optoelectronic characteristics of MoS2. It offers a comprehensive assessment of diverse exfoliation methods, encompassing chemical, liquid-phase, mechanical, and microwave-driven techniques. The review also explores MoS2's versatile applications across various domains and meticulously examines its significance as a photocatalyst. Notably, it highlights key factors influencing the photocatalytic process. Indeed, the enhanced visible light responsiveness of materials like MoS2 holds immense potential across a wide range of applications. MoS2's remarkable photocatalytic response to visible light, coupled with its notable stability, opens up numerous possibilities in various fields. This unique combination makes MoS2 a promising candidate for applications that require efficient and stable photocatalytic processes, such as environmental remediation, water purification, and energy generation. Its attributes contribute significantly to addressing contemporary challenges and advancing sustainable technologies.
Collapse
Affiliation(s)
- Michelle Saliba
- EC2M, Faculty of Sciences, Fanar, Lebanese University 2, Campus Pierre Gemayel 90656 Lebanon
| | - Jean Pierre Atanas
- University of Balamand Dubai, Department of Physics D. I. Park-1 Dubai United Arab Emirates
| | - Tia Maria Howayek
- EC2M, Faculty of Sciences, Fanar, Lebanese University 2, Campus Pierre Gemayel 90656 Lebanon
| | - Roland Habchi
- EC2M, Faculty of Sciences, Fanar, Lebanese University 2, Campus Pierre Gemayel 90656 Lebanon
- Functional Materials Group, Gulf University for Science and Technology Hawally Kuwait
| |
Collapse
|
32
|
Yang D, Zhao L, Cheng J, Chen M, Liu H, Wang J, Han C, Sun Y. Unveiling sub-bandgap energy-level structures on machined optical surfaces based on weak photo-luminescence. NANOSCALE 2023; 15:18250-18264. [PMID: 37800341 DOI: 10.1039/d3nr03488g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Sub-bandgap defect energy levels (SDELs) introduced by the point defects located in surface defect areas are considered the main factors in decreasing laser-induced damage thresholds (LIDTs). The suppression of SDELs could greatly increase LIDTs. However, no available method could detect SDELs, limiting the characterization and suppression of SDELs. Herein, a self-designed photo-luminescence detection system is developed to explore the weak transient-steady photo-luminescence properties of machined surfaces. Based on the excitation laser wavelength dependence of photo-luminescence properties, a sub-bandgap energy-level structure (SELS) containing SDELs is unveiled for the first time. Based on the developed mathematical model for predicting LIDTs, the feasibility of the detection method was verified. In summary, this work provides a novel approach to characterize SDELs on machined surfaces. This work could construct electronic structures and explore the transition behaviors of electrons, which is vital to laser-induced damage. Besides, this work could predict the LIDTs of the machined surfaces based on their PL properties, which provides convenience for evaluating the LIDTs of various optical elements in industrial production. Moreover, this work provides a convenient method for raising the LIDTs of various optical elements through monitoring and suppressing the SDELs on machined surfaces.
Collapse
Affiliation(s)
- Dinghuai Yang
- State Key Laboratory of Robotics and System, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Linjie Zhao
- State Key Laboratory of Robotics and System, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Jian Cheng
- State Key Laboratory of Robotics and System, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Mingjun Chen
- State Key Laboratory of Robotics and System, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Henan Liu
- State Key Laboratory of Robotics and System, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Jinghe Wang
- Center for Precision Engineering, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Chengshun Han
- State Key Laboratory of Robotics and System, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yazhou Sun
- State Key Laboratory of Robotics and System, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
33
|
Anh NPQ, Hiep NT, Lu DV, Nguyen CQ, Hieu NN, Vi VTT. Crystal lattice and electronic and transport properties of Janus ZrSiSZ 2 (Z = N, P, As) monolayers by first-principles investigations. NANOSCALE ADVANCES 2023; 5:6705-6713. [PMID: 38024315 PMCID: PMC10662022 DOI: 10.1039/d3na00631j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
From the extending requirements for using innovative materials in advanced technologies, it is necessary to explore new materials for relevant applications. In this work, we design new two-dimensional (2D) Janus ZrSiSZ2 (Z = N, P, As) monolayers and investigate their crystal lattice and dynamic stability by using density functional theory investigations. The two stable structures of ZrSiSP2 and ZrSiSAs2 are then systematically examined for thermal, energetic, and mechanical stability, and electronic and transport properties. The calculation results demonstrate that both the ZrSiSP2 and ZrSiSAs2 monolayers have good thermal stability at room temperature and high energetic/mechanical stabilities for experimental synthesis. The studied structures are found to be in-direct semiconductors. Specifically, with moderate band-gap energies of 1.04 to 1.29 eV for visible light absorption, ZrSiSP2 and ZrSiSAs2 can be considered potential candidates for photovoltaic applications. The applied biaxial strains and external electric fields slightly change the band-gap energies of the monolayers. We also calculate the carrier mobilities for the transport properties based on the deformation potential method. Due to the lower effective masses, the carrier mobilities in the x direction are higher than those in the y direction. The carrier mobilities of the ZrSiSP2 and ZrSiSAs2 monolayers are anisotropic not only in transport directions but also for the electrons and holes. We believe that the results of our work may stimulate further studies to explore more new 2D Janus monolayers with novel properties of the MA2Z4 family materials.
