1
|
Dong M, Xu J, Wang Y. Critical Threshold for Bubble-like Nucleation during Pseudoboiling at Supercritical Pressures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13276-13291. [PMID: 38861685 DOI: 10.1021/acs.langmuir.4c01477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Supercritical pseudoboiling was proposed in the 1950s-1960s. Recently, evaporation-like and boiling-like heat transfer have been directly observed in macroscopic scales, and the contribution of pseudoboiling to the total heat transfer rate has been quantitatively characterized experimentally. Here, we explore the critical threshold to generate a bubble-like nucleus at supercritical pressure at the atomic scale, characterized by the total energy (Te = Ke + Pe, where Ke and Pe are kinetic energy and potential energy, respectively). Molecular dynamics simulations are performed, including an argon fluid box heated by a solid wall having its temperature above the fluid temperature. The fluid pressure is controlled by a movable piston wall opposite the heating wall. The effects of pressure, nonuniform heating, and surface wettability on pseudoboiling are investigated. It is found that the criterion Te > 0 should be satisfied for subcritical boiling, matching that reported previously. The criterion for supercritical pseudoboiling was newly obtained such that Te > 0.012 eV at 8 MPa for argon, but the threshold increases as pressure increases. Nonuniform heating and surface wettability do not affect the critical threshold of Te for bubble-like nucleation but affect the location of the initially generated bubble-like nucleus and the stabilized pseudofilm or pseudonucleate heat transfer modes, where the former is similar to (vapor) film boiling and the latter is similar to nucleate boiling at subcritical pressure. Because pseudoboiling occurs without surface tension at supercritical pressure, we observe that the bubble-like structure may not display a perfectly smooth gas-liquid interface but may display an irregular pattern instead. Our work explains pseudoboiling from the viewpoint of the competition between kinetic energy and potential energy and presents a link regarding boiling in the two domains of subcritical pressure and supercritical pressure.
Collapse
Affiliation(s)
- Ming Dong
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China
| | - Jinliang Xu
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China
- Key Laboratory of Power Station Energy Transfer Conversion and System, North China Electric Power University, Ministry of Education, Beijing 102206, China
| | - Yan Wang
- Beijing Huairou Laboratory, Beijing 101400, China
| |
Collapse
|
2
|
Ranieri U, Formisano F, Gorelli FA, Santoro M, Koza MM, De Francesco A, Bove LE. Crossover from gas-like to liquid-like molecular diffusion in a simple supercritical fluid. Nat Commun 2024; 15:4142. [PMID: 38755136 PMCID: PMC11099187 DOI: 10.1038/s41467-024-47961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
According to textbooks, no physical observable can be discerned allowing to distinguish a liquid from a gas beyond the critical point. Yet, several proposals have been put forward challenging this view and various transition boundaries between a gas-like and a liquid-like behaviour, including the so-called Widom and Frenkel lines, and percolation line, have been suggested to delineate the supercritical state space. Here we report observation of a crossover from gas-like (Gaussian) to liquid-like (Lorentzian) self-dynamic structure factor by incoherent quasi-elastic neutron scattering measurements on supercritical fluid methane as a function of pressure, along the 200 K isotherm. The molecular self-diffusion coefficient was derived from the best Gaussian (at low pressures) or Lorentzian (at high pressures) fits to the neutron spectra. The Gaussian-to-Lorentzian crossover is progressive and takes place at about the Widom line intercept (59 bar). At considerably higher pressures, a liquid-like jump diffusion mechanism properly describes the supercritical fluid on both sides of the Frenkel line. The present observation of a gas-like to liquid-like crossover in the self dynamics of a simple supercritical fluid confirms emerging views on the unexpectedly complex physics of the supercritical state, and could have planet-wide implications and possible industrial applications in green chemistry.
Collapse
Affiliation(s)
- Umbertoluca Ranieri
- Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, Roma, 00187, Italy
- Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Ferdinando Formisano
- CNR - Istituto Officina dei Materiali (IOM), Grenoble, INSIDE@ILL, 71 Avenue des Martyrs, Grenoble, Cedex 9, France.
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, Cedex 9, France.
| | - Federico A Gorelli
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), 1690 Cailun Road, Shanghai, 201203, China.
- Shanghai Advanced Research in Physical Sciences (SHARPS), Pudong, Shanghai, 201203, China.
