1
|
Han J, Sheng T, Zhang Y, Cheng H, Gao J, Yu J, Gu Z. Bioresponsive Immunotherapeutic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209778. [PMID: 36639983 DOI: 10.1002/adma.202209778] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The human immune system is an interaction network of biological processes, and its dysfunction is closely associated with a wide array of diseases, such as cancer, infectious diseases, tissue damage, and autoimmune diseases. Manipulation of the immune response network in a desired and controlled fashion has been regarded as a promising strategy for maximizing immunotherapeutic efficacy and minimizing side effects. Integration of "smart" bioresponsive materials with immunoactive agents including small molecules, biomacromolecules, and cells can achieve on-demand release of agents at targeted sites to reduce overdose-related toxicity and alleviate off-target effects. This review highlights the design principles of bioresponsive immunotherapeutic materials and discusses the critical roles of controlled release of immunoactive agents from bioresponsive materials in recruiting, housing, and manipulating immune cells for evoking desired immune responses. Challenges and future directions from the perspective of clinical translation are also discussed.
Collapse
Affiliation(s)
- Jinpeng Han
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Sheng
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuqi Zhang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Hao Cheng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Jianqing Gao
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Jicheng Yu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhen Gu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
2
|
Sun J, Yang R, Li Q, Zhu R, Jiang Y, Zang L, Zhang Z, Tong W, Zhao H, Li T, Li H, Qi D, Li G, Chen X, Dai Z, Liu Z. Living Synthelectronics: A New Era for Bioelectronics Powered by Synthetic Biology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400110. [PMID: 38494761 DOI: 10.1002/adma.202400110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Bioelectronics, which converges biology and electronics, has attracted great attention due to their vital applications in human-machine interfaces. While traditional bioelectronic devices utilize nonliving organic and/or inorganic materials to achieve flexibility and stretchability, a biological mismatch is often encountered because human tissues are characterized not only by softness and stretchability but also by biodynamic and adaptive properties. Recently, a notable paradigm shift has emerged in bioelectronics, where living cells, and even viruses, modified via gene editing within synthetic biology, are used as core components in a new hybrid electronics paradigm. These devices are defined as "living synthelectronics," and they offer enhanced potential for interfacing with human tissues at informational and substance exchange levels. In this Perspective, the recent advances in living synthelectronics are summarized. First, opportunities brought to electronics by synthetic biology are briefly introduced. Then, strategic approaches to designing and making electronic devices using living cells/viruses as the building blocks, sensing components, or power sources are reviewed. Finally, the challenges faced by living synthelectronics are raised. It is believed that this paradigm shift will significantly contribute to the real integration of bioelectronics with human tissues.
Collapse
Affiliation(s)
- Jing Sun
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ruofan Yang
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qingsong Li
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Runtao Zhu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ying Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lei Zang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhibo Zhang
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wei Tong
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hang Zhao
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tengfei Li
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hanfei Li
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Guanglin Li
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaodong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhuojun Dai
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhiyuan Liu
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Standard Robots Co.,Ltd,Room 405, Building D, Huafeng International Robot Fusen Industrial Park, Hangcheng Avenue, Guxing Community, Xixiang Street, Baoan District, Shenzhen, 518055, China
| |
Collapse
|
3
|
Qiao L, Zhao Y, Zhang M, Tao Y, Xiao Y, Zhang N, Zhang Y, Zhu Y. Preparation Strategies, Functional Regulation, and Applications of Multifunctional Nanomaterials-Based DNA Hydrogels. SMALL METHODS 2024; 8:e2301261. [PMID: 38010956 DOI: 10.1002/smtd.202301261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/01/2023] [Indexed: 11/29/2023]
Abstract
With the extensive attention of DNA hydrogels in biomedicine, biomaterial, and other research fields, more and more functional DNA hydrogels have emerged to match the various needs. Incorporating nanomaterials into the hydrogel network is an emerging strategy for functional DNA hydrogel construction. Surprisingly, nanomaterials-based DNA hydrogels can be engineered to possess favorable properties, such as dynamic mechanical properties, excellent optical properties, particular electrical properties, perfect encapsulation properties, improved magnetic properties, and enhanced antibacterial properties. Herein, the preparation strategies of nanomaterials-based DNA hydrogels are first highlighted and then different nanomaterial designs are used to demonstrate the functional regulation of DNA hydrogels to achieve specific properties. Subsequently, representative applications in biosensing, drug delivery, cell culture, and environmental protection are introduced with some selected examples. Finally, the current challenges and prospects are elaborated. The study envisions that this review will provide an insightful perspective for the further development of functional DNA hydrogels.
