1
|
Qiao JW, Cui FZ, Zhang WQ, Gui RH, Fu Z, Sun M, Lu P, Yin H, Du XY, Hao XT. Enhanced Exciton Delocalization in Organic Near-Infrared Photodetectors via Solid Additive-Mediated J-Aggregation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418844. [PMID: 39972667 DOI: 10.1002/adma.202418844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/25/2025] [Indexed: 02/21/2025]
Abstract
Near-infrared organic photodetectors (NIR-OPDs) have emerged as increasingly significant in optoelectronics, offering unparalleled advantages for applications in health monitoring and night vision. The development of self-powered devices with low dark currents and enhanced NIR sensitivity involves complex engineering that requires careful material selection, defect state density control, and environmental consideration. In this study, an innovative approach is introduced that utilizes solid additive (DIB) to induce improvements in the J-aggregation morphology and exciton delocalization in acceptor molecules. The goal is to broaden the response spectrum of the device and augment its detection capabilities. The key findings revealed that solid additive exhibit an electrostatic affinity for acceptors, which facilitates their orderly face-to-face stacking and controls the π-π stacking distance. These enhanced intermolecular interactions lead to the delocalization of electron-hole pairs, reduced exciton recombination, and increased charge separation efficiency. Consequently, the modified devices exhibited exceptional specific detectivity, exceeding 1014 Jones across the wavelength range of 695-860 nm, thereby establishing a new standard for NIR response in organic photodetection. Overall, this study successfully addressed the compatibility challenges associated with self-powered NIR-OPDs, thereby expanding their potential applications in various settings.
Collapse
Affiliation(s)
- Jia-Wei Qiao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Feng-Zhe Cui
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Wen-Qing Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Ruo-Hua Gui
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Zhen Fu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Ming Sun
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Peng Lu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
- School of Physics, National Demonstration Center for Experimental Physics Education, Shandong University, Jinan, 250100, P. R. China
| | - Hang Yin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiao-Yan Du
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiao-Tao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
2
|
Cong J, Huang ZH, Liu SW, Luo Z, Liu FZ, Chen Z, Lee KM, Huang YC, Yang C. Efficient SWIR Organic Photodetectors with Spectral Detection Extending to 1.4 µm Using a Benzobisthiadiazole-Based Acceptor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410418. [PMID: 39935090 DOI: 10.1002/smll.202410418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Organic photodetectors (OPDs) offer significant advantages in biomedical applications, including medical imaging, heart rate monitoring, and tumor therapy. Despite advancements in OPD technology, the efficiency of these devices in the short-wave infrared (SWIR) region remains considerably lower than that of inorganic semiconductors. To tackle this challenge, this study developed an ultra-narrow bandgap acceptor of CS-1, featuring an A-D-A1-D-A structure where benzobisthiadiazole (BBT) serves as the electron-deficient unit A1, which exhibits a wide absorption range from 300 to 1550 nm. This molecular design not only enhances the absorption properties of the material but also improves the overall performance of the OPD device. It is worth noting that the optimal PTB7-Th:CS-1 device realizes a specific detectivity (Dn *) of 2.96 × 1010 Jones at 1.30 µm, making it one of the most efficient devices at this wavelength to date. Additionally, it demonstrates the high linear dynamic range (LDR) of 91.9 dB even at 1300 nm. These results indicate that the PTB7-Th:CS-1 device significantly enhances detection efficiency in the SWIR region, surpassing most commercially available silicon-based photodetectors. This highlights the significant potential of the BBT unit for achieving high-performance SWIR OPDs.
Collapse
Affiliation(s)
- Jiawen Cong
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhi-Hao Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Shun-Wei Liu
- Organic Electrons Research Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Zhenghui Luo
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Fu-Zong Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Zhanxiang Chen
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Kun-Mu Lee
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Yu-Ching Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
- Organic Electrons Research Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Chuluo Yang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
3
|
Stanitska M, Deva L, Minaev B, Minaeva V, Panchenko O, Ågren H, Volyniuk D, Keruckienė R, Khomyak S, Maksymych V, Stakhira P, Gražulevičius JV. Hetero-donors-adorned anthraquinones with near infra-red absorption for solution-processable photodetectors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 332:125805. [PMID: 39899964 DOI: 10.1016/j.saa.2025.125805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/07/2025] [Accepted: 01/24/2025] [Indexed: 02/05/2025]
Abstract
We introduce a donors-acceptor-based molecular design strategy of organic heteroaromatic compounds with enhanced photosensitivity in the ultraviolet (UV)/visible/near-infrared (NIR) regions. Three organic dyes are meticulously designed and synthesized, involving various donor (D) moieties and the anthraquinone acceptor (A) unit, following the so-called quasi-orthogonal A-D-D' architecture. The target compounds are synthesized via the Buchwald-Hartwig cross-coupling reactions, with the yields of up to 54 %. The molecular structure of the synthesized compounds is confirmed by a combination of experimental and theoretical methods. Density functional theory (DFT) calculations are performed for geometry optimization and analysis of the vibrational normal modes. The time-dependent calculations (TD-DFT) reveal a manifold of intramolecular charge-transfer (ICT) states with various degrees of the central D donor involvement and the local excitation (LE) admixtures. The lowest S1 state of the ICT nature (D' → A) provides the weak absorption in the near IR region. The TD-DFT calculation affords interpretation of the UV-visible-NIR absorption spectra as well as photoconductivity of the fabricated diodes, which includes ICT complexes of the studied compounds with the known triphenylamine derivative (TCTA). Implementation of the semiconductor monolayer of the molecular mixture of A-D-D' type compound and TCTA allows to obtain the high-performance near-infrared organic photodetectors.
Collapse
Affiliation(s)
- Mariia Stanitska
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Baršausko 59 51423 Kaunas, Lithuania; Ivan Franko National University of Lviv, Kyryla I Mefodiya 6, Lviv, Ukraine
| | - Liliia Deva
- Department of Electronic Engineering, Institute of Telecommunications, Radioelectronics and Electronic Engineering, Lviv Polytechnic National University, Stepan Bandera St. 12 79013 Lviv, Ukraine
| | - Boris Minaev
- Department of Chemistry and Nanomaterials Science, Bogdan Khmelnytsky National University, Cherkasy, Ukraine; Ångström Laboratory, Uppsala University, Uppsala, Sweden.
| | - Valentyna Minaeva
- Department of Chemistry and Nanomaterials Science, Bogdan Khmelnytsky National University, Cherkasy, Ukraine
| | - Oleksandr Panchenko
- Department of Chemistry and Nanomaterials Science, Bogdan Khmelnytsky National University, Cherkasy, Ukraine
| | - Hans Ågren
- Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Dmytro Volyniuk
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Baršausko 59 51423 Kaunas, Lithuania
| | - Rasa Keruckienė
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Baršausko 59 51423 Kaunas, Lithuania
| | - Semen Khomyak
- Department of Electronic Engineering, Institute of Telecommunications, Radioelectronics and Electronic Engineering, Lviv Polytechnic National University, Stepan Bandera St. 12 79013 Lviv, Ukraine
| | - Vitalii Maksymych
- Ivan Franko National University of Lviv, Kyryla I Mefodiya 6, Lviv, Ukraine
| | - Pavlo Stakhira
- Department of Electronic Engineering, Institute of Telecommunications, Radioelectronics and Electronic Engineering, Lviv Polytechnic National University, Stepan Bandera St. 12 79013 Lviv, Ukraine
| | - Juozas Vidas Gražulevičius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Baršausko 59 51423 Kaunas, Lithuania.
| |
Collapse
|
4
|
Kwon RG, Kiguye C, Jeong J, Kim GW, Kim JY. Enhanced Performance of Polymer Photodetectors Using a Metal-Doped Zinc Oxide Interfacial Layer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4239-4246. [PMID: 39763140 DOI: 10.1021/acsami.4c19448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Organic photodetectors (OPDs) are cheaper and more flexible than conventional photodetectors based on inorganic precursors, but their wider commercial application is limited by their low electron extraction efficiency under reverse bias conditions (when operating under photoconductive mode). Zinc oxide (ZnO) has shown promise as an electron transport layer for OPDs owing to its wide band gap, but its electron extraction efficiency has been limited by issues such as photoinstability and the formation of surface detects. This study investigated the effects of doping ZnO nanoparticles with indium gallium (i.e., Indium gallium zinc oxide (IGZO)) and ytterbium gallium (i.e., Ytterbium gallium zinc oxide (YGZO)) on the electron extraction efficiency, conductivity, and dark current suppression of the resulting OPD. Both dopants blended uniformly into the sol-gel ZnO framework, which reduced the roughness and improved the surface properties. Compared with ZnO, both IGZO and YGZO slightly shifted the absorption spectra and reduced the dark current density while improving the specific detectivity under reverse bias conditions. We introduce a metric called the Jones factor (JF) as the ratio of the specific detectivity under zero bias conditions to the specific detectivity under reverse bias conditions. Both IGZO and YGZO had much lower JF values than ZnO, which indicates that their specific detectivity drops much less than that of ZnO when the OPD shifts from photovoltaic mode (i.e., zero bias) to photoconductive mode (i.e., reverse bias). Thus, they are potentially better materials for the electron transport layer of the OPDs with a higher electron extraction efficiency.
Collapse
Affiliation(s)
- Ri Gyeong Kwon
- Department of Semiconductor Engineering, Gyeongsang National University, Jinjudae-ro 501beon-gil, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Collins Kiguye
- Department of Semiconductor Engineering, Gyeongsang National University, Jinjudae-ro 501beon-gil, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Jaebum Jeong
- Department of Semiconductor Engineering, Gyeongsang National University, Jinjudae-ro 501beon-gil, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Gun Woong Kim
- Department of Semiconductor Engineering, Gyeongsang National University, Jinjudae-ro 501beon-gil, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Jun Young Kim
- Department of Semiconductor Engineering, Gyeongsang National University, Jinjudae-ro 501beon-gil, Jinju-si, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
5
|
Jung J, Selerowicz A, Ulanski J, Udovytska R, Luszczynska B, Zawadzki A, Rybak A. Organic Optocoupler with Simple Construction as an Effective Linear Current Transceiver. MATERIALS (BASEL, SWITZERLAND) 2025; 18:152. [PMID: 39795797 PMCID: PMC11722434 DOI: 10.3390/ma18010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
In this study, it is shown that an efficient organic optocoupler (OPC) can be fabricated using commercially available and solution-processable organic semiconductors. The transmitter is a single-active-layer organic light-emitting diode (OLED) made from a well-known polyparavinylene derivative, Super Yellow. The receiver is an organic light-emitting diode (OLSD) with a single active layer consisting of a mixture of the polymer donor PTB7-Th and the low-molecular-weight acceptor ITIC; the receiver operates without an applied reverse voltage. OLED and OLSD have the same geometry and simple structure without any interlayers: glass/ITO/PEDOT:PSS/(active layer)/Ca/Al; the OPC is formed by OLED and OLSD which adhere tightly to each other. Despite its simple structure, the OPC showed a current transfer ratio of 0.13%, good linearity, and good dynamic performance: a three-decibel cutoff frequency of 170 kHz and response times to a step change in current at the OPC input of 2 μs. Compared to most organic OPC devices with similar performance parameters, where the transmitter and receiver have complex structures with additional interlayers between the active layers and electrodes and the need to apply a reverse voltage to the receiver, the simple design of our OPC reduces the number of fabrication steps and greatly simplifies the device fabrication process.