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, CNR-INO, Via Nello Carrara 1, Sesto Fiorentino (FI), 50019, Italy.
| | - Mario Santoro
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, CNR-INO, Via Nello Carrara 1, Sesto Fiorentino (FI), 50019, Italy
- European Laboratory for Nonlinear Spectroscopy, LENS, Via Nello Carrara 1, Sesto Fiorentino (FI), 50019, Italy
| | - Michael Marek Koza
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, Cedex 9, France
| | - Alessio De Francesco
- CNR - Istituto Officina dei Materiali (IOM), Grenoble, INSIDE@ILL, 71 Avenue des Martyrs, Grenoble, Cedex 9, France
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, Cedex 9, France
| | - Livia E Bove
- Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, Roma, 00187, Italy
- Laboratory of Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, 5 Place Jussieu, Paris, 75005, France
| |
Collapse
|
3
|
Merchiori S, Le Donne A, Littlefair JD, Lowe AR, Yu JJ, Wu XD, Li M, Li D, Geppert-Rybczyńska M, Scheller L, Trump BA, Yakovenko AA, Zajdel P, Chorążewski M, Grosu Y, Meloni S. Mild-Temperature Supercritical Water Confined in Hydrophobic Metal-Organic Frameworks. J Am Chem Soc 2024; 146:13236-13246. [PMID: 38701635 PMCID: PMC11099966 DOI: 10.1021/jacs.4c01226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
Fluids under extreme confinement show characteristics significantly different from those of their bulk counterpart. This work focuses on water confined within the complex cavities of highly hydrophobic metal-organic frameworks (MOFs) at high pressures. A combination of high-pressure intrusion-extrusion experiments with molecular dynamic simulations and synchrotron data reveals that supercritical transition for MOF-confined water takes place at a much lower temperature than in bulk water, ∼250 K below the reference values. This large shifting of the critical temperature (Tc) is attributed to the very large density of confined water vapor in the peculiar geometry and chemistry of the cavities of Cu2tebpz (tebpz = 3,3',5,5'-tetraethyl-4,4'-bipyrazolate) hydrophobic MOF. This is the first time the shift of Tc is investigated for water confined within highly hydrophobic nanoporous materials, which explains why such a large reduction of the critical temperature was never reported before, neither experimentally nor computationally.
Collapse
Affiliation(s)
- Sebastiano Merchiori
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Andrea Le Donne
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Josh D. Littlefair
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | | | - Jiang-Jing Yu
- College
of Chemistry and Chemical Engineering, and Chemistry and Chemical
Engineering Guangdong Laboratory, Shantou
University, Guangdong 515063, China
| | - Xu-Dong Wu
- College
of Chemistry and Chemical Engineering, and Chemistry and Chemical
Engineering Guangdong Laboratory, Shantou
University, Guangdong 515063, China
| | - Mian Li
- College
of Chemistry and Chemical Engineering, and Chemistry and Chemical
Engineering Guangdong Laboratory, Shantou
University, Guangdong 515063, China
| | - Dan Li
- College
of Chemistry and Materials Science, Jinan
University, Guangzhou 510632, China
| | | | - Lukasz Scheller
- Institute
of Physics, University of Silesia, 41-500 Chorzów, Poland
| | - Benjamin A. Trump
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Andrey A. Yakovenko
- X-ray
Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Paweł Zajdel
- Institute
of Physics, University of Silesia, 41-500 Chorzów, Poland
| | - Mirosław Chorążewski
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Yaroslav Grosu
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
- Centre for
Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), 01510 Vitoria-Gasteiz, Spain
| | - Simone Meloni
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
4
|
Li X, Jin Y. Thermodynamic crossovers in supercritical fluids. Proc Natl Acad Sci U S A 2024; 121:e2400313121. [PMID: 38652745 PMCID: PMC11067041 DOI: 10.1073/pnas.2400313121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Can liquid-like and gas-like states be distinguished beyond the critical point, where the liquid-gas phase transition no longer exists and conventionally only a single supercritical fluid phase is defined? Recent experiments and simulations report strong evidence of dynamical crossovers above the critical temperature and pressure. Despite using different criteria, many existing theoretical explanations consider a single crossover line separating liquid-like and gas-like states in the supercritical fluid phase. We argue that such a single-line scenario is inconsistent with the supercritical behavior of the Ising model, which has two crossover lines due to its symmetry, violating the universality principle of critical phenomena. To reconcile the inconsistency, we define two thermodynamic crossover lines in supercritical fluids as boundaries of liquid-like, indistinguishable, and gas-like states. Near the critical point, the two crossover lines follow critical scalings with exponents of the Ising universality class, supported by calculations of theoretical models and analyses of experimental data from the standard database. The upper line agrees with crossovers independently estimated from the inelastic X-ray scattering data of supercritical argon, and from the small-angle neutron scattering data of supercritical carbon dioxide. The lower line is verified by the equation of states for the compressibility factor. This work provides a fundamental framework for understanding supercritical physics in general phase transitions.