Collapse
Affiliation(s)
- Lu Qiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yue Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Mingjuan Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yani Tao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Ni Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yuan Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
4
|
Ceccarini M, Chiesa I, Ripanti F, Cardinali MA, Micalizzi S, Scattini G, De Maria C, Paciaroni A, Petrillo C, Comez L, Bertelli M, Sassi P, Pascucci L, Beccari T, Valentini L. Electrospun Nanofibrous UV Filters with Bidirectional Actuation Properties Based on Salmon Sperm DNA/Silk Fibroin for Biomedical Applications. ACS OMEGA 2023; 8:38233-38242. [PMID: 37867705 PMCID: PMC10586176 DOI: 10.1021/acsomega.3c04563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/23/2023] [Indexed: 10/24/2023]
Abstract
In this study, we dissolved Bombyx mori degummed silk [i.e., silk fibroin (SF)] and salmon sperm deoxyribonucleic acid (DNA) in water and used a bioinspired spinning process to obtain an electrospun nanofibrous SF-based patch (ESF). We investigated the bidirectional macroscale actuation behavior of ESF in response to water vapor and its UV-blocking properties as well as those of ESF/DNA films. Fourier transform infrared (FTIR) results suggest that the formation of β-sheet-rich structures promotes the actuation effect. ESF/DNA film with high-ordered and β-sheet-rich structures exhibits higher electrical conductivity and is water-insoluble. Given the intrinsic ability of both SF and DNA to absorb UV radiation, we performed biological experiments on the viability of keratinocyte HaCaT cells after exposure to solar spectrum components. Our findings indicate that the ESF/DNA patch is photoprotective and can increase the cellular viability of keratinocytes after UV exposure. Furthermore, we demonstrated that ESF/DNA patches treated with water vapor can serve as suitable scaffolds for tissue engineering and can improve tissue regeneration when cellularized with HaCaT cells. The 3D shape morphing capability of these patches, along with their potential as UV filters, could offer significant practical advantages in tissue engineering.
Collapse
Affiliation(s)
| | - Irene Chiesa
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | - Francesca Ripanti
- Dipartimento
di Fisica e Geologia, Università
degli Studi di Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - Martina Alunni Cardinali
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, Perugia 06123, Italy
| | - Simone Micalizzi
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | - Gabriele Scattini
- Dipartimento
di Medicina Veterinaria, University of Perugia, Via S. Costanzo, 4, Perugia 06126, Italy
| | - Carmelo De Maria
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | - Alessandro Paciaroni
- Dipartimento
di Fisica e Geologia, Università
degli Studi di Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - Caterina Petrillo
- Dipartimento
di Fisica e Geologia, Università
degli Studi di Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - Lucia Comez
- Istituto
Officina dei Materiali-IOM, National Research Council-CNR, Via Alessandro Pascoli, Perugia 06123, Italy
| | | | - Paola Sassi
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, Perugia 06123, Italy
| | - Luisa Pascucci
- Dipartimento
di Medicina Veterinaria, University of Perugia, Via S. Costanzo, 4, Perugia 06126, Italy
| | - Tommaso Beccari
- Department
of Pharmaceutical Science, University of
Perugia, Perugia 06123, Italy
| | - Luca Valentini
- Civil
and Environmental Engineering Department and INSTM Research Unit, University of Perugia, Strada di Pentima 8, Terni 05100, Italy
| |
Collapse
|
5
|
Ceccarini MR, Ripanti F, Raggi V, Paciaroni A, Petrillo C, Comez L, Donato K, Bertelli M, Beccari T, Valentini L. Development of Salmon Sperm DNA/Regenerated Silk Bio-Based Films for Biomedical Studies on Human Keratinocyte HaCaT Cells under Solar Spectrum. J Funct Biomater 2023; 14:jfb14050280. [PMID: 37233390 DOI: 10.3390/jfb14050280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
In this study, we fabricated adhesive patches from silkworm-regenerated silk and DNA to safeguard human skin from the sun's rays. The patches are realized by exploiting the dissolution of silk fibers (e.g., silk fibroin (SF)) and salmon sperm DNA in formic acid and CaCl2 solutions. Infrared spectroscopy is used to investigate the conformational transition of SF when combined with DNA; the results indicated that the addition of DNA provides an increase in the SF crystallinity. UV-Visible absorption and circular dichroism spectroscopy showed strong absorption in the UV region and the presence of B-form of DNA once dispersed in the SF matrix, respectively. Water absorption measurements as well as thermal dependence of water sorption and thermal analysis, suggested the stability of the fabricated patches. Biological results on cellular viability (MTT assay) of keratinocyte HaCaT cells after exposures to the solar spectrum showed that both SF and SF/DNA patches are photo-protective by increasing the cellular viability of keratinocytes after UV component exposure. Overall, these SF/DNA patches promise applications in wound dressing for practical biomedical purposes.