Collapse
Affiliation(s)
- Nguyen P Q Anh
- Faculty of Electrical, Electronics and Materials Technology, University of Sciences, Hue University Hue 530000 Vietnam
| | - Nguyen T Hiep
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - D V Lu
- Faculty of Physics, The University of Danang - University of Science and Education Da Nang 550000 Vietnam
| | - Cuong Q Nguyen
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Nguyen N Hieu
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Vo T T Vi
- Faculty of Basic Sciences, University of Medicine and Pharmacy, Hue University Hue 530000 Vietnam
| |
Collapse
|
34
|
Zhang X, Wang X, He T, Wang L, Yu WW, Liu Y, Liu G, Cheng Z. Magnetic topological materials in two-dimensional: theory, material realization and application prospects. Sci Bull (Beijing) 2023; 68:2639-2657. [PMID: 37734982 DOI: 10.1016/j.scib.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/12/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
Two-dimensional (2D) magnetism and nontrivial band topology are both areas of research that are currently receiving significant attention in the study of 2D materials. Recently, a novel class of materials has emerged, known as 2D magnetic topological materials, which elegantly combine 2D magnetism and nontrivial topology. This field has garnered increasing interest, especially due to the emergence of several novel magnetic topological states that have been generalized into the 2D scale. These states include antiferromagnetic topological insulators/semimetals, second-order topological insulators, and topological half-metals. Despite the rapid advancements in this emerging research field in recent years, there have been few comprehensive summaries of the state-of-the-art progress. Therefore, this review aims to provide a thorough analysis of current progress on 2D magnetic topological materials. We cover various 2D magnetic topological insulators, a range of 2D magnetic topological semimetals, and the novel 2D topological half-metals, systematically analyzing the basic topological theory, the course of development, the material realization, and potential applications. Finally, we discuss the challenges and prospects for 2D magnetic topological materials, highlighting the potential for future breakthroughs in this exciting field.
Collapse
Affiliation(s)
- Xiaoming Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xiaotian Wang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Tingli He
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Lirong Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Wei-Wang Yu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Ying Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Guodong Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong 2500, Australia.
| |
Collapse
|
35
|
Li B, Bai H, Yu Z, Li Y, Kwok CT, Feng W, Wang S, Ng KW. Electronic and magnetic properties of layered M 3Si 2Te 6(M = alkaline earth and transition metals). JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:065801. [PMID: 37813101 DOI: 10.1088/1361-648x/ad0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
Recently, a new layered material, Mn3Si2Te6, was identified to be a semiconductor with nodal-line topological property and ferrimagnetic ground state. In this work, we propose a series of structures, M3Si2Te6(M = alkaline earth and transition metals), and systematically investigate their mechanical, magnetic and electronic properties, and the strain effect to enrich the family of the layered materials for practical applications. We find 13 stable M3Si2Te6, including 5 semiconductors (M = Ca, Sr, Fe, Ru and Os) and 8 metals (M = Sc, Ti, Nb, Ta, Cr, Mo, W and Tc). Two structures (M = Ti and Cr) are antiferromagnetic (AFM), while other structures are non-magnetic (NM). Similar to Mn3Si2Te6, the AFM structures exhibit magnetic anisotropy energies (MAEs) and semiconductors have anisotropic electron effective masses. We further show that compressions along thez-axis can effectively tune the electronic and magnetic properties, such as the semiconductor-metal and NM-AFM transition in Fe3Si2Te6, the two-fold degeneracy of the valence band maximums in Sr3Si2Te6, as well as the reduced MAE for all magnetic structures. These results demonstrate the diverse properties of the layered M3Si2Te6family and provide promising theoretical predictions for the future design of new layered materials.
Collapse
Affiliation(s)
- Bowen Li
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR 999078, People's Republic of China
| | - Haoyun Bai
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR 999078, People's Republic of China
| | - Zhichao Yu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR 999078, People's Republic of China
| | - Yutong Li
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macao SAR 999078, People's Republic of China
| | - Chi Tat Kwok
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macao SAR 999078, People's Republic of China
| | - Wenlin Feng
- School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China
| | - Shuangpeng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR 999078, People's Republic of China
| | - Kar Wei Ng
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR 999078, People's Republic of China
| |
Collapse
|
36
|
Dutta R, Bala A, Sen A, Spinazze MR, Park H, Choi W, Yoon Y, Kim S. Optical Enhancement of Indirect Bandgap 2D Transition Metal Dichalcogenides for Multi-Functional Optoelectronic Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303272. [PMID: 37453927 DOI: 10.1002/adma.202303272] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
The unique electrical and optical properties of transition metal dichalcogenides (TMDs) make them attractive nanomaterials for optoelectronic applications, especially optical sensors. However, the optical characteristics of these materials are dependent on the number of layers. Monolayer TMDs have a direct bandgap that provides higher photoresponsivity compared to multilayer TMDs with an indirect bandgap. Nevertheless, multilayer TMDs are more appropriate for various photodetection applications due to their high carrier density, broad spectral response from UV to near-infrared, and ease of large-scale synthesis. Therefore, this review focuses on the modification of the optical properties of devices based on indirect bandgap TMDs and their emerging applications. Several successful developments in optical devices are examined, including band structure engineering, device structure optimization, and heterostructures. Furthermore, it introduces cutting-edge techniques and future directions for optoelectronic devices based on multilayer TMDs.