Collapse
Affiliation(s)
- Jaroslaw Jung
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego Str., 90-924 Lodz, Poland; (A.S.); (J.U.); (R.U.); (B.L.)
| | - Arkadiusz Selerowicz
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego Str., 90-924 Lodz, Poland; (A.S.); (J.U.); (R.U.); (B.L.)
| | - Jacek Ulanski
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego Str., 90-924 Lodz, Poland; (A.S.); (J.U.); (R.U.); (B.L.)
| | - Ruslana Udovytska
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego Str., 90-924 Lodz, Poland; (A.S.); (J.U.); (R.U.); (B.L.)
| | - Beata Luszczynska
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego Str., 90-924 Lodz, Poland; (A.S.); (J.U.); (R.U.); (B.L.)
| | - Artur Zawadzki
- ABB Corporate Technology Center, 13A Starowislna Str., 31-038 Krakow, Poland; (A.Z.); (A.R.)
| | - Andrzej Rybak
- ABB Corporate Technology Center, 13A Starowislna Str., 31-038 Krakow, Poland; (A.Z.); (A.R.)
| |
Collapse
|
6
|
Zhong W, Wang X, Wang W, Song Z, Tang Y, Chen B, Yang T, Liang Y. Fast Near-Infrared Organic Photodetectors with Enhanced Detectivity by Molecular Engineering of Acceptor Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410332. [PMID: 39601154 PMCID: PMC11744665 DOI: 10.1002/advs.202410332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Organic photodetectors (OPDs) with a near-infrared (NIR) response beyond 900 nm are intriguing electronics for various applications. It is challenging to develop NIR OPDs with high sensitivity and fast response. Herein, the acceptor materials of OPDs are tuned to extend detection to ≈1100 nm with improved sensitivity. A new fused ring electron acceptor, ICS (2,2'-((2Z,2'Z)-(((4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl)bis(4-((2-ethylhexyl)thio)thiophene-5,2-diyl))bis(methaneylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile), is developed with alkylthio thiophene as the bridge, achieving a small bandgap of 1.35 eV while decreasing dark current densities under reverse bias. By further introducing a secondary acceptor of PC61 BM, the doping compensation, and unfavored hole injection blocking enable further improvement of detectivity. The PTB7-Th (Poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl]): ICS: PC61 BM OPDs deliver a low dark current density of 1.23 × 10-9 A cm-2, a high peak specific detectivity of 1.09 × 1013 Jones at 950 nm under -0.2 V, and a fast response speed with a -3 dB bandwidth of 720 kHz biased under -2 V. The photoplethysmography system with the PTB7-Th: ICS: PC61 BM OPD can reliably monitor heartbeats under 980 nm NIR light. This study promises the development of organic NIR OPDs with high detectivity and fast response by tuning active materials.
Collapse
Affiliation(s)
- Wentao Zhong
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Xinyuan Wang
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Wei Wang
- Experiment and Practice Innovation Education CenterBeijing Normal UniversityZhuhai519087China
| | - Zhulu Song
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Yirong Tang
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Bulin Chen
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Tingbin Yang
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Core Research FacilitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Yongye Liang
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
7
|
Xu Z, Chandresh A, Mauri A, Esmaeilpour M, Monnier V, Odobel F, Heinke L, Wenzel W, Kozlowska M, Diring S, Haldar R, Wöll C. Regulated Charge Transfer in Donor-Acceptor Metal-Organic Frameworks for Highly-Sensitive Photodetectors. Angew Chem Int Ed Engl 2024; 63:e202414526. [PMID: 39531348 DOI: 10.1002/anie.202414526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
In photo-induced charge separation, organic thin films with donor and acceptor chromophores are vital for uses such as artificial photosynthesis and photodetection. The main challenges include optimizing charge separation efficiency and identifying the ideal acceptor/donor ratio. Achieving this is difficult due to the variability in molecular configurations within these typically amorphous organic aggregates. Metal-organic frameworks (MOFs) provide a structured solution by enabling systematic design of donor/acceptor blends with adjustable ratios within a crystalline lattice. We demonstrate this approach by incorporating donor and acceptor naphthalenediimide (NDI) chromophores as linkers in a highly oriented, monolithic MOF thin film. By adjusting the NDI acceptor linker concentration during the layer-by-layer assembly of surface-anchored MOF thin films (SURMOFs), we significantly enhanced charge separation efficiency. Surprisingly, the optimum acceptor concentration was only 3 %, achieving a forty-fold increase in photodetection efficiency compared to baseline NDI donor-based SURMOFs. This unexpected behaviour was clarified through theoretical analysis enabled by the well-defined crystalline structure of the SURMOFs. Using density functional theory and kinetic Monte Carlo simulations, we identified two opposing effects from acceptors: the positive effect of suppressing undesirable charge carrier recombination is offset at high concentrations by a reduction in charge-carrier mobility.
Collapse
Affiliation(s)
- Zhiyun Xu
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Abhinav Chandresh
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Anna Mauri
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Meysam Esmaeilpour
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Vincent Monnier
- Nantes Université, CNRS CEISAM, UMR 6230, F-44000, Nantes, France
| | - Fabrice Odobel
- Nantes Université, CNRS CEISAM, UMR 6230, F-44000, Nantes, France
| | - Lars Heinke
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Mariana Kozlowska
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stéphane Diring
- Nantes Université, CNRS CEISAM, UMR 6230, F-44000, Nantes, France
| | - Ritesh Haldar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India
| | - Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
8
|
Wu D, Xu G, Tan J, Wang X, Zhang Y, Ma L, Chen W, Wang K. Nanophotonic structures energized short-wave infrared quantum dot photodetectors and their advancements in imaging and large-scale fabrication techniques. NANOSCALE 2024. [PMID: 39693080 DOI: 10.1039/d4nr03601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Short-wave infrared (SWIR) photodetectors (PDs) have a wide range of applications in the field of information and communication. Especially in recent years, with the increasing demand for consumer electronics, conventional semiconductor-based PDs alone are unable to cope with the ever-increasing market. Colloidal quantum dots (QDs) have attracted great interest due to their low fabrication cost, solution processability, and promising optoelectronic properties. In addition to advancements in synthesis methods and surface ligand engineering, the photoelectronic performance of QD-based SWIR PDs has been greatly improved due to developments in nanophotonic structural engineering, such as microcavities, localized and propagating surface plasmon resonant structures, and gratings for specific and high-performance detection application. The improvement in the performance of photoconductors, photodiodes, and phototransistors also enhances the performance of SWIR imaging sensors where they have been realized and demonstrated promising potential due to the direct integration of QD PDs with CMOS substrates. In addition, flexible manipulation of the QDs has been realized, thanks to their solution-processable capability. Therefore, a variety of large-scale production process methods have been examined including blade coating, flexible microcomb printing, ink-jet printing, spray deposition, etc. which can effectively reduce the cost and promote commercial application in consumer electronics. Finally, the current challenges and future development prospects of QD-based PDs are reviewed and could provide guidance for future design of the QDs PDs.
Collapse
Affiliation(s)
- Dan Wu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Genghao Xu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Jing Tan
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Xiao Wang
- College of Engineering Physics, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Yilan Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Lei Ma
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Wei Chen
- College of Engineering Physics, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Kai Wang
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
9
|
Guo H, Guo J, Wang Y, Wang H, Cheng S, Wang Z, Miao Q, Xu X. An Organic Optoelectronic Synapse with Multilevel Memory Enabled by Gate Modulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66948-66960. [PMID: 38573883 DOI: 10.1021/acsami.3c19624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Artificial synaptic devices are emerging as contenders for next-generation computing systems due to their combined advantages of self-adaptive learning mechanisms, high parallel computation capabilities, adjustable memory level, and energy efficiency. Optoelectronic devices are particularly notable for their responsiveness to both voltage inputs and light exposure, making them attractive for dynamic modulation. However, engineering devices with reconfigurable synaptic plasticity and multilevel memory within a singular configuration present a fundamental challenge. Here, we have established an organic transistor-based synaptic device that exhibits both volatile and nonvolatile memory characteristics, modulated through gate voltage together with light stimuli. Our device demonstrates a range of synaptic behaviors, including both short/long-term plasticity (STP and LTP) as well as STP-LTP transitions. Further, as an encoding unit, it delivers exceptional read current levels, achieving a program/erase current ratio exceeding 105, with excellent repeatability. Additionally, a prototype 4 × 4 matrix demonstrates potential in practical neuromorphic systems, showing capabilities in the perception, processing, and memory retention of image inputs.
Collapse
Affiliation(s)
- Haotian Guo
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Jing Guo
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Yujing Wang
- Department of Chemistry, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Hezhen Wang
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Simin Cheng
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Zehao Wang
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Qian Miao
- Department of Chemistry, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Xiaomin Xu
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
10
|
Iqbal MA, Fang X, Abbas Y, Weng X, He T, Zeng YJ. Unlocking high-performance near-infrared photodetection: polaron-assisted organic integer charge transfer hybrids. LIGHT, SCIENCE & APPLICATIONS 2024; 13:318. [PMID: 39648203 PMCID: PMC11625827 DOI: 10.1038/s41377-024-01695-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/17/2024] [Accepted: 11/15/2024] [Indexed: 12/10/2024]
Abstract
Room temperature femtowatt sensitivity remains a sought-after attribute, even among commercial inorganic infrared (IR) photodetectors (PDs). While organic IR PDs are poised to emerge as a pivotal sensor technology in the forthcoming Fourth-Generation Industrial Era, their performance lags behind that of their inorganic counterparts. This discrepancy primarily stems from poor external quantum efficiencies (EQE), driven by inadequate exciton dissociation (high exciton binding energy) within organic IR materials, exacerbated by pronounced non-radiative recombination at narrow bandgaps. Here, we unveil a high-performance organic Near-IR (NIR) PD via integer charge transfer between Poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (C-14PBTTT) donor (D) and Tetrafluorotetracyanoquinodimethane (TCNQF4) acceptor (A) molecules, showcasing strong low-energy subgap absorptions up to 2.5 µm. We observe that specifically, polaron excitation in these radical and neutral D-A blended molecules enables bound charges to exceed the Coulombic attraction to their counterions, leading to an elevated EQE (polaron absorption region) compared to Frenkel excitons. As a result, our devices achieve a high EQE of ∼107%, femtowatt sensitivity (NEP) of ~0.12 fW Hz-1/2 along a response time of ~81 ms, at room temperature for a wavelength of 1.0 µm. Our innovative utilization of polarons highlights their potential as alternatives to Frenkel excitons in high-performance organic IR PDs.
Collapse
Affiliation(s)
- Muhammad Ahsan Iqbal
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
- Guangdong Provincial Key Laboratory of Intelligent Disaster Prevention and Emergency Technologies for Urban Lifeline Engineering, Dongguan University of Technology, Dongguan, 523808, China
- Department of Mechanics, Tianjin University, Tianjin, 300350, China
- Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xueqian Fang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
- Guangdong Provincial Key Laboratory of Intelligent Disaster Prevention and Emergency Technologies for Urban Lifeline Engineering, Dongguan University of Technology, Dongguan, 523808, China.