Collapse
Affiliation(s)
| | - Francesca Ripanti
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Veronica Raggi
- Polo Scientifico Didattico, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy
| | - Alessandro Paciaroni
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Caterina Petrillo
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Lucia Comez
- Istituto Officina dei Materiali-IOM, National Research Council-CNR, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Kevin Donato
- MAGI EUREGIO SCS, Via Maso della Pieve, 60/A, 39100 Bolzano, Italy
- MAGISNAT, Atlanta Tech Park, 107 Technology Parkway, Peachtree Corners, GA 30092, USA
| | - Matteo Bertelli
- MAGI EUREGIO SCS, Via Maso della Pieve, 60/A, 39100 Bolzano, Italy
- MAGISNAT, Atlanta Tech Park, 107 Technology Parkway, Peachtree Corners, GA 30092, USA
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Luca Valentini
- Civil and Environmental Engineering Department, University of Perugia, Strada di Pentima 6, 05100 Terni, Italy
| |
Collapse
|
6
|
Future regenerative medicine developments and their therapeutic applications. Biomed Pharmacother 2023; 158:114131. [PMID: 36538861 DOI: 10.1016/j.biopha.2022.114131] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Although the currently available pharmacological assays can cure most pathological disorders, they have limited therapeutic value in relieving certain disorders like myocardial infarct, peripheral vascular disease, amputated limbs, or organ failure (e.g. renal failure). Pilot studies to overcome such problems using regenerative medicine (RM) delivered promising data. Comprehensive investigations of RM in zebrafish or reptilians are necessary for better understanding. However, the precise mechanisms remain poorly understood despite the tremendous amount of data obtained using the zebrafish model investigating the exact mechanisms behind their regenerative capability. Indeed, understanding such mechanisms and their application to humans can save millions of lives from dying due to potentially life-threatening events. Recent studies have launched a revolution in replacing damaged human organs via different approaches in the last few decades. The newly established branch of medicine (known as Regenerative Medicine aims to enhance natural repair mechanisms. This can be done through the application of several advanced broad-spectrum technologies such as organ transplantation, tissue engineering, and application of Scaffolds technology (support vascularization using an extracellular matrix), stem cell therapy, miRNA treatment, development of 3D mini-organs (organoids), and the construction of artificial tissues using nanomedicine and 3D bio-printers. Moreover, in the next few decades, revolutionary approaches in regenerative medicine will be applied based on artificial intelligence and wireless data exchange, soft intelligence biomaterials, nanorobotics, and even living robotics capable of self-repair. The present work presents a comprehensive overview that summarizes the new and future advances in the field of RM.
Collapse
|
7
|
Hilal A, Florowska A, Wroniak M. Binary Hydrogels: Induction Methods and Recent Application Progress as Food Matrices for Bioactive Compounds Delivery-A Bibliometric Review. Gels 2023; 9:68. [PMID: 36661834 PMCID: PMC9857866 DOI: 10.3390/gels9010068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Food hydrogels are biopolymeric materials made from food-grade biopolymers with gelling properties (proteins and polysaccharides) and a 3D network capable of incorporating large amounts of water. They have sparked considerable interest because of their potential and broad application range in the biomedical and pharmaceutical sectors. However, hydrogel research in the field of food science is still limited. This knowledge gap provides numerous opportunities for implementing their unique properties, such as high water-holding capacity, moderated texture, compatibility with other substances, cell biocompatibility, biodegradability, and high resemblance to living tissues, for the development of novel, functional food matrices. For that reason, this article includes a bibliometric analysis characterizing research trends in food protein-polysaccharide hydrogels (over the last ten years). Additionally, it characterizes the most recent developments in hydrogel induction methods and the most recent application progress of hydrogels as food matrices as carriers for the targeted delivery of bioactive compounds. Finally, this article provides a future perspective on the need to evaluate the feasibility of using plant-based proteins and polysaccharides to develop food matrices that protect nutrients, including bioactive substances, throughout processing, storage, and digestion until they reach the specific targeted area of the digestive system.