Collapse
Affiliation(s)
- Riya Dutta
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Arindam Bala
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Anamika Sen
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Michael Ross Spinazze
- Waterloo Institute for Nanotechnology and the Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Heekyeong Park
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Woong Choi
- School of Materials Science & Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngki Yoon
- Waterloo Institute for Nanotechnology and the Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Sunkook Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
37
|
Cao B, Li M, Zhao Y, Zhou H, Tang T, Li M, Song C, Zhuang W. Ultrathin 2D-MOFs for dual-enzyme cascade biocatalysis with sensitive glucose detection performances. Colloids Surf B Biointerfaces 2023; 230:113519. [PMID: 37633076 DOI: 10.1016/j.colsurfb.2023.113519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
In recent years, two-dimensional nanosheet metal-organic frameworks (2D MOFs) have been widely considered as promising carriers for enzyme immobilization owing to their large surface area, designable and tunable structures, and other properties that enhance enzyme loading and modulate interactions with enzymes. In this study, a series of ultrathin 2D M-TCPP (M = Co, Ni, Zn, Cu) nanosheets were synthesized employing a surfactant-assisted bottom-up approach, and the effect of solvent ratio on the morphology and properties of 2D MOFs was explored. After systematic characterization, Cu-based 2D MOFs with large specific surface areas and excellent water stability was selected as the carrier for the co-immobilization of glucose oxidase (GOx) and horseradish peroxidase (HRP). The effects of adsorption and covalent immobilization strategies on bis-enzyme loading and enzyme activity, as well as their applications in rapid glucose detection, were systematically investigated. The results showed that A-CTGH and C-CTGH owned enzyme loadings of 187.9 and 249.1 mg/g, respectively, and exhibited superior enzymatic activity when exposed to harsh environments compared to free enzymes. In addition, the covalently immobilized biocatalyst based on GOx demonstrated a more sensitive glucose detection performance, including a wide linear range from 5.0 to 16 μM with a detection limit of 0.6 μM.
Collapse
Affiliation(s)
- Bin Cao
- Special Polymer Materials and Fiber Engineering Technology Research Center of Jiangsu, China Nuclear Industry Huawei Engineering Design & Research Co. Ltd., No. 79, Yunlongshan Road, Nanjing 210019, China; Luzhou Laojiao Postdoctoral Programme, Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Mengyu Li
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Luzhou Laojiao Postdoctoral Programme, Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Ye Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Luzhou Laojiao Postdoctoral Programme, Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Huimin Zhou
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Luzhou Laojiao Postdoctoral Programme, Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Ting Tang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Luzhou Laojiao Postdoctoral Programme, Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Mengran Li
- Special Polymer Materials and Fiber Engineering Technology Research Center of Jiangsu, China Nuclear Industry Huawei Engineering Design & Research Co. Ltd., No. 79, Yunlongshan Road, Nanjing 210019, China; Luzhou Laojiao Postdoctoral Programme, Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Chuan Song
- Department of Chemical Engineering, the University of Melbourne, Melbourne, Victoria 3010, Australia; Luzhou Laojiao Postdoctoral Programme, Luzhou Laojiao Co., Ltd., Luzhou 646000, China.
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Luzhou Laojiao Postdoctoral Programme, Luzhou Laojiao Co., Ltd., Luzhou 646000, China.
| |
Collapse
|
38
|
Meng Y, Zhong H, Xu Z, He T, Kim JS, Han S, Kim S, Park S, Shen Y, Gong M, Xiao Q, Bae SH. Functionalizing nanophotonic structures with 2D van der Waals materials. NANOSCALE HORIZONS 2023; 8:1345-1365. [PMID: 37608742 DOI: 10.1039/d3nh00246b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The integration of two-dimensional (2D) van der Waals materials with nanostructures has triggered a wide spectrum of optical and optoelectronic applications. Photonic structures of conventional materials typically lack efficient reconfigurability or multifunctionality. Atomically thin 2D materials can thus generate new functionality and reconfigurability for a well-established library of photonic structures such as integrated waveguides, optical fibers, photonic crystals, and metasurfaces, to name a few. Meanwhile, the interaction between light and van der Waals materials can be drastically enhanced as well by leveraging micro-cavities or resonators with high optical confinement. The unique van der Waals surfaces of the 2D materials enable handiness in transfer and mixing with various prefabricated photonic templates with high degrees of freedom, functionalizing as the optical gain, modulation, sensing, or plasmonic media for diverse applications. Here, we review recent advances in synergizing 2D materials to nanophotonic structures for prototyping novel functionality or performance enhancements. Challenges in scalable 2D materials preparations and transfer, as well as emerging opportunities in integrating van der Waals building blocks beyond 2D materials are also discussed.