Collapse
Affiliation(s)
- Xinyang Li
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Yuliang Jin
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang325001, China
| |
Collapse
|
5
|
Saric D, Guevara-Carrion G, Gaponenko Y, Shevtsova V, Vrabec J. Diffusion of hydrocarbons diluted in supercritical carbon dioxide. Sci Rep 2023; 13:16107. [PMID: 37752219 PMCID: PMC10522683 DOI: 10.1038/s41598-023-42892-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Mutual diffusion of six hydrocarbons (methane, ethane, isobutane, benzene, toluene or naphthalene) diluted in supercritical carbon dioxide ([Formula: see text]) is studied by molecular dynamics simulation near the Widom line, i.e., in the temperature range from 290 to 345 K along the isobar 9 MPa. The [Formula: see text] + aromatics mixtures are additionally sampled at 10 and 12 MPa and an experimental database with Fick diffusion coefficient data for those systems is provided. Taylor dispersion experiments of [Formula: see text] with benzene, toluene, n-dodecane and 1,2,3,4-tetrahydronaphthalene are conducted along the [Formula: see text] 10 MPa isobar. Maxwell-Stefan and Fick diffusion coefficients are analyzed, together with the thermodynamic factor that relates them. It is found that the peculiar behavior of the Fick diffusion coefficient of some [Formula: see text] mixtures in the extended critical region is a consequence of the thermodynamic factor minimum due to pronounced clustering on the molecular scale. Further, the strong dependence of the Fick diffusion coefficient on the molecular mass of the solute as well as the breakdown of the Stokes-Einstein relation near the Widom line are confirmed. Eleven correlations for the prediction of the Fick diffusion coefficient of [Formula: see text] mixtures are assessed. An alternative two-step approach for the prediction of the infinite dilution Fick diffusion coefficient of supercritical [Formula: see text] mixtures is proposed. It requires only the state point in terms of temperature and pressure (or density) as well as the molecular solute mass as input parameters. First, entropy scaling is applied to estimate the self-diffusion coefficient of [Formula: see text]. Subsequently, this coefficient is used to determine the infinite dilution Fick diffusion coefficient of the mixture, based on the finding that these two diffusion coefficients exhibit a linear relationship, where the slope depends only on the molecular solute mass.
Collapse
Affiliation(s)
- Denis Saric
- Thermodynamics, Technical University of Berlin, Ernst-Reuter-Platz 1, 10587, Berlin, Germany
| | | | - Yury Gaponenko
- MRC, CP-165/62, Université libre de Bruxelles (ULB), Ave. F.D. Roosevelt 50, B-1050, Brussels, Belgium
| | - Valentina Shevtsova
- Fluid Mechanics Group, Faculty of Engineering, Mondragon University, 20500, Mondragon, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| | - Jadran Vrabec
- Thermodynamics, Technical University of Berlin, Ernst-Reuter-Platz 1, 10587, Berlin, Germany.
| |
Collapse
|
6
|
Longmire NP, Showalter SL, Banuti DT. Holding water in a sieve-stable droplets without surface tension. Nat Commun 2023; 14:3983. [PMID: 37414764 PMCID: PMC10326249 DOI: 10.1038/s41467-023-39211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
Our understanding of supercritical fluids has seen exciting advances over the last decades, often in direct contradiction to established textbook knowledge. Rather than being structureless, we now know that distinct supercritical liquid and gaseous states can be distinguished and that a higher order phase transition - pseudo boiling - occurs between supercritical liquid and gaseous states across the Widom line. Observed droplets and sharp interfaces at supercritical pressures are interpreted as evidence of surface tension due to phase equilibria in mixtures, given the lack of a supercritical liquid-vapor phase equilibrium in pure fluids. However, here we introduce an alternative physical mechanism that unexpectedly causes a sharpening of interfacial density gradients in absence of surface tension: thermal gradient induced interfaces (TGIIF). We show from first principles and simulations that, unlike in gases or liquids, stable droplets, bubbles, and planar interfaces can exist without surface tension. These results challenge and generalize our understanding of what droplets and phase interfaces are, and uncover yet another unexpected behavior of supercritical fluids. TGIIF provide a new physical mechanism that could be used to tailor and optimize fuel injection or heat transfer processes in high-pressure power systems.