Collapse
Affiliation(s)
- Adonis Hilal
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | | | | |
Collapse
|
8
|
Wang Z, Chen R, Yang S, Li S, Gao Z. Design and application of stimuli-responsive DNA hydrogels: A review. Mater Today Bio 2022; 16:100430. [PMID: 36157049 PMCID: PMC9493390 DOI: 10.1016/j.mtbio.2022.100430] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
Deoxyribonucleic acid (DNA) hydrogels combine the properties of DNAs and hydrogels, and adding functionalized DNAs is key to the wide application of DNA hydrogels. In stimuli-responsive DNA hydrogels, the DNA transcends its application in genetics and bridges the gap between different fields. Specifically, the DNA acts as both an information carrier and a bridge in constructing DNA hydrogels. The programmability and biocompatibility of DNA hydrogel make it change macroscopically in response to a variety of stimuli. In order to meet the needs of different scenarios, DNA hydrogels were also designed into microcapsules, beads, membranes, microneedle patches, and other forms. In this study, the stimuli were classified into single biological and non-biological stimuli and composite stimuli. Stimuli-responsive DNA hydrogels from the past five years were summarized, including but not limited to their design and application, in particular logic gate pathways and signal amplification mechanisms. Stimuli-responsive DNA hydrogels have been applied to fields such as sensing, nanorobots, information carriers, controlled drug release, and disease treatment. Different potential applications and the developmental pro-spects of stimuli-responsive DNA hydrogels were discussed.
Collapse
Affiliation(s)
- Zhiguang Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin, 300050, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shiping Yang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| |
Collapse
|
9
|
Huang J, Cao L, Xue CY, Zhou YZ, Cai YC, Zhao HY, Xing YH, Yu SH. Extremely Soft, Stretchable, and Self-Adhesive Silicone Conductive Elastomer Composites Enabled by a Molecular Lubricating Effect. NANO LETTERS 2022; 22:8966-8974. [PMID: 36374184 DOI: 10.1021/acs.nanolett.2c03173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Softness, adhesion, stretchability, and fast recovery from large deformations are essential properties for conductive elastomers that play an important role in the development of high-performance soft electronics. However, it remains an ongoing challenge to obtain conductive elastomers that combine these properties. We have fabricated a super soft (Young's modulus 2.3-12 kPa), highly stretchable (up to 1500% strain), and underwater adhesive silicone conductive elastomer composite (SF-C-PDMS) by incorporating dimethyl silicone oil as a lubricating agent in a cross-linked molecular network. The resultant SF-C-PDMS not only exhibits superior softness but also can readily recover after a strain of 1000%. The initial resistance only decreases by 8% after 100000 cycles of tensile fatigue test (100% strain, 0.5 Hz, 15 mm/s). This multifunctional silicone conductive elastomer composite is obtained in a one-step preparation at room temperature using commercially available materials. Moreover, we illustrate the capabilities of this composite in motion sensing.
Collapse
Affiliation(s)
- Jin Huang
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Lei Cao
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Cheng-Yuan Xue
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Zhe Zhou
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Chun Cai
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Hao-Yu Zhao
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Ye-Han Xing
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Wang H, Wang X, Wu D. Recent Advances of Natural Polysaccharide-based Double-network Hydrogels for Tissue Repair. Chem Asian J 2022; 17:e202200659. [PMID: 35837995 DOI: 10.1002/asia.202200659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/08/2022] [Indexed: 11/08/2022]
Abstract
Natural polysaccharide hydrogels have been extensively explored for many years due to their outstanding biocompatibility and biodegradability, which are very promising candidates as artificial soft materials for biomedical applications. However, their inferior mechanical performances greatly limited their applications. Introduction of double-network (DN) structure has been well documented to be an efficient strategy for significant improvement of the mechanical property of hydrogels. Here, recent progress of natural polysaccharide-based DN hydrogels is reviewed from the perspective of fundamental concepts on both design rationale and preparation strategies to biomedical application in tissue repair. Retrospect of the DN-strengthened polysaccharide hydrogels can give a deep insight into the fundamental relationship of such bio-based hydrogels among structural design, mechanical properties and practical demands, thereby prompting their translation to clinical application prospects.