Collapse
Affiliation(s)
- Yuan Meng
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Hongkun Zhong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Zhihao Xu
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tiantian He
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Justin S Kim
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Sangmoon Han
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Sunok Kim
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Seoungwoong Park
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yijie Shen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- Optoelectronics Research Centre, University of Southampton, Southampton, UK
| | - Mali Gong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Qirong Xiao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Sang-Hoon Bae
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
39
|
Yam KM, Zhang Y, Guo N, Jiang Z, Deng H, Zhang C. Two-dimensional graphitic metal carbides: structure, stability and electronic properties. NANOTECHNOLOGY 2023; 34:465706. [PMID: 37549662 DOI: 10.1088/1361-6528/acedb6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Via first-principles computational modeling and calculations, we propose a new class of two-dimensional (2D) atomically thin crystals that contain metal-C3(MC3) moieties periodically distributed in a graphenic lattice, which we refer to as 2D graphitic metal carbides (g-MCs). Most g-MCs are dynamically stable as verified by the calculated phonon spectra. Our detailed chemical bonding analyzes reveal that the high stability of g-MCs can be attributed to a unique bonding feature, which manifests as the carbon-backbone-mediated metal-metal interactions. These analyzes provide new insights for understanding the stability of 2D materials. It is found that the calculated electronic band gaps and magnetic moments (per unit cell) of g-MCs can range from 0 to 1.30 eV and 0 to 4.40μB, respectively. Highly tunable electronic properties imply great potential of 2D g-MCs in various applications. As an example, we show that 2D g-MnC can be an excellent electrocatalyst towards CO2reductive reaction for the formation of formic acid with an exceptionally high loading of Mn atoms (∼43 wt%). We expect this work to simulate new experiments for fabrication and applications of g-MCs.
Collapse
Affiliation(s)
- Kah-Meng Yam
- Department of Physics, National University of Singapore, 2 Science Drive 3 117551, Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3 117543, Singapore
| | - Yongjie Zhang
- Department of Physics, National University of Singapore, 2 Science Drive 3 117551, Singapore
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Na Guo
- NUS (Chongqing) Research Institute, No. 16 South Huashan Road, 401123, Chongqing, People's Republic of China
| | - Zhuoling Jiang
- Department of Physics, National University of Singapore, 2 Science Drive 3 117551, Singapore
| | - Hui Deng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Chun Zhang
- Department of Physics, National University of Singapore, 2 Science Drive 3 117551, Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3 117543, Singapore
| |
Collapse
|
40
|
Zhu Y, Qu Z, Wang X, Zhang J, Wu Z, Xu Z, Yang F, Wang J, Dai Y. Electrostatic gating dependent multiple band alignments in ferroelectric VS 2/Ga 2O 3 van der Waals heterostructures. Phys Chem Chem Phys 2023; 25:22711-22718. [PMID: 37606252 DOI: 10.1039/d3cp02428h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Two-dimensional (2D) van der Waals (vdW) heterostructures with spontaneous intrinsic ferroelectrics play an essential role in ferroelectric memories. Also, the reversal of polarized directions induces band alignment transitions among different types to provide a new path for multifunctional devices. In this work, the structural and electronic properties of 2D VS2/Ga2O3 vdW heterostructures under different polarizations were investigated using first-principles calculations with the vdW correction of the DFT-D2 method. The results reveal that the polarized direction of a 2D Ga2O3 monolayer can cause a distinct band structure reversion from a metal to a semiconductor due to the shift of band alignment induced by the interlayer charge transfer. Moreover, the VS2/P↑ Ga2O3 heterostructures retain type-I and type-II band alignments in the majority and minority channel, respectively, under an external electric field. Interestingly, applying the external electric field for VS2/P↓ Ga2O3 heterostructures can lead to a transition from type-II to type-I in the majority channel, and from type-II to type-III in the minority channel. Our work provides a feasible way to realize 2D VS2/Ga2O3 vdW heterostructures for potential applications in ferroelectric memories and electrostatic gating dependent multiple band alignment devices.