Collapse
Affiliation(s)
- N P Longmire
- Department of Mechanical Engineering, The University of New Mexico, Albuquerque, NM, 87131, USA
| | - S L Showalter
- Department of Nuclear Engineering, The University of New Mexico, Albuquerque, NM, 87131, USA
| | - D T Banuti
- Department of Mechanical Engineering, The University of New Mexico, Albuquerque, NM, 87131, USA.
- Karlsruhe Institute of Technology (KIT), Institute for Thermal Energy Technology and Safety (ITES), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
7
|
Simeski F, Ihme M. Supercritical fluids behave as complex networks. Nat Commun 2023; 14:1996. [PMID: 37032390 PMCID: PMC10083177 DOI: 10.1038/s41467-023-37645-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/22/2023] [Indexed: 04/11/2023] Open
Abstract
Supercritical fluids play a key role in environmental, geological, and celestial processes, and are of great importance to many scientific and engineering applications. They exhibit strong variations in thermodynamic response functions, which has been hypothesized to stem from the microstructural behavior. However, a direct connection between thermodynamic conditions and the microstructural behavior, as described by molecular clusters, remains an outstanding issue. By utilizing a first-principles-based criterion and self-similarity analysis, we identify energetically localized molecular clusters whose size distribution and connectivity exhibit self-similarity in the extended supercritical phase space. We show that the structural response of these clusters follows a complex network behavior whose dynamics arises from the energetics of isotropic molecular interactions. Furthermore, we demonstrate that a hidden variable network model can accurately describe the structural and dynamical response of supercritical fluids. These results highlight the need for constitutive models and provide a basis to relate the fluid microstructure to thermodynamic response functions.
Collapse
Affiliation(s)
- Filip Simeski
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Matthias Ihme
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
- Department of Photon Science, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
| |
Collapse
|
8
|
Widom line of supercritical CO2 calculated by equations of state and molecular dynamics simulation. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Zanetti-Polzi L, Daidone I, Amadei A. A general statistical mechanical model for fluid system thermodynamics: Application to sub- and super-critical water. J Chem Phys 2022; 156:044506. [DOI: 10.1063/5.0079206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Laura Zanetti-Polzi
- Center S3, CNR-Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L’Aquila, via Vetoio (Coppito 1), 67010 L’Aquila, Italy
| | - Andrea Amadei
- Department of Chemical and Technological Sciences, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, I-00185 Rome, Italy
| |
Collapse
|
10
|
Numerical Investigation of Heat Transfer Characteristics of scCO 2 Flowing in a Vertically-Upward Tube with High Mass Flux. ENTROPY 2022; 24:e24010079. [PMID: 35052105 PMCID: PMC8774452 DOI: 10.3390/e24010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023]
Abstract
In this work, the heat transfer characteristics of supercritical pressure CO2 in vertical heating tube with 10 mm inner diameter under high mass flux were investigated by using an SST k-ω turbulent model. The influences of inlet temperature, heat flux, mass flux, buoyancy and flow acceleration on the heat transfer of supercritical pressure CO2 were discussed. Our results show that the buoyancy and flow acceleration effect based on single phase fluid assumption fail to explain the current simulation results. Here, supercritical pseudo-boiling theory is introduced to deal with heat transfer of scCO2. scCO2 is treated to have a heterogeneous structure consisting of vapor-like fluid and liquid-like fluid. A physical model of scCO2 heat transfer in vertical heating tube was established containing a gas-like layer near the wall and a liquid-like fluid layer. Detailed distribution of thermophysical properties and turbulence in radial direction show that scCO2 heat transfer is greatly affected by the thickness of gas-like film, thermal properties of gas-like film and turbulent kinetic energy in the near-wall region. Buoyancy parameters Bu < 10−5, Bu* < 5.6 × 10−7 and flow acceleration parameter Kv < 3 × 10−6 in this paper, which indicate that buoyancy effect and flow acceleration effect has no influence on heat transfer of scCO2 under high mass fluxes. This work successfully explains the heat transfer mechanism of supercritical fluid under high mass flux.