Collapse
Affiliation(s)
- Hufei Wang
- Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, CHINA
| | - Xing Wang
- Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, CHINA
| | - Decheng Wu
- Southern University of Science and Technology, Department of Biomedical Engineering, No. 1088 Xueyuan Avenue, 518055, Shenzhen, CHINA
| |
Collapse
|
11
|
Cao D, Xie Y, Song J. DNA Hydrogels in the Perspective of Mechanical Properties. Macromol Rapid Commun 2022; 43:e2200281. [PMID: 35575627 DOI: 10.1002/marc.202200281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/25/2022] [Indexed: 11/10/2022]
Abstract
Tailoring the mechanical properties has always been a key to the field of hydrogels in terms of different applications. Particularly, deoxyribonucleic acid (DNA) hydrogels offer an unambiguous way to precisely tune the mechanical properties, largely on account of their programmable sequences, abundant responding toolbox, and various ligation approaches. In this review, DNA hydrogels from the perspective of mechanical properties, from synthetic standpoint to different applications are introduced. The relationship between the structure and their mechanical properties in DNA hydrogels and the methods of regulating the mechanical properties of DNA hydrogels are specifically summarized. Furthermore, several recent applications of DNA hydrogels in relation to their mechanical properties are discussed. Benefiting from the tunability and flexibility, rational design of mechanical properties in DNA hydrogels provided unheralded interest from fundamental science to extensive applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dengjie Cao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| |
Collapse
|
12
|
Hu Y, Gao S, Lu H, Ying JY. Acid-Resistant and Physiological pH-Responsive DNA Hydrogel Composed of A-Motif and i-Motif toward Oral Insulin Delivery. J Am Chem Soc 2022; 144:5461-5470. [PMID: 35312303 DOI: 10.1021/jacs.1c13426] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An acid-resistant DNA hydrogel that is stable in an extremely acidic environment with pH as low as 1.2 has not been reported before, largely due to the instability of DNA-hybridized structures. To achieve this, adenine (A)-rich and cytosine (C)-rich oligonucleotides are rationally designed and integrated to form copolymers with acrylamide monomers via free-radical polymerization. In an acidic environment (pH 1.2-6.0), the generated copolymers form a hydrogel state, which is cross-linked by parallel A-motif duplex configurations (pH 1.2-3.0) and quadruplex i-motif structures (pH 4.0-6.0) due to the protonation of A and C bases, respectively. Specifically, the protonated A-rich sequences under pH 1.2-3.0 form a stable parallel A-motif duplex cross-linking unit through reverse Hoogsteen interaction and electrostatic attraction. Hemi-protonated C bases under mildly acidic pH (4.0-6.0) form quadruplex i-motif cross-linking configuration via Hoogsteen interaction. Under physiological pH, both A and C bases deprotonated, resulting in the separation of A-motif and i-motif to A-rich and C-rich single strands, respectively, and thereby the dissociation of the DNA hydrogel into the solution state. The acid-resistant and physiological pH-responsive DNA hydrogel was further developed for oral drug delivery to the hostile acidic environment in the stomach (pH 1.2), duodenum (pH 5.0), and small intestine (pH 7.2), where the drug would be released and absorbed. As a proof of concept, insulin was encapsulated in the DNA hydrogel and orally administered to diabetic rats. In vitro and in vivo studies demonstrated the potential usage of the DNA hydrogel for oral drug delivery.
Collapse
Affiliation(s)
- Yuwei Hu
- NanoBio Lab, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore
| | - Shujun Gao
- NanoBio Lab, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore
| | - Hongfang Lu
- NanoBio Lab, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore
| | - Jackie Y Ying
- NanoBio Lab, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore.,NanoBio Lab, A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore
| |
Collapse
|
13
|
Thermoresponsive PEDOT:PSS/PNIPAM conductive hydrogels as wearable resistive sensors for breathing pattern detection. Polym J 2022. [DOI: 10.1038/s41428-022-00626-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Pandey N, Soto-Garcia L, Yaman S, Kuriakose A, Rivera AU, Jones V, Liao J, Zimmern P, Nguyen KT, Hong Y. Polydopamine nanoparticles and hyaluronic acid hydrogels for mussel-inspired tissue adhesive nanocomposites. BIOMATERIALS ADVANCES 2022; 134:112589. [PMID: 35525749 PMCID: PMC9753139 DOI: 10.1016/j.msec.2021.112589] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022]
Abstract
Bioadhesives are intended to facilitate the fast and efficient reconnection of tissues to restore their functionality after surgery or injury. The use of mussel-inspired hydrogel systems containing pendant catechol moieties is promising for tissue attachment under wet conditions. However, the adhesion strength is not yet ideal. One way to overcome these limitations is to add polymeric nanoparticles to create nanocomposites with improved adhesion characteristics. To further enhance adhesiveness, polydopamine nanoparticles with controlled size prepared using an optimized process, were combined with a mussel-inspired hyaluronic acid (HA) hydrogel to form a nanocomposite. The effects of sizes and concentrations of polydopamine nanoparticles on the adhesive profiles of mussel-inspired HA hydrogels were investigated. Results show that the inclusion of polydopamine nanoparticles in nanocomposites increased adhesion strength, as compared to the addition of poly (lactic-co-glycolic acid) (PLGA), and PLGA-(N-hydroxysuccinimide) (PLGA-NHS) nanoparticles. A nanocomposite with demonstrated cytocompatibility and an optimal lap shear strength (47 ± 3 kPa) was achieved by combining polydopamine nanoparticles of 200 nm (12.5% w/v) with a HA hydrogel (40% w/v). This nanocomposite adhesive shows its potential as a tissue glue for biomedical applications.