Collapse
Affiliation(s)
- Yunlai Zhu
- School of Integrated Circuits, Anhui University, Hefei, Anhui, 230601, China.
| | - Zihan Qu
- School of Integrated Circuits, Anhui University, Hefei, Anhui, 230601, China.
| | - Xiaoteng Wang
- School of Integrated Circuits, Anhui University, Hefei, Anhui, 230601, China.
| | - Jishun Zhang
- School of Integrated Circuits, Anhui University, Hefei, Anhui, 230601, China.
| | - Zuheng Wu
- School of Integrated Circuits, Anhui University, Hefei, Anhui, 230601, China.
| | - Zuyu Xu
- School of Integrated Circuits, Anhui University, Hefei, Anhui, 230601, China.
| | - Fei Yang
- School of Integrated Circuits, Anhui University, Hefei, Anhui, 230601, China.
| | - Jun Wang
- School of Integrated Circuits, Anhui University, Hefei, Anhui, 230601, China.
| | - Yuehua Dai
- School of Integrated Circuits, Anhui University, Hefei, Anhui, 230601, China.
| |
Collapse
|
41
|
Yazdanpanah
Goharrizi A, Barzoki AM, Selberherr S, Filipovic L. A Theoretical Study of Armchair Antimonene Nanoribbons in the Presence of Uniaxial Strain Based on First-Principles Calculations. ACS APPLIED ELECTRONIC MATERIALS 2023; 5:4514-4522. [PMID: 37637974 PMCID: PMC10448714 DOI: 10.1021/acsaelm.3c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/11/2023] [Indexed: 08/29/2023]
Abstract
The optimized geometry and also the electronic and transport properties of passivated edge armchair antimonene nanoribbons (ASbNRs) are studied using ab initio calculations. Due to quantum confinement, the size of the bandgap can be modulated from 1.2 eV to 2.4 eV (indirect), when the width is reduced from 5 nm to 1 nm, respectively. This study focuses on nanoribbons with a width of 5 nm (5-ASbNR) due to its higher potential for fabrication and an acceptable bandgap for electronic applications. Applying uniaxial compressive and tensile strain results in a reduction of the bandgap of the 5-ASbNR film. The indirect to direct bandgap transition was observed, when introducing a tensile strain of more than +4%. Moreover, when a compressive strain above 9% is introduced, semi-metallic behavior can be observed. By applying compressive (tensile) strain, the hole (electron) effective mass is reduced, thereby increasing the mobility of charge carriers. The study demonstrates that the carrier mobility of ASbNR-based nanoelectronic devices can be modulated by applying tensile or compressive strain on the ribbons.
Collapse
Affiliation(s)
| | - Ali Molajani Barzoki
- Department
of Electrical Engineering, Shahid Beheshti
University, Tehran IR19395, Iran
| | | | - Lado Filipovic
- Institute
for Microelectronics, Technische Universität Wien, 1040 Wien, Austria
- CDL
for Multi-Scale Process Modeling of Semiconductor Devices and Sensors
at the CD0509, 1040 Vienna, Austria
| |
Collapse
|
42
|
Nguyen HT, Cuong NQ, Vi VTT, Hieu NN, Tran LPT. Moderate direct band-gap energies and high carrier mobilities of Janus XWSiP 2 (X = S, Se, Te) monolayers via first-principles investigation. Phys Chem Chem Phys 2023; 25:21468-21478. [PMID: 37539527 DOI: 10.1039/d3cp02037a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Two-dimensional (2D) Janus materials with extraordinary properties are promising candidates for utilization in advanced technologies. In this study, new 2D Janus XWSiP2 (X = S, Se, Te) monolayers were constructed and their properties were systematically analyzed by using first-principles calculations. All three structures of SWSiP2, SeWSiP2, and TeWSiP2 exhibit high energetic stability for the experimental fabrication with negative and high Ecoh values, the elastic constants obey the criteria of Born-Huang, and no imaginary frequency exists in the phonon dispersion spectra. The calculated results from the PBE and HSE06 approaches reveal that the XWSiP2 are semiconductors with moderate direct band-gaps varying from 1.01 eV to 1.06 eV using the PBE method, and 1.39 eV to 1.44 eV using the HSE06 method. In addition, the electronic band structures of the three monolayers are significantly affected by the applied strains. Interestingly, the transitions from a direct to indirect semiconductor are observed for different biaxial strains εb. The transport parameters including the carrier mobility values along the x direction μx and y direction μy were also calculated to study the transport properties of the XWSiP2. The results indicate that the XWSiP2 monolayers not only have high carrier mobilities but also anisotropy in the transport directions for both holes and electrons. Together with the moderate and tunable energy gaps, the XWSiP2 materials are found to be potential candidates for application in the photonic, photovoltaic, optoelectronic, and electronic fields.