Collapse
|
11
|
The hybrid ergodic lattice gas model for critical fluids and the molecular nature of the critical point. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Karalis K, Zahn D, Prasianakis NI, Niceno B, Churakov SV. Deciphering the molecular mechanism of water boiling at heterogeneous interfaces. Sci Rep 2021; 11:19858. [PMID: 34615926 PMCID: PMC8494797 DOI: 10.1038/s41598-021-99229-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022] Open
Abstract
Water boiling control evolution of natural geothermal systems is widely exploited in industrial processes due to the unique non-linear thermophysical behavior. Even though the properties of water both in the liquid and gas state have been extensively studied experimentally and by numerical simulations, there is still a fundamental knowledge gap in understanding the mechanism of the heterogeneous nucleate boiling controlling evaporation and condensation. In this study, the molecular mechanism of bubble nucleation at the hydrophilic and hydrophobic solid-water interface was determined by performing unbiased molecular dynamics simulations using the transition path sampling scheme. Analyzing the liquid to vapor transition path, the initiation of small void cavities (vapor bubbles nuclei) and their subsequent merging mechanism, leading to successively growing vacuum domains (vapor phase), has been elucidated. The molecular mechanism and the boiling nucleation sites' location are strongly dependent on the solid surface hydrophobicity and hydrophilicity. Then simulations reveal the impact of the surface functionality on the adsorbed thin water molecules film structuring and the location of high probability nucleation sites. Our findings provide molecular-scale insights into the computational aided design of new novel materials for more efficient heat removal and rationalizing the damage mechanisms.
Collapse
Affiliation(s)
| | - Dirk Zahn
- Lehrstuhl für Theoretische Chemie/Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nikolaos I Prasianakis
- Laboratory for Waste Management (LES), Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Bojan Niceno
- Laboratory of Scientific Computing and Modelling (LSM), Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Sergey V Churakov
- Institute of Geological Sciences, University of Bern, 3012, Bern, Switzerland.
- Laboratory for Waste Management (LES), Paul Scherrer Institute, 5232, Villigen, Switzerland.
| |
Collapse
|
13
|
Xu J, Wang Y, Ma X. Phase distribution including a bubblelike region in supercritical fluid. Phys Rev E 2021; 104:014142. [PMID: 34412334 DOI: 10.1103/physreve.104.014142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/02/2021] [Indexed: 11/07/2022]
Abstract
Pseudoboiling in supercritical fluid (SF) has been paid great attention in recent years. Available works mainly focus on thermodynamics analysis. Fewer studies were reported on the spatial time phase distribution. Here, SF is investigated in a multiphase fluid framework using molecular dynamics (MD) simulations. A simulation box contains 10 976 argon atoms, with periodic boundary conditions applied on all the box surfaces. Pressure and temperature are well controlled. Based on MD simulation results, an onset pseudoboiling temperature T^{-} and a termination pseudoboiling temperature T^{+} are defined using the neighboring molecules method, the radial distribution function method, and the two-body excess entropy method. The two transition temperatures divide the whole phase diagram into three regimes of liquidlike, two-phase-like (TPL), and gaslike, and the MD determined T^{-} and T^{+} well matched the thermodynamics-determined values. In the TPL regime, nanovoids are observed to have two distinct characteristics: (1) Particles are sparsely distributed to have gas density inside the void, but are densely populated to have liquid density outside the void. (2) Voids have a curved interface. These characteristics are very similar to bubble characteristics in subcritical pressure. Hence, voids in the supercritical state are called "bubblelike" in this paper. Nonlinear dynamics demonstrates chaotic behavior in the TPL regime, similar to the two-phase regime in the subcritical domain. The above findings give strong evidence that SF in the TPL regime consists of a mixture of bubblelike voids and surrounding liquids. Our work highlights the multiphase feature of a SF, hence, the well-established multiphase theory in subcritical pressures can be introduced to handle the complex SF.
Collapse
Affiliation(s)
- Jinliang Xu
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing, 102206, China.,Key Laboratory of Power Station Energy Transfer Conversion and System, North China Electric Power University, Ministry of Education, Beijing, 102206, China
| | - Yan Wang
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing, 102206, China
| | - Xiaojing Ma
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|