Collapse
Affiliation(s)
- Nikhil Pandey
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luis Soto-Garcia
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Serkan Yaman
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aneetta Kuriakose
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andres Urias Rivera
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Valinda Jones
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philippe Zimmern
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kytai T Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
15
|
Li Z, Chen Z, Chen H, Chen K, Tao W, Ouyang XK, Mei L, Zeng X. Polyphenol-based hydrogels: Pyramid evolution from crosslinked structures to biomedical applications and the reverse design. Bioact Mater 2022; 17:49-70. [PMID: 35386465 PMCID: PMC8958331 DOI: 10.1016/j.bioactmat.2022.01.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 02/07/2023] Open
Abstract
As a kind of nature-derived bioactive materials, polyphenol-based hydrogels possess many unique and outstanding properties such as adhesion, toughness, and self-healing due to their specific crosslinking structures, which have been widely used in biomedical fields including wound healing, antitumor, treatment of motor system injury, digestive system disease, oculopathy, and bioelectronics. In this review, starting with the classification of common polyphenol-based hydrogels, the pyramid evolution process of polyphenol-based hydrogels from crosslinking structures to derived properties and then to biomedical applications is elaborated, as well as the efficient reverse design considerations of polyphenol-based hydrogel systems are proposed. Finally, the existing problems and development prospects of these hydrogel materials are discussed. It is hoped that the unique perspective of the review can promote further innovation and breakthroughs of polyphenol-based hydrogels in the future. Polyphenol-based hydrogels combine advantages of polyphenols with common hydrogels. Cognition of such hydrogels underwent from structures to properties to applications. Various crosslinked structures of such hydrogels can derive outstanding properties. Such hydrogels can be widely used in biomedicine due to the outstanding properties. Reverse design thought from applications to properties to structures is promising.
Collapse
Affiliation(s)
- Zimu Li
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhidong Chen
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Hongzhong Chen
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Kebing Chen
- Department of Spine Surgery, Center for Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
- Corresponding author.
| | - Wei Tao
- Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Xiao-kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Lin Mei
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
- Corresponding author.
| |
Collapse
|
16
|
Meng Z, Liu Q, Zhang Y, Sun J, Yang C, Li H, Loznik M, Göstl R, Chen D, Wang F, Clark NA, Zhang H, Herrmann A, Liu K. Highly Stiff and Stretchable DNA Liquid Crystalline Organogels with Super Plasticity, Ultrafast Self-Healing, and Magnetic Response Behaviors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106208. [PMID: 34734442 DOI: 10.1002/adma.202106208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/28/2021] [Indexed: 06/13/2023]
Abstract
DNA-based gels are attractive materials as they allow intuitive rational design, respond to external physicochemical stimuli, and show great potential for biomedical applications. However, their relatively poor mechanical properties currently limit their technological application considerably as the latter requires mechanical integrity and tunability. With this work, a DNA organogel is reported that gels through supramolecular interactions, which induce mesophase ordering, and that exhibits exceptional stretchability, deformability, plasticity, and biocompatibility. Moreover, the nature of the supramolecular bond enables complete self-healing within 3 s. Most importantly, the DNA-based liquid crystalline organogels exhibit impressive ultimate tensile strengths above 1 MPa, stiffness higher than 20 MPa, and toughness up to 18 MJ m-3 , rendering these materials the strongest among reported DNA networks. In addition, the facile access is demonstrated to composite DNA materials by blending magnetic nanoparticles with the organogel matrix giving access to magnetic field induced actuation. It is believed that these findings contribute significantly to the advancement of DNA gels for their use in smart materials and biomedical applications.
Collapse
Affiliation(s)
- Zhuojun Meng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Zernike Institute for Advanced Materials, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Qing Liu
- Zernike Institute for Advanced Materials, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Yi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Sun
- Zernike Institute for Advanced Materials, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Chenjing Yang
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Zheda Road No. 38, Hangzhou, 310027, P. R. China
| | - Hongyan Li
- Zernike Institute for Advanced Materials, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Mark Loznik
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Robert Göstl
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Dong Chen
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Zheda Road No. 38, Hangzhou, 310027, P. R. China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Noel A Clark
- Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, CO, 80309-0390, USA
| | - Hongjie Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Andreas Herrmann
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
17
|
Han J, Guo Y, Wang H, Zhang K, Yang D. Sustainable Bioplastic Made from Biomass DNA and Ionomers. J Am Chem Soc 2021; 143:19486-19497. [PMID: 34775757 DOI: 10.1021/jacs.1c08888] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Plastics play important roles in modern life and currently the development of plastic recycling is highly demanding and challenging. To relieve this dilemma, one option is to develop new sustainable bioplastics that are compatible with the environment over the whole material life cycle. We report a sustainable bioplastic made from natural DNA and biomass-derived ionomers, termed as DNA plastics. The sustainability involves all aspects of the production, use, and end-of-life options of DNA plastics: (1) the raw materials are derived from biorenewable resources; (2) the water-processable strategy is environmentally friendly, not involving high-energy consumption, the use of organic solvents, and the production of byproducts; (3) recyclable and nondestructive use is achieved to significantly prolong the service lifetime of the plastics; and (4) the disposal of waste plastics follows two green routes including the recycling of waste plastics and enzyme-triggered controllable degradation under mild conditions. Besides, DNA plastics can be "aqua-welded" to form arbitrary designed products such as a plastic cup. This work provides a solution to transform biobased hydrogel to bioplastic and demonstrates the closed-loop recycling of DNA plastics, which will advance the development of sustainable materials.