Collapse
Affiliation(s)
- Hiep T Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Nguyen Q Cuong
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Vo T T Vi
- Faculty of Basic Sciences, University of Medicine and Pharmacy, Hue University, Hue 530000, Vietnam.
| | - Nguyen N Hieu
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Linh P T Tran
- Faculty of Physics, Hanoi National University of Education, Hanoi 100000, Vietnam
| |
Collapse
|
43
|
Chen H, Luo B, Wu S, Shi S, Dai Q, Peng Z, Zhao M. Microfluidic Biosensor Based on Molybdenum Disulfide (MoS 2) Modified Thin-Core Microfiber for Immune Detection of Toxoplasma gondii. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115218. [PMID: 37299945 DOI: 10.3390/s23115218] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Toxoplasma gondii (T. gondii) is a zoonotic parasite that is widely distributed and seriously endangers public health and human health. Therefore, accurate and effective detection of T. gondii is crucial. This study proposes a microfluidic biosensor using a thin-core microfiber (TCMF) coated with molybdenum disulfide (MoS2) for immune detection of T. gondii. The single-mode fiber was fused with the thin-core fiber, and the TCMF was obtained by arc discharging and flame heating. In order to avoid interference and protect the sensing structure, the TCMF was encapsulated in the microfluidic chip. MoS2 and T. gondii antigen were modified on the surface of TCMF for the immune detection of T. gondii. Experimental results showed that the detection range of the proposed biosensor for T. gondii monoclonal antibody solutions was 1 pg/mL to 10 ng/mL with sensitivity of 3.358 nm/log(mg/mL); the detection of limit was calculated to be 87 fg/mL through the Langmuir model; the dissociation constant and the affinity constant were calculated to be about 5.79 × 10-13 M and 1.727 × 1014 M-1, respectively. The specificity and clinical characteristics of the biosensor was explored. The rabies virus, pseudorabies virus, and T. gondii serum were used to confirm the excellent specificity and clinical characteristics of the biosensor, indicating that the proposed biosensor has great application potential in the biomedical field.
Collapse
Affiliation(s)
- Huiji Chen
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing 400054, China
| | - Binbin Luo
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing 400054, China
| | - Shengxi Wu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Shenghui Shi
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing 400054, China
| | - Qin Dai
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Zehua Peng
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing 400054, China
| | - Mingfu Zhao
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
44
|
Zhang L, Wang N, Li Y. Design, synthesis, and application of some two-dimensional materials. Chem Sci 2023; 14:5266-5290. [PMID: 37234883 PMCID: PMC10208047 DOI: 10.1039/d3sc00487b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Two-dimensional (2D) materials are widely used as key components in the fields of energy conversion and storage, optoelectronics, catalysis, biomedicine, etc. To meet the practical needs, molecular structure design and aggregation process optimization have been systematically carried out. The intrinsic correlation between preparation methods and the characteristic properties is investigated. This review summarizes the recent research achievements of 2D materials in the aspect of molecular structure modification, aggregation regulation, characteristic properties, and device applications. The design strategies to fabricate functional 2D materials starting from precursor molecules are introduced in detail referring to organic synthetic chemistry and self-assembly technology. It provides important research ideas for the design and synthesis of related materials.
Collapse
Affiliation(s)
- Luwei Zhang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University 27 Shanda Nanlu Jinan 250100 P. R. China
| | - Ning Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University 27 Shanda Nanlu Jinan 250100 P. R. China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University 27 Shanda Nanlu Jinan 250100 P. R. China
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
| |
Collapse
|
45
|
Biswas A, Maiti R, Lee F, Chen CY, Li T, Puthirath AB, Iyengar SA, Li C, Zhang X, Kannan H, Gray T, Saadi MASR, Elkins J, Birdwell AG, Neupane MR, Shah PB, Ruzmetov DA, Ivanov TG, Vajtai R, Zhao Y, Gaeta AL, Tripathi M, Dalton A, Ajayan PM. Unravelling the room temperature growth of two-dimensional h-BN nanosheets for multifunctional applications. NANOSCALE HORIZONS 2023; 8:641-651. [PMID: 36880586 DOI: 10.1039/d2nh00557c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The room temperature growth of two-dimensional van der Waals (2D-vdW) materials is indispensable for state-of-the-art nanotechnology. Low temperature growth supersedes the requirement of elevated growth temperatures accompanied with high thermal budgets. Moreover, for electronic applications, low or room temperature growth reduces the possibility of intrinsic film-substrate interfacial thermal diffusion related deterioration of the functional properties and the consequent deterioration of the device performance. Here, we demonstrated the growth of ultrawide-bandgap boron nitride (BN) at room temperature by using the pulsed laser deposition (PLD) process, which exhibited various functional properties for potential applications. Comprehensive chemical, spectroscopic and microscopic characterizations confirmed the growth of ordered nanosheet-like hexagonal BN (h-BN). Functionally, the nanosheets show hydrophobicity, high lubricity (low coefficient of friction), and a low refractive index within the visible to near-infrared wavelength range, and room temperature single-photon quantum emission. Our work unveils an important step that brings a plethora of potential applications for these room temperature grown h-BN nanosheets as the synthesis can be feasible on any given substrate, thus creating a scenario for "h-BN on demand" under a frugal thermal budget.