- Department of Mechanics, Tianjin University, Tianjin, 300350, China.
| | - Yasir Abbas
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Xiaoliang Weng
- Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tingchao He
- Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yu-Jia Zeng
- Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
11
|
Wolansky J, Hoffmann C, Panhans M, Winkler LC, Talnack F, Hutsch S, Zhang H, Kirch A, Yallum KM, Friedrich H, Kublitski J, Gao F, Spoltore D, Mannsfeld SCB, Ortmann F, Banerji N, Leo K, Benduhn J. Sensitive Self-Driven Single-Component Organic Photodetector Based on Vapor-Deposited Small Molecules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402834. [PMID: 39502007 PMCID: PMC11636095 DOI: 10.1002/adma.202402834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 10/03/2024] [Indexed: 12/13/2024]
Abstract
Typically, organic solar cells (OSCs) and photodetectors (OPDs) comprise an electron donating and accepting material to facilitate efficient charge carrier generation. This approach has proven successful in achieving high-performance devices but has several drawbacks for upscaling and stability. This study presents a fully vacuum-deposited single-component OPD, employing the neat oligothiophene derivative DCV2-5T in the photoactive layer. Free charge carriers are generated with an internal quantum efficiency of 20 % at zero bias. By optimizing the device structure, a very low dark current of 3.4 · 10-11 A cm-2 at -0.1 V is achieved, comparable to the dark current of state-of-the-art bulk heterojunction OPDs. This optimization results in specific detectivities of 1· 1013 Jones (based on noise measurements), accompanied by a fast photoresponse (f-3dB = 200 kHz) and a broad linear dynamic range (> 150 dB). Ultrafast transient absorption spectroscopy unveils that charge carriers are already formed at very short time scales (< 1 ps). The surprisingly efficient bulk charge generation mechanism is attributed to a strong electronic coupling of the molecular exciton and charge transfer states. This work demonstrates the very high performance of single-component OPDs and proves that this novel device design is a successful strategy for highly efficient, morphological stable and easily manufacturable devices.
Collapse
Affiliation(s)
- Jakob Wolansky
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Cedric Hoffmann
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| | - Michel Panhans
- TUM School of Natural SciencesDepartment of ChemistryTechnische Universität MünchenLichtenbergstr. 485748GarchingGermany
| | - Louis Conrad Winkler
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Felix Talnack
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer EngineeringTechnische Universität DresdenHelmholtzstr. 1801069DresdenGermany
| | - Sebastian Hutsch
- TUM School of Natural SciencesDepartment of ChemistryTechnische Universität MünchenLichtenbergstr. 485748GarchingGermany
| | - Huotian Zhang
- Department of PhysicsChemistry and Biology (IFM)Linköping UniversityLinköpingSE‐58183Sweden
| | - Anton Kirch
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
- The Organic Photonics and Electronics GroupDepartment of PhysicsUmeå UniversityUmeåSE‐90187Sweden
| | - Kaila M. Yallum
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| | - Hannes Friedrich
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Jonas Kublitski
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
- Department of PhysicsUniversidade Tecnológica Federal do Paraná (UTFPR)Av. 7 de Setembro 3165Curitiba80230‐901Brazil
| | - Feng Gao
- Department of PhysicsChemistry and Biology (IFM)Linköping UniversityLinköpingSE‐58183Sweden
| | - Donato Spoltore
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
- Department of MathematicalPhysical and Computer SciencesUniversity of ParmaV.le delle Scienze 7/AParma43124Italy
| | - Stefan C. B. Mannsfeld
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer EngineeringTechnische Universität DresdenHelmholtzstr. 1801069DresdenGermany
| | - Frank Ortmann
- TUM School of Natural SciencesDepartment of ChemistryTechnische Universität MünchenLichtenbergstr. 485748GarchingGermany
| | - Natalie Banerji
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Johannes Benduhn
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| |
Collapse
|
12
|
Ma G, Hou Y, Luo Z, Wu J, Miao Y, Yang C, Wang X, Zheng F, Shafique S, Zhao F, Hu Z. High-Sensitivity and Fast-Response Photomultiplication Type Photodetectors Based on Quasi-2D Perovskite Films for Weak-Light Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405820. [PMID: 39319503 DOI: 10.1002/smll.202405820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/03/2024] [Indexed: 09/26/2024]
Abstract
Photovoltaic photodiodes often face challenges in effectively harvesting electrical signals, especially when detecting faint light. In contrast, photomultiplication type photodetectors (PM-PDs) are renowned for their exceptional sensitivity to weak signals. Here, an advanced PM-PD is introduced based on quasi 2D Ruddlesden-Popper (Q-2D RP) perovskites, optimized for weak light detection at minimal operating voltages. The abundant traps at the Q-2D RP surface capture charge carriers, inducing a trap-assisted tunneling mechanism that leads to the photomultiplication (PM) effect. Deep-lying trap states within the Q-2D RP bulk accelerate charge carrier recombination, resulting in an outstanding rise/fall time of 1.14/1.72 µs for the PM-PDs. The PM-PD achieves a remarkable response level of up to 45.89 A W-1 and an extraordinary external quantum efficiency of 14400% at -1 V under an illumination of 1 µW cm- 2. The intrinsic high resistance of the Q-2D perovskite results in a low dark current, enabling an impressive detectivity of 4.23 × 1012 Jones based on noise current at -1 V. Furthermore, the practical application of PM-PDs has been demonstrated in weak-light, high-rate communication systems. These findings confirm the significant potential of PM-PDs based on Q-2D perovskites for weak light detection and suggest new directions for developing low-power, high-performance PM-PDs for future applications.
Collapse
Affiliation(s)
- Guohua Ma
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Yanna Hou
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Zhenwang Luo
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Junhui Wu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Yuchen Miao
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Cheng Yang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Xu Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Fei Zheng
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Shareen Shafique
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Feiyu Zhao
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Ziyang Hu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
13
|
Yu X, Huang Y, Li P, Feng S, Wan X, Jiang Y, Yu P. Self-Powered Photodetectors with High Stability Based on Se Paper/P3HT:Graphene Heterojunction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1923. [PMID: 39683311 DOI: 10.3390/nano14231923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Photodetectors based on selenium (Se) have attracted significant attention because of their outstanding optoelectronic characteristics, including their rapid reactivity and high photoconductivity. However, the poor responsivity of pure Se limits their further development. In this study, a novel Se-P/P3HT:G photodetector was designed and fabricated by combining an organic semiconductor made of poly-3-hexylthiophene mixed with graphene (P3HT:G) with self-supporting Se paper (Se-P) via spin-coating process. The device possesses a dark current of around 4.23 × 10-12 A and self-powered characteristics at 300-900 nm. At zero bias voltage and 548 nm illumination, the Se-P/P3HT:G photodetector demonstrates a maximum photocurrent of 1.35 × 10-9 A (745% higher than that of Se-P at 0.1 V), a quick response time (16.2/27.6 ms), an on/off ratio of 292, and a maximum detectivity and responsivity of 6.47 × 1011 Jones and 34 mA W-1, respectively. Moreover, Se-P/P3HT:G exhibits superior environmental stability. After one month, the photocurrent value of the Se-P/P3HT:G device held steady at 91.4% of its initial value, and even following pre-treatment at 140 °C, the on/off ratio still remained 17 (at a retention rate of about 5.9%). The excellent thermal stability, environmental reliability, and optoelectronic performance of this heterojunction structure offer a useful pathway for the future advancement of high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Xuewei Yu
- School of Integrated Circuits, Jiangnan University, Wuxi 214122, China
| | - Yuxin Huang
- School of Integrated Circuits, Jiangnan University, Wuxi 214122, China
| | - Pengfan Li
- School of Integrated Circuits, Jiangnan University, Wuxi 214122, China
| | - Shiliang Feng
- School of Integrated Circuits, Jiangnan University, Wuxi 214122, China
| | - Xi Wan
- School of Integrated Circuits, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Jiang
- School of Integrated Circuits, Jiangnan University, Wuxi 214122, China
| | - Pingping Yu
- School of Integrated Circuits, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
14
|
Hoang Huy VP, Bark CW. Self-Powered Deep-Ultraviolet Photodetector Driven by Combined Piezoelectric/Ferroelectric Effects. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1903. [PMID: 39683292 DOI: 10.3390/nano14231903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
In this study, in situ piezoelectricity was incorporated into the photoactive region to prepare a self-powered deep-ultraviolet photodetector based on a mixture of polyvinylidene fluoride (PVDF)@Ga2O3 and polyethyleneimine (PEI)/carbon quantum dots (CQDs). A ferroelectric composite layer was prepared using β-Ga2O3 as a filler, and the β-phase of PVDF was used as the polymer matrix. The strong piezoelectricity of β-PVDF can facilitate the separation and transport of photogenerated carriers in the depletion region and significantly reduce the dark current when the device is biased with an external bias, resulting in a high on/off ratio and high detection capability. The self-powered PD exhibited specific detectivity (D* = 3.5 × 1010 Jones), an on/off ratio of 2.7, and a response speed of 0.11/0.33 s. Furthermore, the prepared PD exhibits excellent photoresponse stability under continuous UV light, with the photocurrent retaining 83% of its initial value after about 500 s of irradiation. Our findings suggest a new approach for developing cost-effective UV PDs for optoelectronic applications in related fields.
Collapse
Affiliation(s)
- Vo Pham Hoang Huy
- Department of Electrical Engineering, Gachon University, Seongnam 13120, Republic of Korea
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Chung Wung Bark
- Department of Electrical Engineering, Gachon University, Seongnam 13120, Republic of Korea
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
15
|
Rimmele M, Qiao Z, Aniés F, Marsh AV, Yazmaciyan A, Harrison G, Fatayer S, Gasparini N, Heeney M. Energy Level Tuning in Conjugated Donor Polymers by Chalcogen Exchange for Low Dark Current Organic Photodetectors. ACS MATERIALS LETTERS 2024; 6:5006-5015. [PMID: 39512722 PMCID: PMC11539101 DOI: 10.1021/acsmaterialslett.4c01899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024]
Abstract
The performance of organic photodetectors (OPDs) using conjugated polymer donors and molecular acceptors has improved rapidly, but many polymers are difficult to upscale due to their complex structures. This study examines two low-complexity thiophene copolymers with substituted benzooxadiazole (FO6-BO-T) or benzothiadiazole (FO6-T). Substituting sulfur with oxygen in FO6-BO-T increased its ionization energy without affecting the optical gap. When blended with the nonfullerene acceptor IDSe, FO6-BO-T showed a significantly lower dark current density (2.06·10-9 A cm-2 at -2 V) compared to FO6-T. Grazing incidence wide-angle X-ray scattering (GIWAXS) measurements demonstrated that pristine FO6-BO-T exhibited a more ordered morphology than FO6-T. However, blending resulted in a significant disruption to the ordered domains in both cases, with a loss of orientational order, suggesting that FO6-BO-T's improved performance is largely related to its increased ionization energy. This study demonstrates the potential of chalcogen atom engineering to enhance the performance of the OPD in scalable polymers.