Collapse
Affiliation(s)
- Jinpeng Han
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Yanfei Guo
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Hang Wang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Kunyu Zhang
- Advanced Materials Research Center, Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, P.R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
18
|
Han J, Yang D. Tannic acid/clay hydrogel with time-dependent mechanical and adhesive performance enabled by molecular interaction evolution. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Fan L, Hu L, Xie J, He Z, Zheng Y, Wei D, Yao D, Su F. Biosafe, self-adhesive, recyclable, tough, and conductive hydrogels for multifunctional sensors. Biomater Sci 2021; 9:5884-5896. [PMID: 34286727 DOI: 10.1039/d1bm00665g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As a bioelectronic material used in personalized medicine, it is necessary to integrate excellent adhesion and stretchability in hydrogels for ensuring biosafety. Herein, a high-performance multifunctional hydrogel of polyvinyl alcohol-sodium alginate-g-dopamine-silver nanowire-borax (PSAB) is reported. It can not only easily adhere to the surface of various substrates, but also exhibit excellent mechanical properties. Its tensile strength, elongation at break and toughness are 0.286 MPa, 500% and 55.15 MJ m-3, respectively. The excellent mechanical properties and high conductivity guarantee that the PSAB hydrogel can successfully serve as a multifunctional sensor for detecting small activities and large-scale movements of the human body through strain and pressure changes. Meanwhile, the long-lasting potent and broad-spectrum antibacterial activity, combined with good in vitro biocompatibility, guarantees the biological safety and non-toxicity of the PSAB hydrogel. These compelling features, such as high flexibility and elasticity, high adhesion, multi-functional sensing and recyclability, as well as biological safety, pave the way for the application of PSAB hydrogel e-skin in biomedicine.
Collapse
Affiliation(s)
- Ling Fan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an, Shaanxi 710072, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhu Y, Jia J, Zhao G, Huang X, Wang L, Zhang Y, Zhang L, Konduru N, Xie J, Yu R, Liu H. Multi-responsive nanofibers composite gel for local drug delivery to inhibit recurrence of glioma after operation. J Nanobiotechnology 2021; 19:198. [PMID: 34217325 PMCID: PMC8255008 DOI: 10.1186/s12951-021-00943-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Background The postoperative recurrence of malignant gliomas has presented a clinical conundrum currently. Worse, there is no standard treatment for these recurrent tumours. Therefore, novel promising methods of clinical treatment are urgently needed. Methods In this study, we synthesized reactive oxygen species (ROS)-triggered poly(propylene sulfide)60 (PPS60) mixed with matrix metalloproteinases (MMPs)-responsive triglycerol monostearate (T) lipids and TMZ. The mixed solution could self-assemble at 50 ℃ to generate hydrogels with MMPs- and ROS-responsiveness. We explored whether the T/PPS + TMZ hydrogel could achieve the MMP- and ROS-responsive delivery of TMZ and exert anti-glioma regrowth effects in vitro and in vivo. These results demonstrated that the T/PPS + TMZ hydrogel significantly improved the curative effect of TMZ to inhibit postsurgical recurrent glioma. Results The results confirmed the responsive release of TMZ encapsulated in the T/PPS + TMZ hydrogel, and the hydrogel showed excellent performance against glioma in an incomplete glioma operation model, which indicated that the T/PPS + TMZ hydrogel effectively inhibited the growth of recurrent glioma. Conclusion In summary, we successfully developed injectable MMPs- and ROS-responsive hydrogels that could achieve the sustained release of TMZ in the surgical cavity to inhibit local recurrent glioma after surgery. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00943-z.