Collapse
Affiliation(s)
- Abhijit Biswas
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, USA.
| | - Rishi Maiti
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, 10027, USA.
| | - Frank Lee
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9RH, UK.
| | - Cecilia Y Chen
- Department of Electrical Engineering, Columbia University, New York, 10027, USA
| | - Tao Li
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
| | - Anand B Puthirath
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, USA.
| | - Sathvik Ajay Iyengar
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, USA.
| | - Chenxi Li
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, USA.
| | - Xiang Zhang
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, USA.
| | - Harikishan Kannan
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, USA.
| | - Tia Gray
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, USA.
| | | | - Jacob Elkins
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, USA.
| | - A Glen Birdwell
- DEVCOM Army Research Laboratory, RF Devices and Circuits, Adelphi, Maryland 20783, USA
| | - Mahesh R Neupane
- DEVCOM Army Research Laboratory, RF Devices and Circuits, Adelphi, Maryland 20783, USA
| | - Pankaj B Shah
- DEVCOM Army Research Laboratory, RF Devices and Circuits, Adelphi, Maryland 20783, USA
| | - Dmitry A Ruzmetov
- DEVCOM Army Research Laboratory, RF Devices and Circuits, Adelphi, Maryland 20783, USA
| | - Tony G Ivanov
- DEVCOM Army Research Laboratory, RF Devices and Circuits, Adelphi, Maryland 20783, USA
| | - Robert Vajtai
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, USA.
| | - Yuji Zhao
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
| | - Alexander L Gaeta
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, 10027, USA.
- Department of Electrical Engineering, Columbia University, New York, 10027, USA
| | - Manoj Tripathi
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9RH, UK.
| | - Alan Dalton
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9RH, UK.
| | - Pulickel M Ajayan
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, USA.
| |
Collapse
|
46
|
Zhou K, Shang G, Hsu HH, Han ST, Roy VAL, Zhou Y. Emerging 2D Metal Oxides: From Synthesis to Device Integration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207774. [PMID: 36333890 DOI: 10.1002/adma.202207774] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/26/2022] [Indexed: 05/26/2023]
Abstract
2D metal oxides have aroused increasing attention in the field of electronics and optoelectronics due to their intriguing physical properties. In this review, an overview of recent advances on synthesis of 2D metal oxides and their electronic applications is presented. First, the tunable physical properties of 2D metal oxides that relate to the structure (various oxidation-state forms, polymorphism, etc.), crystallinity and defects (anisotropy, point defects, and grain boundary), and thickness (quantum confinement effect, interfacial effect, etc.) are discussed. Then, advanced synthesis methods for 2D metal oxides besides mechanical exfoliation are introduced and classified into solution process, vapor-phase deposition, and native oxidation on a metal source. Later, the various roles of 2D metal oxides in widespread applications, i.e., transistors, inverters, photodetectors, piezotronics, memristors, and potential applications (solar cell, spintronics, and superconducting devices) are discussed. Finally, an outlook of existing challenges and future opportunities in 2D metal oxides is proposed.
Collapse
Affiliation(s)
- Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gang Shang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hsiao-Hsuan Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Vellaisamy A L Roy
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
47
|
Chen X, Ding G, Tang L, Zou H, Wang C, Chen S, Su C, Li Y. Optical Logic Gates Excited by a Gauss Vortex Interference Beam Based on Spatial Self-Phase Modulation in 2D MoS 2. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1423. [PMID: 37111008 PMCID: PMC10145341 DOI: 10.3390/nano13081423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 06/19/2023]
Abstract
Vortex beams with optical orbital angular momentum have broad prospects in future high-speed and large-capacity optical communication. In this investigation of materials science, we found that low-dimensional materials have feasibility and reliability in the development of optical logic gates in all-optical signal processing and computing technology. We found that spatial self-phase modulation patterns through the MoS2 dispersions can be modulated by the initial intensity, phase, and topological charge of a Gauss vortex superposition interference beam. We utilized these three degrees of freedom as the input signals of the optical logic gate, and the intensity of a selected checkpoint on spatial self-phase modulation patterns as the output signal. By setting appropriate thresholds as logic codes 0 and 1, two sets of novel optical logic gates, including AND, OR, and NOT gates, were implemented. These optical logic gates are expected to have great potential in optical logic operations, all-optical networks, and all-optical signal processing.
Collapse
Affiliation(s)
- Xueyu Chen
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Ge Ding
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Linwei Tang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Haijian Zou
- BYD Semiconductor Company Limited, Shenzhen 518060, China
| | - Chaofeng Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Shuqing Chen
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Ying Li
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
48
|
Li Y, Luo B, Liu Y, Wu S, Shi S, Chen H, Zhao M. Microfluidic immunosensor based on a graphene oxide functionalized double helix microfiber coupler for anti-Müllerian hormone detection. BIOMEDICAL OPTICS EXPRESS 2023; 14:1364-1377. [PMID: 37078032 PMCID: PMC10110323 DOI: 10.1364/boe.486717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 05/03/2023]
Abstract
A label-free microfluidic immunosensor based on the double helix microfiber coupler (DHMC) coated with graphene oxide (GO) was proposed for the specific detection of anti-Müllerian hormone (AMH). Two single-mode optical fibers were twisted in a parallel direction, the coning machine was used to fuse and taper them, and the high-sensitivity DHMC was obtained. To make a stable sensing environment, it was immobilized in a microfluidic chip. And then, the DHMC was modified by GO and bio-functionalized by the AMH monoclonal antibodies (anti-AMH MAbs) for the specific detection of AMH. The experimental results showed that the detection range of the immunosensor for AMH antigen solutions was 200 fg/mL∼50 µg/mL, the detection of limit (LOD) was ∼235.15 fg/mL, and the detection sensitivity and the dissociation coefficient were ∼3.518 nm/(log(mg/mL)) and ∼1.85 × 10 - 12 M, respectively. The alpha fetoprotein (AFP), des-carboxy prothrombin (DCP), growth stimulation expressed gene 2 (ST2) and AMH serum were used to confirm the excellent specific and clinical properties of the immunosensor, showing that the proposed immunosensor was easy-made and can be potentially applied in the biosensing field.