Collapse
Affiliation(s)
- Martina Rimmele
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W120BZ, United
Kingdom
| | - Zhuoran Qiao
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W120BZ, United
Kingdom
| | - Filip Aniés
- KAUST
Solar Centre (KSC), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955−6900, Saudi Arabia
| | - Adam V. Marsh
- KAUST
Solar Centre (KSC), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955−6900, Saudi Arabia
| | - Aren Yazmaciyan
- KAUST
Solar Centre (KSC), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955−6900, Saudi Arabia
| | - George Harrison
- KAUST
Solar Centre (KSC), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955−6900, Saudi Arabia
| | - Shadi Fatayer
- KAUST
Solar Centre (KSC), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955−6900, Saudi Arabia
| | - Nicola Gasparini
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W120BZ, United
Kingdom
| | - Martin Heeney
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W120BZ, United
Kingdom
- KAUST
Solar Centre (KSC), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955−6900, Saudi Arabia
| |
Collapse
|
16
|
Zhu H, Chen Q, Chen L, Zakaria R, Park MS, Tan CL, Zhu L, Xu Y. Influence of PCBM Nanocrystals on the Donor-Acceptor Polymer Ultraviolet Phototransistors. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1748. [PMID: 39513828 PMCID: PMC11547190 DOI: 10.3390/nano14211748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Organic phototransistors, renowned for their exceptional biocompatibility, hold promise in phototherapy for tracking the efficacy of photosensitive drugs within treatment areas. Nevertheless, it has been found that organic semiconductors are less effective in detecting ultraviolet (UV) light because of their narrow bandgap. Here, we show that UV photodetection in phototransistors using donor-acceptor (D-A) polymer semiconductors can be significantly enhanced by incorporating PCBM nanocrystals. This integration results in a band mismatch between the nanocrystals and the D-A polymer at the interface. These nanocrystals also demonstrate a notable capability of modulating threshold voltage under UV light. The devices incorporating nanocrystals exhibit a photoresponsivity of 0.16 A/W, surpassing the photoresponsivity of the devices without nanocrystals by 50%. The specific detection rate of devices with nanocrystals is around 2.00 × 1010 Jones, which is twice as high as that of devices without nanocrystals. The presented findings offer a potential avenue to improve the efficiency of polymer phototransistors for UV detection.
Collapse
Affiliation(s)
- Hong Zhu
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.Z.); (Q.C.); (L.C.); (C.L.T.)
| | - Quanhua Chen
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.Z.); (Q.C.); (L.C.); (C.L.T.)
| | - Lijian Chen
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.Z.); (Q.C.); (L.C.); (C.L.T.)
| | - Rozalina Zakaria
- Photonic Research Centre, University of Malaya, Kuala Lumpur 50630, Malaysia;
| | - Min-Su Park
- Department of Electronics Engineering, Dong-A University, Busan 49315, Republic of Korea;
| | - Chee Leong Tan
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.Z.); (Q.C.); (L.C.); (C.L.T.)
- Guangdong Greater Bay Area Institute of Integrated Circuit and System, Guangzhou 510535, China
| | - Li Zhu
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.Z.); (Q.C.); (L.C.); (C.L.T.)
| | - Yong Xu
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.Z.); (Q.C.); (L.C.); (C.L.T.)
- Guangdong Greater Bay Area Institute of Integrated Circuit and System, Guangzhou 510535, China
| |
Collapse
|
17
|
Chen CP, Peng YC, Jiang BH, Hsu MW, Chan CK, Du HY, Yu YY. Organic Bulk-Heterojunction Blends with Vertical Phase Separation for Enhanced Organic Photodetector Performance. Polymers (Basel) 2024; 16:3040. [PMID: 39518249 PMCID: PMC11548598 DOI: 10.3390/polym16213040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/05/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
The ternary blending strategy is a fundamental approach that is widely recognized in the field of organic optoelectronics. In our investigation, leveraging the inherent advantages of the ternary component blending methodology, we introduced an innovative design for organic photodetectors (OPDs) aimed at reducing the dark current density (Jd) under reverse bias. This pioneering effort involved combining two distinct conjugated molecules (IT-4F and IEICO-4F) with a conjugated polymer (PM7), resulting in a composite material characterized by a well-defined vertical phase separation. To thoroughly explore device performance variations, we utilized a comprehensive array of analytical techniques, including atomic force microscopy (AFM) cross-section methodologies and Kelvin probe force microscopy (KPFM). Through the optimization of the blend ratio (PM7:IT-4F: IEICO-4F at 1:0.8:0.2), we achieved significant advancements. The resulting OPD demonstrated an exceptional reduction in JD, reaching a remarkably low value of 4.95 × 10-10 A cm-2, coupled with an ultra-high detectivity of 4.95 × 1013 Jones and an outstanding linear dynamic range exceeding 100 dB at 780 nm under a bias of -1V. Furthermore, the attained cutoff frequency reached an impressive 220 kHz, highlighting substantial improvements in device performance metrics. Of particular significance is the successful translation of this technological breakthrough into real-world applications, such as in heart rate sensing, underscoring its tangible utility and expanding its potential across various fields. This demonstrates its practical relevance and underscores its versatility in diverse settings.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; (C.-P.C.); (Y.-C.P.); (B.-H.J.)
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Yan-Cheng Peng
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; (C.-P.C.); (Y.-C.P.); (B.-H.J.)
| | - Bing-Huang Jiang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; (C.-P.C.); (Y.-C.P.); (B.-H.J.)
| | - Ming-Wei Hsu
- Cagu International Co., Ltd., Kaohsiung 80652, Taiwan;
| | - Choon Kit Chan
- Mechanical Engineering Department, Faculty of Engineering and Quantity Surveying, INTI International University, Nilai 71800, Negeri Sembilan, Malaysia;
| | - He-Yun Du
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan;
| | - Yang-Yen Yu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; (C.-P.C.); (Y.-C.P.); (B.-H.J.)
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| |
Collapse
|
18
|
Zhang Y, Chen J, Yang J, Fu M, Cao Y, Dong M, Yu J, Dong S, Yang X, Shao L, Hu Z, Cai H, Liu C, Huang F. Sensitive SWIR Organic Photodetectors with Spectral Response Reaching 1.5 µm. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406950. [PMID: 39152933 DOI: 10.1002/adma.202406950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Indexed: 08/19/2024]
Abstract
The performance of organic photodetectors (OPDs) sensitive to the short-wavelength infrared (SWIR) light lags behind commercial indium gallium arsenide (InGaAs) photodetectors primarily due to the scarcity of organic semiconductors with efficient photoelectric responses exceeding 1.3 µm. Limited by the Energy-gap law, ultralow-bandgap organic semiconductors usually suffer from severe non-radiative transitions, resulting in low external quantum efficiency (EQE). Herein, a difluoro-substituted quinoid terminal group (QC-2F) with exceptionally strong electron-negativity is developed for constructing a new non-fullerene acceptor (NFA), Y-QC4F with an ultralow bandgap of 0.83 eV. This subtle structural modification significantly enhances intermolecular packing order and density, enabling an absorption onset up to 1.5 µm while suppressing non-radiation recombination in Y-QC4F films. SWIR OPDs based on Y-QC4F achieve an impressive detectivity (D*) over 1011 Jones from 0.4 to 1.5 µm under 0 V bias, with a maximum of 1.68 × 1012 Jones at 1.16 µm. Furthermore, the resulting OPDs demonstrate competitive performance with commercial photodetectors for high-quality SWIR imaging even under 1.4 µm irradiation.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jingwen Chen
- Lumidar Technology Co., Ltd., Guangzhou, 510530, P. R. China
| | - Jie Yang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Muyi Fu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yunhao Cao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Minghao Dong
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jiangkai Yu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Sheng Dong
- Lumidar Technology Co., Ltd., Guangzhou, 510530, P. R. China
| | - Xiye Yang
- Lumidar Technology Co., Ltd., Guangzhou, 510530, P. R. China
| | - Lin Shao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhengwei Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Houji Cai
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chunchen Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Fei Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
19
|
Baharfar M, Hillier AC, Mao G. Charge-Transfer Complexes: Fundamentals and Advances in Catalysis, Sensing, and Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406083. [PMID: 39046077 DOI: 10.1002/adma.202406083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Supramolecular assemblies, formed through electronic charge transfer between two or more entities, represent a rich class of compounds dubbed as charge-transfer complexes (CTCs). Their distinctive formation pathway, rooted in charge-transfer processes at the interface of CTC-forming components, results in the delocalization of electronic charge along molecular stacks, rendering CTCs intrinsic molecular conductors. Since the discovery of CTCs, intensive research has explored their unique properties including magnetism, conductivity, and superconductivity. Their more recently recognized semiconducting functionality has inspired recent developments in applications requiring organic semiconductors. In this context, CTCs offer a tuneable energy gap, unique charge-transport properties, tailorable physicochemical interactions, photoresponsiveness, and the potential for scalable manufacturing. Here, an updated viewpoint on CTCs is provided, presenting them as emerging organic semiconductors. To this end, their electronic and chemical properties alongside their synthesis methods are reviewed. The unique properties of CTCs that benefit various related applications in the realms of organic optoelectronics, catalysts, and gas sensors are discussed. Insights for future developments and existing limitations are described.
Collapse
Affiliation(s)
- Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia
| | - Andrew C Hillier
- Division of Materials Sciences and Engineering, Ames Laboratory, U.S. DOE and Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia
| |
Collapse
|
20
|
Ali Septian MR, Estrada R, Lee CC, Iskandar J, Al Amin NR, Liman J, Harsono B, Sutanto K, Yeh PC, Chen CH, Liu SW. Enhancing Specific Detectivity and Device Stability in Vacuum-Deposited Organic Photodetectors Utilizing Nonfullerene Acceptors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48034-48042. [PMID: 39215693 DOI: 10.1021/acsami.4c10792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Organic photodetector (OPD) studies have undergone a revolutionary transformation by introducing nonfullerene acceptors (NFAs), which provide substantial benefits such as tunable band gaps and enhanced absorption in the visible spectrum. Vacuum-processed small-molecule-based OPD devices are presented in this study by utilizing a blend of boron subphthalocyanine (SubPc) and chlorinated subphthalocyanine (Cl6SubPc) as the active layer. Four different active layer thicknesses are further investigated to understand the intrinsic phenomena, unveiling the suppression of dark current density while maintaining photoexcitation and charge separation efficiency. Experimental results reveal that, at an applied bias of -3 V, the 50-nm-thick active layer achieves a remarkably low dark current density of 1.002 nA cm-2 alongside a high external quantum efficiency (EQE) of 52.932% and a responsivity of 0.226 A W-1. These impressive performance metrics lead to a specific detectivity of 1.263 × 1013 Jones. Furthermore, the findings offer new insights into intrinsic phenomena within the bulk heterojunction (BHJ), such as thermally generated current and exciton quenching. This integration is potentially well-heeled to revolutionize display technology by combining high-sensitivity photodetection, offering new possibilities for novel display panels with sensing applications.