Collapse
Affiliation(s)
- Yufu Zhu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Jun Jia
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
| | - Gang Zhao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
| | - Xuyang Huang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
| | - Lansheng Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
| | - Yongkang Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
| | - Long Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
| | - Naveena Konduru
- Institute of International Education, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jun Xie
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China. .,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Hongmei Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China. .,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China. .,Department of Neurosurgery, The Third People's Hospital Affiliated of Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
21
|
Zhang K, Feng Q, Fang Z, Gu L, Bian L. Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics. Chem Rev 2021; 121:11149-11193. [PMID: 34189903 DOI: 10.1021/acs.chemrev.1c00071] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Owing to their unique chemical and physical properties, hydrogels are attracting increasing attention in both basic and translational biomedical studies. Although the classical hydrogels with static networks have been widely reported for decades, a growing number of recent studies have shown that structurally dynamic hydrogels can better mimic the dynamics and functions of natural extracellular matrix (ECM) in soft tissues. These synthetic materials with defined compositions can recapitulate key chemical and biophysical properties of living tissues, providing an important means to understanding the mechanisms by which cells sense and remodel their surrounding microenvironments. This review begins with the overall expectation and design principles of dynamic hydrogels. We then highlight recent progress in the fabrication strategies of dynamic hydrogels including both degradation-dependent and degradation-independent approaches, followed by their unique properties and use in biomedical applications such as regenerative medicine, drug delivery, and 3D culture. Finally, challenges and emerging trends in the development and application of dynamic hydrogels are discussed.
Collapse
Affiliation(s)
- Kunyu Zhang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Qian Feng
- Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| | - Zhiwei Fang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Luo Gu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, People's Republic of China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, People's Republic of China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, People's Republic of China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
22
|
Tang Q, Lai W, Wang P, Xiong X, Xiao M, Li L, Fan C, Pei H. Multi-Mode Reconfigurable DNA-Based Chemical Reaction Circuits for Soft Matter Computing and Control. Angew Chem Int Ed Engl 2021; 60:15013-15019. [PMID: 33893703 DOI: 10.1002/anie.202102169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/31/2021] [Indexed: 01/17/2023]
Abstract
Developing smart material systems for performing different tasks in diverse environments remains challenging. Here, we show that by integrating stimuli-responsive soft materials with multi-mode reconfigurable DNA-based chemical reaction circuits (D-CRCs), it can control size change of microgels with multiple reaction pathways and adapt expansion behaviors to meet diverse environments. We first use pH-responsive intramolecular conformational switches for regulating DNA strand displacement reactions (SDRs). The ability to regulate SDRs with tunable pH-dependence allows to build dynamic chemical reaction networks with diverse reaction pathways. We confirm that the designed DNA switching circuits are reconfigurable at different pH and perform different logic operations, and the swelling of DNA switching circuit-integrated microgel systems can be programmably directed by D-CRCs. Our approach provides insight into building smart responsive materials and fabricating autonomous soft robots.
Collapse
Affiliation(s)
- Qian Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Peipei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Xiewei Xiong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| |
Collapse
|
23
|
Tang Q, Lai W, Wang P, Xiong X, Xiao M, Li L, Fan C, Pei H. Multi‐Mode Reconfigurable DNA‐Based Chemical Reaction Circuits for Soft Matter Computing and Control. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qian Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Peipei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Xiewei Xiong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| |
Collapse
|
24
|
Han J, Cui Y, Gu Z, Yang D. Controllable assembly/disassembly of polyphenol-DNA nanocomplex for cascade-responsive drug release in cancer cells. Biomaterials 2021; 273:120846. [PMID: 33930736 DOI: 10.1016/j.biomaterials.2021.120846] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 12/31/2022]
Abstract
Developing nanocarrier systems with sufficient drug loading ability and efficient drug release behavior in cells is a powerful strategy to maximize therapeutic efficacies and minimize side effects of administered drugs. However, the two aspects are usually contradictory in a single nanocarrier. Herein, polyphenol-DNA nanocomplex with controllable assembly/disassembly behaviors is developed for responsive and sequential drug release in cancer cells. Programmable assembly of branched-DNA achieves multiple-gene loading, afterwards tannic acid (TA), plant-derived polyphenols as drugs mediate assembly of branched-DNA to form nanocomplex. Intracellularly, two-step disassembly process of nanocomplex enables efficient gene/drug release. Lysosomal acidic microenvironment induces the disassembly of nanocomplex to release TA and branched-DNA. Glutathione and DNase I in cytoplasm trigger the precise release of genes from branched-DNA. The efficacy of multiple-gene/chemo-therapy is demonstrated using in vitro and in vivo models. This work provides a controllable assembly/disassembly route to resolve the conflict between sufficient drug loading and efficient drug release in cells for therapeutics.
Collapse
Affiliation(s)
- Jinpeng Han
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Yuchen Cui
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| |
Collapse
|
25
|
Li J, Jia X, Yin L. Hydrogel: Diversity of Structures and Applications in Food Science. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1858313] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jinlong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, P.R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China
| | - Xin Jia
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Lijun Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| |
Collapse
|