Collapse
Affiliation(s)
- Yujie Li
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing, China
| | - Binbin Luo
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing, China
| | - Yanan Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Sehngxi Wu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Shenghui Shi
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing, China
| | - Huiji Chen
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing, China
| | - Mingfu Zhao
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
49
|
Park MU, Kim M, Kim SH, Lee C, Lee KS, Jeong J, Cho MH, Kim DY, Yoo KH. Funnel Devices Based on Asymmetrically Strained Transition Metal Dichalcogenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209788. [PMID: 36750416 DOI: 10.1002/adma.202209788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The strain applied to transition metal dichalcogenides (TMDs) reduces their energy bandgap, and local strains result in a funnel-like band structure in which funneled excitons move toward the most strained region. Herein, a funnel device based on asymmetrically strained WS2 and MoS2 is reported. Asymmetric strains are induced by transferring the TMD flakes onto a fork-shaped SU-8 microstructure. Raman and photoluminescence spectra peaks are shifted according to the morphology of the SU-8 microstructure, indicating the application of asymmetric strains to the TMDs. To investigate whether funneled excitons can be converted to electrical currents, various devices are constructed by depositing symmetric and asymmetric electrodes onto the strained TMDs. The scanning photocurrent mapping images follow a fork-shaped pattern, indicating probable conversion of the funneled excitons into electrical currents. In the case of the funnel devices with asymmetric Au and Al electrodes, short-circuit current (ISC ) of WS2 is enhanced by the strains, whereas ISC of MoS2 is suppressed because the Schottky barrier lowers with increasing strain for the MoS2 . These results demonstrate that the funnel devices can be implemented using asymmetrically strained TMDs and the effect of strains on the Schottky barrier is dependent on the TMD used.
Collapse
Affiliation(s)
- Myung Uk Park
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Myeongjin Kim
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Sung Hyun Kim
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - ChangJun Lee
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Kyo-Seok Lee
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Jaehun Jeong
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Mann-Ho Cho
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Dug Young Kim
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Kyung-Hwa Yoo
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| |
Collapse
|
50
|
Zheng S, Li C, Wang C, Ma D, Wang B. The Combined Effects of an External Field and Novel Functional Groups on the Structural and Electronic Properties of TMDs/Ti 3C 2 Heterostructures: A First-Principles Study. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1218. [PMID: 37049310 PMCID: PMC10097373 DOI: 10.3390/nano13071218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
The stacking of Ti3C2 with transition metal dihalide (TMDs) materials is an effective strategy to improve the physical properties of a single material, and the tuning of the related properties of these TMDs/Ti3C2 heterostructures is also an important scientific problem. In this work, we systematically investigated the effects of an external field and novel functional groups (S, Se, Cl, Br) on the structural and electronic properties of TMDs/Ti3C2X2 heterostructures. The results revealed that the lattice parameters and interlayer distance of TMDs/Ti3C2 increased with the addition of functional groups. Both tensile and compressive strain obviously increased the interlayer distance of MoS2/Ti3C2X2 (X = S, Se, Cl, Br) and MoSe2/Ti3C2X2 (X = Se, Br). In contrast, the interlayer distance of MoSe2/Ti3C2X2 (X = S, Cl) decreased with increasing compressive strain. Furthermore, the conductivity of TMDs/Ti3C2 increased due to the addition of functional groups (Cl, Br). Strain caused the bandgap of TMDs to narrow, and effectively adjusted the electronic properties of TMDs/Ti3C2X2. At 9% compressive strain, the conductivity of MoSe2/Ti3C2Cl2 increased significantly. Meanwhile, for TMDs/Ti3C2X2, the conduction band edge (CBE) and valence band edge (VBE) at the M and K points changed linearly under an electric field. This study provides valuable insight into the combined effects of an external field and novel functional groups on the related properties of TMDs/Ti3C2X2.
Collapse
Affiliation(s)
- Siyu Zheng
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China
| | - Chenliang Li
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China
| | - Chaoying Wang
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China
| | - Decai Ma
- School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Baolai Wang
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|