Collapse
Affiliation(s)
- M Rivaldi Ali Septian
- Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Richie Estrada
- Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Department of Electrical Engineering, Krida Wacana Christian University, Jakarta 11470, Indonesia
| | - Chih-Chien Lee
- Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan
| | - Johan Iskandar
- Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Vocational School, Pakuan University, Bogor 16129, Indonesia
| | - Nurul Ridho Al Amin
- Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Johansah Liman
- Department of Electrical Engineering, Krida Wacana Christian University, Jakarta 11470, Indonesia
| | - Budi Harsono
- Department of Electrical Engineering, Krida Wacana Christian University, Jakarta 11470, Indonesia
| | - Kevin Sutanto
- Department of Electrical Engineering, Krida Wacana Christian University, Jakarta 11470, Indonesia
| | - Ping-Chung Yeh
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Chih-Hsin Chen
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Shun-Wei Liu
- Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| |
Collapse
|
21
|
Kim MI, Lee S, Kang J, Kim J, Wu Z, Won JH, Baek S, Chung DS, Kim JY, Jung IH, Woo HY. Vertically Phase Separated Photomultiplication Organic Photodetectors with p-n Heterojunction Type Ultrafast Dynamic Characteristics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404597. [PMID: 38975985 DOI: 10.1002/adma.202404597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/30/2024] [Indexed: 07/09/2024]
Abstract
Photomultiplication (PM)-type organic photodetectors (OPDs), which typically form a homogeneous distribution (HD) of n-type dopants in a p-type polymer host (HD PM-type OPDs), have achieved a breakthrough in device responsivity by surpassing a theoretical limit of external quantum efficiency (EQE). However, they face limitations in higher dark current and slower dynamic characteristics compared to p-n heterojunction (p-n HJ) OPDs due to inherent long lifetime of trapped electrons. To overcome this, a new PM-type OPD is developed that demonstrates ultrafast dynamic properties through a vertical phase separation (VPS) strategy between the p-type polymer and n-type acceptor, referred to as VPS PM-type OPDs. Notably, VPS PM-type OPDs show three orders of magnitude increase in -3 dB cut-off frequency (120 kHz) and over a 200-fold faster response time (rising time = 4.8 µs, falling time = 8.3 µs) compared to HD PM-type OPDs, while maintaining high EQE of 1121% and specific detectivity of 2.53 × 1013 Jones at -10 V. The VPS PM-type OPD represents a groundbreaking advancement by demonstrating the coexistence of p-n HJ and PM modes within a single photoactive layer for the first time. This innovative approach holds the potential to enhance both static and dynamic properties of OPDs.
Collapse
Affiliation(s)
- Myeong In Kim
- Department of Organic and Nano Engineering and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Soonyong Lee
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jinhyeon Kang
- Light/Display Convergence R&BD Division, Cheorwon Plasma Research Institute, 7194 Geumgang-ro, Seo-myeon, Cheorwon-gun, Gangwon-do, 24062, Republic of Korea
| | - Jaehyeong Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ziang Wu
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jong Ho Won
- Department of Energy Engineering, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seyeon Baek
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dae Sung Chung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jin Young Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - In Hwan Jung
- Department of Organic and Nano Engineering and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
22
|
Liu Q, Miller GP. Syntheses, characterizations and reactions of acene-2,3-dicarbaldehydes. RSC Adv 2024; 14:25008-25018. [PMID: 39131503 PMCID: PMC11310926 DOI: 10.1039/d4ra04273e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
Here, we report improved syntheses, detailed characterizations and reactions of a series of acene-2,3-dicarbaldehydes including tetracene-2,3-dicarbaldehyde. DFT calculations corroborate and complement the experimental results. Tetracene-2,3-dicarbaldehyde and the benchmark organic semiconductor pentacene have isoelectronic π-systems and similar HOMO-LUMO gaps. Tetracene-2,3-dicarbaldehyde is soluble in a host of organic solvents (e.g., DMF, toluene, THF, chloroform, dichloromethane) and shows excellent photooxidative resistance in solution phases exposed to light and air. Further, it is readily sublimed from the solid-state without decomposition, and can be functionalized using different chemistries. We have demonstrated the utility of acene-2,3-dicarbaldehydes as reactants in the syntheses of novel α,α'-diaryl-2,3-acenedimethanols and acenotropones via Grignard reactions and double-aldol condensation reactions, respectively. The acenotropones were further reacted with concentrated H2SO4 to generate hydroxyacenotropylium ions that exhibit long wavelength absorption in the visible and near-IR regions. The optical gap measured for hydroxyanthracenotropylium ion is 1.3 eV. The results gained here implicate acene-2,3-dicarbaldehydes as potential high-value organic semiconductors and as precursors to a host of interesting molecules and materials.
Collapse
Affiliation(s)
- Qian Liu
- Department of Chemistry, University of New Hampshire 23 Academic Way Durham New Hampshire 03824 USA
| | - Glen P Miller
- Department of Chemistry, University of New Hampshire 23 Academic Way Durham New Hampshire 03824 USA
| |
Collapse
|
23
|
Nodari D, Hart LJF, Sandberg OJ, Furlan F, Angela E, Panidi J, Qiao Z, McLachlan MA, Barnes PRF, Durrant JR, Ardalan A, Gasparini N. Dark Current in Broadband Perovskite-Organic Heterojunction Photodetectors Controlled by Interfacial Energy Band Offset. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401206. [PMID: 38888509 DOI: 10.1002/adma.202401206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Lead halide perovskite and organic semiconductors are promising classes of materials for photodetector (PD) applications. State-of-the-art perovskite PDs have performance metrics exceeding silicon PDs in the visible. While organic semiconductors offer bandgap tunability due to their chemical design with detection extended into the near-infrared (NIR), perovskites are limited to the visible band and the first fraction of the NIR spectrum. In this work, perovskite-organic heterojunction (POH) PDs with absorption up to 950 nm are designed by the dual contribution of perovskite and the donor:acceptor bulk-heterojunction (BHJ), without any intermediate layer. The effect of the energetics of the donor materials is systematically studied on the dark current (Jd) of the device by using the PBDB-T polymer family. Combining the experimental results with drift-diffusion simulations, it is shown that Jd in POH devices is limited by thermal generation via deep trap states in the BHJ. Thus, the best performance is obtained for the PM7-based POH, which delivers an ultra-low noise current of 2 × 10-14 A Hz-1/2 and high specific detectivity of 4.7 × 1012 Jones in the NIR. Last, the application of the PM7-based POH devices as NIR pulse oximeter with high-accuracy heartbeat monitoring at long-distance of 2 meters is demonstrated.
Collapse
Affiliation(s)
- Davide Nodari
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, 82 Wood Lane, London, W12 0BZ, UK
| | - Lucy J F Hart
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, 82 Wood Lane, London, W12 0BZ, UK
| | - Oskar J Sandberg
- Sustainable Advanced Materials (Sêr-SAM), Department of Physics, Swansea University, Singleton Park, Swansea, Wales, SA2 8PP, UK
- Physics, Faculty of Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku, 20500, Finland
| | - Francesco Furlan
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, 82 Wood Lane, London, W12 0BZ, UK
| | - Edoardo Angela
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Julianna Panidi
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, 82 Wood Lane, London, W12 0BZ, UK
| | - Zhuoran Qiao
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, 82 Wood Lane, London, W12 0BZ, UK
| | - Martyn A McLachlan
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Piers R F Barnes
- Department of Physics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, 82 Wood Lane, London, W12 0BZ, UK
- Department of Materials Science and Engineering and SPECIFIC IKC, Swansea University, Bay Campus, Fabian Way, Swansea, Wales, SA1 8EN, UK
| | - Armin Ardalan
- Sustainable Advanced Materials (Sêr-SAM), Department of Physics, Swansea University, Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Nicola Gasparini
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, 82 Wood Lane, London, W12 0BZ, UK
| |
Collapse
|
24
|
Zhou Z, Wu Y, Pan K, Zhu D, Li Z, Yan S, Xin Q, Wang Q, Qian X, Xiu F, Huang W, Liu J. A memristive-photoconductive transduction methodology for accurately nondestructive memory readout. LIGHT, SCIENCE & APPLICATIONS 2024; 13:175. [PMID: 39043644 PMCID: PMC11266504 DOI: 10.1038/s41377-024-01519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/11/2024] [Accepted: 07/01/2024] [Indexed: 07/25/2024]
Abstract
Crossbar resistive memory architectures enable high-capacity storage and neuromorphic computing, accurate retrieval of the stored information is a prerequisite during read operation. However, conventional electrical readout normally suffer from complicated process, inaccurate and destructive reading due to crosstalk effect from sneak path current. Here we report a memristive-photoconductive transduction (MPT) methodology for precise and nondestructive readout in a memristive crossbar array. The individual devices present dynamic filament form/fuse for resistance modulation under electric stimulation, which leads to photogenerated carrier transport for tunable photoconductive response under subsequently light pulse stimuli. This coherent signal transduction can be used to directly detect the memorized on/off states stored in each cell, and a prototype 4 * 4 crossbar memories has been constructed and validated for the fidelity of crosstalk-free readout in recall process.
Collapse
Affiliation(s)
- Zhe Zhou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yueyue Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Keyuan Pan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Duoyi Zhu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Zifan Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Shiqi Yan
- Shandong Technology Center of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan, 250100, China
| | - Qian Xin
- Shandong Technology Center of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan, 250100, China
| | - Qiye Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xinkai Qian
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Fei Xiu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Juqing Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China.
| |
Collapse
|
25
|
Zhang Z, Liu J, Wang L, Wei Q, Li M, Bao C, Bian Q. Bias-Switchable Dual-Mode Organic Photodetector with High Operational Stability Using Self-Trapped Cs 3Cu 2I 5 Interfacial Layer. Angew Chem Int Ed Engl 2024; 63:e202404067. [PMID: 38729916 DOI: 10.1002/anie.202404067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/12/2024]
Abstract
Conventional photovoltaic (PV)-photodetectors are hard to detect fainted signals, while photomultiplication (PM)-capable devices indispensable for detecting weak light and are prone to degrade under strong light illumination and large bias, and it is urgent to realize highly efficient integrated detecting system with both PM and PV operation modes. In this work, one lead-free Cs3Cu2I5 nanocrystals with self-trapping exciton nature was introduced as interfacial layer adjacent to bulk and layer-by-layer heterojunction structure, and corresponding organic photodetectors with bias-switchable dual modes are demonstrated. The fabricated device exhibits low operating bias (0 V for PV mode and 0.8 V for PM mode), high specific detectivity (~1013 Jones), fast response speed as low as 1.59 μs, large bandwidth over 0.2 MHz and long-term operational stability last for 4 months in ambient condition. This synergy strategy also validated in different materials and device architectures, providing a convenient and scalable production process to develop highly efficient bias-switchable multi-functional organic optoelectrical applications.
Collapse
Affiliation(s)
- Zitong Zhang
- Laboratory of Advanced Quantum Bio-optoelectronics (LAQB) State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Junchuan Liu
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, China
| | - Lin Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, China
| | - Qi Wei
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Chunxiong Bao
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Qingzhen Bian
- Laboratory of Advanced Quantum Bio-optoelectronics (LAQB) State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| |
Collapse
|
26
|
Alali AS, Oduncuoglu M, Touati F. Optimizing P3HT/PCBM-Based Organic Photodetector Performance: Insights from SCAPS 1D Simulation Studies. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1146. [PMID: 38998751 PMCID: PMC11243733 DOI: 10.3390/nano14131146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Organic electronics have great potential due to their flexible structure, high performance, and their ability to build effective and low-cost photodetectors. We investigated the parameters of the P3HT and PCBM layers for device performance and optimization. SCAPS-1D simulations were employed to optimize the thicknesses of the P3HT and PCBM layers, investigate the effects of shallow doping in the P3HT layer, and assess the influence of the back contact electrode's work function on device performance. Furthermore, this study explored the impact of interface defect layer density on the characteristics of the device. Through systematic analyses, the optimal parameters for enhancing device responsivity were identified. The findings indicate that a P3HT layer thickness of 1200 nm, a PCBM layer thickness of 20 nm, and a back contact electrode with a work function of 4.9 eV achieve the highest responsivity. Notably, at a bias of -0.5 V, the responsivity exceeds 0.4 A/W within the wavelength range of 450 nm to 630 nm. These optimized parameters underscore the significant potential of the developed device as an organic photodetector, particularly for visible light detection.
Collapse
Affiliation(s)
- Ahmet Sait Alali
- Department of Physics, Yıldız Technical University, 34349 Istanbul, Turkey
| | - Murat Oduncuoglu
- Department of Physics, Yıldız Technical University, 34349 Istanbul, Turkey
| | - Farid Touati
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
| |
Collapse
|
27
|
Vashishtha P, Abidi IH, Giridhar SP, Verma AK, Prajapat P, Bhoriya A, Murdoch BJ, Tollerud JO, Xu C, Davis JA, Gupta G, Walia S. CVD-Grown Monolayer MoS 2 and GaN Thin Film Heterostructure for a Self-Powered and Bidirectional Photodetector with an Extended Active Spectrum. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31294-31303. [PMID: 38838350 DOI: 10.1021/acsami.4c03902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Photodetector technology has evolved significantly over the years with the emergence of new active materials. However, there remain trade-offs between spectral sensitivity, operating energy, and, more recently, an ability to harbor additional features such as persistent photoconductivity and bidirectional photocurrents for new emerging application areas such as switchable light imaging and filter-less color discrimination. Here, we demonstrate a self-powered bidirectional photodetector based on molybdenum disulfide/gallium nitride (MoS2/GaN) epitaxial heterostructure. This fabricated detector exhibits self-powered functionality and achieves detection in two discrete wavelength bands: ultraviolet and visible. Notably, it attains a peak responsivity of 631 mAW-1 at a bias of 0V. The device's response to illumination at these two wavelengths is governed by distinct mechanisms, activated under applied bias conditions, thereby inducing a reversal in the polarity of the photocurrent. This work underscores the feasibility of self-powered and bidirectional photocurrent detection but also opens new vistas for technological advancements for future optoelectronic, neuromorphic, and sensing applications.
Collapse
Affiliation(s)
- Pargam Vashishtha
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
- Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012, India
| | - Irfan H Abidi
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Sindhu P Giridhar
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Ajay K Verma
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
- Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012, India
| | - Pukhraj Prajapat
- Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012, India
| | - Ankit Bhoriya
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
- Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012, India
| | - Billy J Murdoch
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne 3000, Australia
| | - Jonathan O Tollerud
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Chenglong Xu
- Micro Nano Research Facility, RMIT University, Melbourne 3000, Australia
| | - Jeff A Davis
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Govind Gupta
- Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012, India
| | - Sumeet Walia
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
28
|
Zhou P, Gu J, Fan L, Ma J, Lian H, Shi W, Wei B. All-printed organic photodetectors with metal electrodes enabled by one-step solvent-mediated transfer printing technology. NANOSCALE 2024; 16:10682-10689. [PMID: 38687297 DOI: 10.1039/d3nr06516b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
A one-step solvent-mediated transfer printing technology (sTPT) is proposed to fabricate printable silver (Ag) electrodes. This simple approach can realize the residuals in the active layer serving as the mediator due to the capillary action without the use of any additional solvent. The as-cast polydimethylsiloxane (PDMS) was used as the stamp in the fabrication process. The residual solvent and the as-cast PDMS stamps simplified the fabrication process, while the transfer-printed Ag electrodes presented favorable conductivity and improved hydrophobicity due to the presence of residual PDMS on the surface of Ag, indicating the superiority as the top electrode for organic photodetectors (OPDs). Compared to the devices with the top Ag electrodes fabricated by the conventional evaporation method, we demonstrated that the OPDs with transfer-printed Ag electrodes presented better performance than that of the reference devices, including suppressed dark current, enlarged linear dynamic range, shortened response time, and optimized durability. These improved performances can be attributed to the fewer traps at the interface between the active layer and Ag electrodes. The sTPT may be a promising method for the fabrication of OPDs owing to the simplified fabrication process and enhanced device performance.
Collapse
Affiliation(s)
- Pengchao Zhou
- Affiliated Hospital of Jining Medical University, Jining, Shandong 273500, P. R. China
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, P. R. China.
| | - Jialu Gu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, P. R. China.
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072, P. R. China
| | - Lei Fan
- Affiliated Hospital of Jining Medical University, Jining, Shandong 273500, P. R. China
| | - Jipeng Ma
- Affiliated Hospital of Jining Medical University, Jining, Shandong 273500, P. R. China
| | - Hong Lian
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, P. R. China.
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072, P. R. China
| | - Wei Shi
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, P. R. China.
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072, P. R. China
| | - Bin Wei
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, P. R. China.
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072, P. R. China
| |
Collapse
|
29
|
Huang YC, Wang TY, Huang ZH, Santiago SRMS. Advancing Detectivity and Stability of Near-Infrared Organic Photodetectors via a Facile and Efficient Cathode Interlayer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27576-27586. [PMID: 38722948 DOI: 10.1021/acsami.4c01466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Near-infrared (NIR) organic photodetectors (OPDs) are pivotal in numerous technological applications due to their excellent responsivity within the NIR region. Polyethylenimine ethoxylated (PEIE) has conventionally been employed as an electron transport layer (hole-blocking layer) to suppress dark current (JD) and enhance charge transport. However, the limitations of PEIE in chemical stability, processing conditions, environmental impact, and absorption range have spurred the development of alternative materials. In this study, we introduced a novel solution: a hybrid of sol-gel zinc oxide (ZnO) and N,N'-bis(N,N-dimethylpropan-1-amine oxide)perylene-3,4,9,10-tetracarboxylic diimide (PDINO) as the electron transport layer for NIR-OPDs. Our fabricated OPD exhibited significantly improved responsivity, reduced internal traps, and enhanced charge transfer efficiency. The detectivity, spanning from 400 to 1100 nm, surpassed ∼5 × 1012 Jones, reaching ∼1.1 × 1012 Jones at 1000 nm, accompanied by an increased responsivity of 0.47 A/W. Also, the unpackaged OPD remarkedly demonstrated stable JD and external quantum efficiency (EQE) over 1000 h under dark storage conditions. This innovative approach not only addresses the drawbacks of conventional PEIE-based OPDs but also offers promising avenues for the development of high-performance OPDs in the future.
Collapse
Affiliation(s)
- Yu-Ching Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Yuan Wang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Zhi-Hao Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | | |
Collapse
|
30
|
Yin B, Zhou X, Li Y, Hu G, Wei W, Yang M, Jeong S, Deng W, Wu B, Cao Y, Huang B, Pan L, Yang X, Fu Z, Fang Y, Shen L, Yang C, Wu H, Lan L, Huang F, Cao Y, Duan C. Sensitive Organic Photodetectors With Spectral Response up to 1.3 µm Using a Quinoidal Molecular Semiconductor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310811. [PMID: 38358297 DOI: 10.1002/adma.202310811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Detecting short-wavelength infrared (SWIR) light has underpinned several emerging technologies. However, the development of highly sensitive organic photodetectors (OPDs) operating in the SWIR region is hindered by their poor external quantum efficiencies (EQEs) and high dark currents. Herein, the development of high-sensitivity SWIR-OPDs with an efficient photoelectric response extending up to 1.3 µm is reported. These OPDs utilize a new ultralow-bandgap molecular semiconductor featuring a quinoidal tricyclic electron-deficient central unit and multiple non-covalent conformation locks. The SWIR-OPD achieves an unprecedented EQE of 26% under zero bias and an even more impressive EQE of up to 41% under a -4 V bias at 1.10 µm, effectively pushing the detection limit of silicon photodetectors. Additionally, the low energetic disorder and trap density in the active layer lead to significant suppression of thermal-generation carriers and dark current, resulting in excellent detectivity (Dsh *) exceeding 1013 Jones from 0.50 to 1.21 µm and surpassing 1012 Jones even at 1.30 µm under zero bias, marking the highest achievements for OPDs beyond the silicon limit to date. Validation with photoplethysmography measurements, a spectrometer prototype in the 0.35-1.25 µm range, and image capture under 1.20 µm irradiation demonstrate the extensive applications of this SWIR-OPD.
Collapse
Affiliation(s)
- Bingyan Yin
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xia Zhou
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, P. R. China
| | - Yuyang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Gangjian Hu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, Changchun, 130015, P. R. China
| | - Wenkui Wei
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Mingqun Yang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Seonghun Jeong
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Wanyuan Deng
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Baoqi Wu
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yunhao Cao
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Bo Huang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Langheng Pan
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiaoru Yang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhenyu Fu
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yanjun Fang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Liang Shen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, Changchun, 130015, P. R. China
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Hongbin Wu
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Linfeng Lan
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chunhui Duan
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
31
|
Yang G, Zhang D, Wang R, Wu M, Yu J. Flexible Broadband Organic Photodetectors with Ternary Planar-Mixed Heterojunction Semiconductors and Solution-Processed Polymeric Electrode. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38659248 DOI: 10.1021/acsami.3c18894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Flexible organic photodetectors (OPDs) hold immense promise in health monitoring sensors, flexible imaging sensors, and portable optical communication. Nevertheless, the actualization of high-performance flexible electronics has been hindered by rigid electrodes such as metals or metal oxides. In this work, we constructed a flexible broadband organic photodetector using a solution-processed polymeric electrode, which exhibits flexibility surpassing that of conventional indium tin oxide (ITO) electrodes. Additionally, we employed a planar-mixed heterojunction (PMHJ) through a sequential deposition method and introduced PC71BM as the third constituent into the PM6/Y6 binary active layer, resulting in enhanced photodetection performance and a broadend spectral range. The optimized OPDs demonstrated remarkable detectivity (D*) exceeding 1012 Jones in brodband from 300 to 900 nm, with a champion D* of 6.31 × 1012 Jones at 790 nm. Furthermore, after undergoing 500 cycles of bending, the D* retained approximately 78% of its original performance, highlighting the outstanding mechanical stability. This work presents a promising pathway toward the development of flexible broadband OPDs using a straightforward method, offering enhanced compatibility in diverse application scenarios and propelling the frontier of flexible optoelectronic research.
Collapse
Affiliation(s)
- Genjie Yang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, People's Republic of China
| | - Dayong Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, People's Republic of China
| | - Rui Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, People's Republic of China
| | - Mengge Wu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, People's Republic of China
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, People's Republic of China
| |
Collapse
|
32
|
Ham SH, Han MJ, Kim M. Chiral Materials for Optics and Electronics: Ready to Rise? MICROMACHINES 2024; 15:528. [PMID: 38675339 PMCID: PMC11052036 DOI: 10.3390/mi15040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Chiral materials have gained burgeoning interest in optics and electronics, beyond their classical application field of drug synthesis. In this review, we summarize the diverse chiral materials developed to date and how they have been effectively applied to optics and electronics to get an understanding and vision for the further development of chiral materials for advanced optics and electronics.
Collapse
Affiliation(s)
- Seo-Hyeon Ham
- Department of Chemical Engineering, Dankook University, Yongin 16890, Republic of Korea;
| | - Moon Jong Han
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Minkyu Kim
- Department of Chemical Engineering, Dankook University, Yongin 16890, Republic of Korea;
| |
Collapse
|
33
|
Yang Y, Liu Y, Zhou J, Guo C, Liu D, Wang T, Li W. Dual Interface Modification Using Potassium Aspartic Acid to Realize Low Dark Current, High-Speed Nonfullerene Photodetectors. J Phys Chem Lett 2024:2675-2681. [PMID: 38426861 DOI: 10.1021/acs.jpclett.4c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Organic photodetectors (OPDs) have attracted tremendous interest due to their potential applications in wearable electronics. However, due to the nonideal contacts between the electrodes and organic semiconductors, OPDs still suffer from high dark current and slow frequency response. Herein, by inserting potassium aspartic acid (PAA) interlayers between ITO/metal oxides and the metal oxides/active layer, the shunts and hole injections are blocked and the energy levels of the electrodes are aligned. As a result, our dual-interface modified OPDs (ITO/PAA/ZnO/PAA/PTB7-Th:ITIC/MoO3/Ag) exhibit suppressed dark current 550 times lower than the reference device, corresponding to specific detectivity of 2.1 × 1012 Jones, broad linear dynamic range of 113 dB, and quick response time to the nanosecond level. PAA interlayers have also been demonstrated to improve the storage stability of OPDs, leading to 10 times slower degradation for the on/off ratio when compared with the reference and conventional polyethylenimine-modified OPDs.
Collapse
Affiliation(s)
- Yujie Yang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yating Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chuanhang Guo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Dan Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Tao Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan 430070, China
| | - Wei Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
34
|
Velusamy A, Chen Y, Lin M, Afraj SN, Liu J, Chen M, Liu C. Diselenophene-Dithioalkylthiophene Based Quinoidal Small Molecules for Ambipolar Organic Field Effect Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305361. [PMID: 38095532 PMCID: PMC10916611 DOI: 10.1002/advs.202305361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/26/2023] [Indexed: 03/07/2024]
Abstract
This work presents a series of novel quinoidal organic semiconductors based on diselenophene-dithioalkylthiophene (DSpDST) conjugated cores with various side-chain lengths (-thiohexyl, -thiodecyl, and -thiotetradecyl, designated DSpDSTQ-6, DSpDSTQ-10, and DSpDSTQ-14, respectively). The purpose of this research is to develop solution-processable organic semiconductors using dicyanomethylene end-capped organic small molecules for organic field effect transistors (OFETs) application. The physical, electrochemical, and electrical properties of these new DSpDSTQs are systematically studied, along with their performance in OFETs and thin film morphologies. Additionally, the molecular structures of DSpDSTQ are determined through density functional theory (DFT) calculations and single-crystal X-ray diffraction analysis. The results reveal the presence of intramolecular S (alkyl)···Se (selenophene) interactions, which result in a planar SR-containing DSpDSTQ core, thereby promoting extended π-orbital interactions and efficient charge transport in the OFETs. Moreover, the influence of thioalkyl side chain length on surface morphologies and microstructures is investigated. Remarkably, the compound with the shortest thioalkyl chain, DSpDSTQ-6, demonstrates ambipolar carrier transport with the highest electron and hole mobilities of 0.334 and 0.463 cm2 V-1 s-1 , respectively. These findings highlight the excellence of ambipolar characteristics of solution-processable OFETs based on DSpDSTQs even under ambient conditions.
Collapse
Affiliation(s)
- Arulmozhi Velusamy
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Yen‐Yu Chen
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Meng‐Hao Lin
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Shakil N. Afraj
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Jia‐Hao Liu
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Ming‐Chou Chen
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Cheng‐Liang Liu
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| |
Collapse
|
35
|
Du Z, Luong HM, Sabury S, Jones AL, Zhu Z, Panoy P, Chae S, Yi A, Kim HJ, Xiao S, Brus VV, Manjunatha Reddy GN, Reynolds JR, Nguyen TQ. High-Performance Wearable Organic Photodetectors by Molecular Design and Green Solvent Processing for Pulse Oximetry and Photoplethysmography. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310478. [PMID: 38054854 DOI: 10.1002/adma.202310478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2023] [Indexed: 12/07/2023]
Abstract
White-light detection from the visible to the near-infrared region is central to many applications such as high-speed cameras, autonomous vehicles, and wearable electronics. While organic photodetectors (OPDs) are being developed for such applications, several challenges must be overcome to produce scalable high-detectivity OPDs. This includes issues associated with low responsivity, narrow absorption range, and environmentally friendly device fabrication. Here, an OPD system processed from 2-methyltetrahydrofuran (2-MeTHF) sets a record in light detectivity, which is also comparable with commercially available silicon-based photodiodes is reported. The newly designed OPD is employed in wearable devices to monitor heart rate and blood oxygen saturation using a flexible OPD-based finger pulse oximeter. In achieving this, a framework for a detailed understanding of the structure-processing-property relationship in these OPDs is also developed. The bulk heterojunction (BHJ) thin films processed from 2-MeTHF are characterized at different length scales with advanced techniques. The BHJ morphology exhibits optimal intermixing and phase separation of donor and acceptor moieties, which facilitates the charge generation and collection process. Benefitting from high charge carrier mobilities and a low shunt leakage current, the newly developed OPD exhibits a specific detectivity of above 1012 Jones over 400-900 nm, which is higher than those of reference devices processed from chlorobenzene and ortho-xylene.
Collapse
Affiliation(s)
- Zhifang Du
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Hoang Mai Luong
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Sina Sabury
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Austin L Jones
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ziyue Zhu
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Patchareepond Panoy
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Sangmin Chae
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Ahra Yi
- Department of Organic Materials Science and Engineering, School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyo Jung Kim
- Department of Organic Materials Science and Engineering, School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Steven Xiao
- 1-Material Inc, 2290 Chemin St-Francois, Dorval, Quebec, H9P 1K2, Canada
| | - Viktor V Brus
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan City, 010000, Republic of Kazakhstan
| | - G N Manjunatha Reddy
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181, Unité de Catalyse et Chimie du Solide, Lille, F-59000, France
| | - John R Reynolds
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
36
|
Xu M, Wei C, Zhang Y, Chen J, Li H, Zhang J, Sun L, Liu B, Lin J, Yu M, Xie L, Huang W. Coplanar Conformational Structure of π-Conjugated Polymers for Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301671. [PMID: 37364981 DOI: 10.1002/adma.202301671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Hierarchical structure of conjugated polymers is critical to dominating their optoelectronic properties and applications. Compared to nonplanar conformational segments, coplanar conformational segments of conjugated polymers (CPs) demonstrate favorable properties for applications as a semiconductor. Herein, recent developments in the coplanar conformational structure of CPs for optoelectronic devices are summarized. First, this review comprehensively summarizes the unique properties of planar conformational structures. Second, the characteristics of the coplanar conformation in terms of optoelectrical properties and other polymer physics characteristics are emphasized. Five primary characterization methods for investigating the complanate backbone structures are illustrated, providing a systematical toolbox for studying this specific conformation. Third, internal and external conditions for inducing the coplanar conformational structure are presented, offering guidelines for designing this conformation. Fourth, the optoelectronic applications of this segment, such as light-emitting diodes, solar cells, and field-effect transistors, are briefly summarized. Finally, a conclusion and outlook for the coplanar conformational segment regarding molecular design and applications are provided.
Collapse
Affiliation(s)
- Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chuanxin Wei
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yunlong Zhang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jiefeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hao Li
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jingrui Zhang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Lili Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Bin Liu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Mengna Yu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
37
|
Peng J, Tian T, Xu S, Hu R, Tang BZ. Base-Assisted Polymerizations of Elemental Sulfur and Alkynones for Temperature-Controlled Synthesis of Polythiophenes or Poly(1,4-dithiin)s. J Am Chem Soc 2023; 145:28204-28215. [PMID: 38099712 DOI: 10.1021/jacs.3c10954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
With the increasing demand for functional polythiophenes in extensive applications such as organic solar cells, electronic skins, thermoelectric materials, and field effect transistors, efficient and economic synthetic approaches for polythiophenes are urgently required. In this work, KOH-assisted polymerizations of elemental sulfur and alkynones were developed to directly afford polythiophenes with various backbones, regioselective structures, and high molecular weights (Mns up to 20700 g/mol) in high yields (up to 97%) at 80 °C in 30 min. When the same polymerization was conducted at room temperature, stable and unique poly(1,4-dithiin)s (Mns up to 21800 g/mol) could be rapidly obtained in high yields (up to 87%) in 10 min. The temperature-controlled KOH-assisted polymerizations of sulfur and alkynones possessed high efficiency, mild conditions, and simple operation, which had provided an economic, efficient, and convenient approach for the direct conversion from elemental sulfur to functional polythiophenes and poly(1,4-dithiin)s with the in situ constructed aromatic or nonaromatic heterocycles embedded in the polymer backbones, demonstrating great synthetic simplicity, high efficiency, good selectivity, and robustness. It is anticipated to accelerate the development of semiconducting polymer materials and their applications.
Collapse
Affiliation(s)
- Jianwen Peng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Tian Tian
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Shuangshuang Xu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- AIE Institute, Guangzhou 510530, China
| |
Collapse
|
38
|
Chen L, Khan A, Dai S, Bermak A, Li W. Metallic Micro-Nano Network-Based Soft Transparent Electrodes: Materials, Processes, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302858. [PMID: 37890452 PMCID: PMC10724424 DOI: 10.1002/advs.202302858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/29/2023] [Indexed: 10/29/2023]
Abstract
Soft transparent electrodes (TEs) have received tremendous interest from academia and industry due to the rapid development of lightweight, transparent soft electronics. Metallic micro-nano networks (MMNNs) are a class of promising soft TEs that exhibit excellent optical and electrical properties, including low sheet resistance and high optical transmittance, as well as superior mechanical properties such as softness, robustness, and desirable stability. They are genuinely interesting alternatives to conventional conductive metal oxides, which are expensive to fabricate and have limited flexibility on soft surfaces. This review summarizes state-of-the-art research developments in MMNN-based soft TEs in terms of performance specifications, fabrication methods, and application areas. The review describes the implementation of MMNN-based soft TEs in optoelectronics, bioelectronics, tactile sensors, energy storage devices, and other applications. Finally, it presents a perspective on the technical difficulties and potential future possibilities for MMNN-based TE development.
Collapse
Affiliation(s)
- Liyang Chen
- Department of Mechanical EngineeringUniversity of Hong KongHong Kong00000China
- Department of Information Technology and Electrical EngineeringETH ZurichZurich8092Switzerland
| | - Arshad Khan
- Department of Mechanical EngineeringUniversity of Hong KongHong Kong00000China
- Division of Information and Computing TechnologyCollege of Science and EngineeringHamad Bin Khalifa UniversityDoha34110Qatar
| | - Shuqin Dai
- Department School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Amine Bermak
- Division of Information and Computing TechnologyCollege of Science and EngineeringHamad Bin Khalifa UniversityDoha34110Qatar
| | - Wen‐Di Li
- Department of Mechanical EngineeringUniversity of Hong KongHong Kong00000China
| |
Collapse
|
39
|
He Z, Zhang HY, Du X, Yu X, Han J, Cao L, Lin H, Wang J, Zheng C, Tao S. A high-performance dual-functional organic upconversion device with detectivity approaching 10 13 Jones and photon-to-photon efficiency over 20. MATERIALS HORIZONS 2023; 10:5950-5961. [PMID: 37882244 DOI: 10.1039/d3mh01337e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Organic upconversion devices (UCDs) are a cutting-edge technology and hot topic because of their advantages of low cost and convenience in the important applications of near-infrared (NIR) detection and imaging. However, to realize utilization of triplet excitons (T1), previous UCDs have the drawback of heavily relying on toxic and costly heavy-metal-doped emitters. More importantly, due to poor performance of the detecting unit and/or emitting unit, improving their detectivity (D*) and photon-to-photon conversion efficiency (ηp-p) is still a challenge for real applications. Here, we report a high-performance dual-functional purely organic UCD that has an outstanding D* approaching 1013 Jones and a high ηp-p of 20.1% in the NIR region, which are some of the highest values among those reported for UCDs. The high performance is credited to the excellent D* of the detecting unit, exceeding 1014 Jones, and is also attributed to efficient T1 utilization via a dual reverse intersystem crossing channel and high optical out coupling achieved via a high horizontal dipole ratio in the emitting unit. The high D* and ηp-p enable the UCD to detect 850 nm light at as little as 0.29 μW cm-2 and with a high display contrast of over 70 000 : 1, significantly improving the potential of practical applications of UCDs in NIR detection and imaging. Furthermore, a fast rise time and fall time of 8.9 and 14.8 μs are also achieved. Benefiting from the high performance, consequent applications of low-power pulse-state monitoring and fine-structure bio-imaging are successfully realized with high quality results by using our organic UCDs. These results demonstrate that our design not only eliminates dependence of UCDs on heavy-metal emitters, but also takes their performance and applications to a high level.
Collapse
Affiliation(s)
- Zeyu He
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 610054, P. R. China.
| | - Heng-Yuan Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 610054, P. R. China.
| | - Xiaoyang Du
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 610054, P. R. China.
| | - Xin Yu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 610054, P. R. China.
| | - Jiayue Han
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 610054, P. R. China.
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Luye Cao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 610054, P. R. China.
| | - Hui Lin
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 610054, P. R. China.
| | - Jun Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 610054, P. R. China.
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Caijun Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 610054, P. R. China.
| | - Silu Tao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 610054, P. R. China.
| |
Collapse
|
40
|
Sun Y, Jiang J, Xiang TF, Li A, Liu Z, Li Y, Sasaki SI, Tamiaki H, Wang XF. Photomultiplication Behavior of Chlorophyll-Based Photodetector under Biased Voltage. J Phys Chem Lett 2023; 14:10469-10474. [PMID: 37967024 DOI: 10.1021/acs.jpclett.3c02909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
In this study, we fabricated a photodetector (PD) with two types of chlorophyll derivatives, namely, zinc methyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (ZnChl) and methyl 131-deoxo-131-dicyanomethylene-pyropheophorbide-a (H2Chl'), via a two-step drop-coating process. In the absorption range of ZnChl/H2Chl' films, the maximum external quantum efficiency of ZnChl/H2Chl'-based devices reached 1363% at -8 V and 1345% at 2.5 V, exhibiting the photomultiplication (PM) phenomenon. The PM phenomenon of ZnChl/H2Chl'-based devices is attributed to hole tunneling injection from the external circuit assisted by electron accumulation in the ZnChl and H2Chl' under light illumination. Through the investigation of the responsivity (R) of ZnChl/H2Chl'-based devices, it has been found that achieving a high R is easier under forward bias compared with reverse bias (7706 mA/W at -8 V and 7629 mA/W at 2.5 V). The organic PDs based on ZnChl/H2Chl' exhibit PM behavior, offering a promising approach to improve the device's responsivity.
Collapse
Affiliation(s)
- Yuting Sun
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Jian Jiang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Tian-Fu Xiang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Aijun Li
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Ziyan Liu
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Yuanlin Li
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Shin-Ichi Sasaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
- Department of Medical Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Xiao-Feng Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
41
|
Liu Q, Li L, Wu J, Wang Y, Yuan L, Jiang Z, Xiao J, Gu D, Li W, Tai H, Jiang Y. Organic photodiodes with bias-switchable photomultiplication and photovoltaic modes. Nat Commun 2023; 14:6935. [PMID: 37907460 PMCID: PMC10618528 DOI: 10.1038/s41467-023-42742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
The limited sensitivity of photovoltaic-type photodiodes makes it indispensable to use pre-amplifier circuits for effectively extracting electrical signals, especially when detecting dim light. Additionally, the photomultiplication photodiodes with light amplification function suffer from potential damages caused by high power consumption under strong light. In this work, by adopting the synergy strategy of thermal-induced interfacial structural traps and blocking layers, we develop a dual-mode visible-near infrared organic photodiode with bias-switchable photomultiplication and photovoltaic operating modes, exhibiting high specific detectivity (~1012 Jones) and fast response speed (0.05/3.03 ms for photomultiplication-mode; 8.64/11.14 μs for photovoltaic-mode). The device also delivers disparate external quantum efficiency in two optional operating modes, showing potential in simultaneously detecting dim and strong light ranging from ~10-9 to 10-1 W cm-2. The general strategy and working mechanism are validated in different organic layers. This work offers an attractive option to develop bias-switchable multi-mode organic photodetectors for various application scenarios.
Collapse
Affiliation(s)
- Qingxia Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Lingfeng Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Jiaao Wu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Yang Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China.
| | - Liu Yuan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Zhi Jiang
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jianhua Xiao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Deen Gu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Weizhi Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Huiling Tai
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China.
| | - Yadong Jiang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China
| |
Collapse
|
42
|
Kim YW, Lee D, Jeon Y, Yoo H, Cho ES, Darici E, Park YJ, Seo KI, Kwon SJ. Analyses of All Small Molecule-Based Pentacene/C 60 Organic Photodiodes Using Vacuum Evaporation Method. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2820. [PMID: 37947665 PMCID: PMC10650082 DOI: 10.3390/nano13212820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023]
Abstract
The vacuum process using small molecule-based organic materials to make organic photodiodes (OPDIs) will provide many promising features, such as well-defined molecular structure, large scalability, process repeatability, and good compatibility for CMOS integration, compared to the widely used Solution process. We present the performance of planar heterojunction OPDIs based on pentacene as the electron donor and C60 as the electron acceptor. In these devices, MoO3 and BCP interfacial layers were interlaced between the electrodes and the active layer as the electron- and hole-blocking layer, respectively. Typically, BCP played a good role in suppressing the dark current by two orders higher than that without that layer. These devices showed a significant dependence of the performance on the thickness of the pentacene. In particular, with the pentacene thickness of 25 nm, an external quantum efficiency at the 360 nm wavelength according to the peak absorption of C60 was enhanced by 1.5 times due to a cavity effect, compared to that of the non-cavity device. This work shows the importance of a vacuum processing approach based on small molecules for OPDIs, and the possibility of improving the performance via the optimization of the device architecture.
Collapse
Affiliation(s)
- Young Woo Kim
- Department of Electronics Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam City 13120, Gyeonggi-do, Republic of Korea; (Y.W.K.); (D.L.); (H.Y.); (E.-S.C.)
| | - Dongwoon Lee
- Department of Electronics Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam City 13120, Gyeonggi-do, Republic of Korea; (Y.W.K.); (D.L.); (H.Y.); (E.-S.C.)
| | - Yongmin Jeon
- Department of Biomedical Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam City 13120, Gyeonggi-do, Republic of Korea;
| | - Hocheon Yoo
- Department of Electronics Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam City 13120, Gyeonggi-do, Republic of Korea; (Y.W.K.); (D.L.); (H.Y.); (E.-S.C.)
| | - Eou-Sik Cho
- Department of Electronics Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam City 13120, Gyeonggi-do, Republic of Korea; (Y.W.K.); (D.L.); (H.Y.); (E.-S.C.)
| | - Ezgi Darici
- CLAP Co., Ltd., 1342 Seongnam-Daero, Sujeong-gu, Seongnam City 13120, Gyeonggi-do, Republic of Korea; (E.D.); (Y.-J.P.); (K.-I.S.)
| | - Young-Jun Park
- CLAP Co., Ltd., 1342 Seongnam-Daero, Sujeong-gu, Seongnam City 13120, Gyeonggi-do, Republic of Korea; (E.D.); (Y.-J.P.); (K.-I.S.)
| | - Kang-Il Seo
- CLAP Co., Ltd., 1342 Seongnam-Daero, Sujeong-gu, Seongnam City 13120, Gyeonggi-do, Republic of Korea; (E.D.); (Y.-J.P.); (K.-I.S.)
| | - Sang-Jik Kwon
- Department of Electronics Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam City 13120, Gyeonggi-do, Republic of Korea; (Y.W.K.); (D.L.); (H.Y.); (E.-S.C.)
| |
Collapse
|
43
|
Schardt J, Gerken M. Electrical characterization of optical resonance effects in laterally-nanostructured organic photodetectors. OPTICS EXPRESS 2023; 31:36136-36149. [PMID: 38017769 DOI: 10.1364/oe.499349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/15/2023] [Indexed: 11/30/2023]
Abstract
Optoelectronic devices based on organic semiconductor materials are on the rise for sensing applications due to their integrability with a variety of substrates - including flexible substrates for wearables. For sensing applications often narrowband absorption is desired with suppression of light at other wavelengths. Here, we investigate narrowband absorption enhancement of organic photodetectors (OPD) with an integrated lateral nanostructure. We show with finite-element simulations, that resonant excitation of low absorbing wavelength regimes allow for up to 3 times the absolute absorption at wavelengths on resonance compared to wavelengths off resonance. We present experimental results for CuPc/C60 OPDs fabricated on grating nanostructures with periods of 350 nm and 400 nm and a grating depth of 140 nm as well as a grating period of 370 nm and grating depths of 30 nm. Angle-resolved transmission spectra clearly show the optical resonance effects. In order to evaluate the electrical resonance effects a measurement system is introduced based on angular laser excitation. An angular resolution of 0.1° is achieved in the analysis of the OPD photocurrent response. Using the measurement setup an increase of the photocurrent by up to 50% is observed for the TE-resonance. It is demonstrated that the resonance wavelength is tuned simply by adjusting the grating period without changes in the layer thicknesses. This opens up new opportunities in realizing pixels of different wavelength response next to each other employing a single active stack design.
Collapse
|
44
|
Li M, Qin S, Zheng X, Du Q, Liu Y, Li S, Li H, Wang W, Wang F. Gate Controlled Photocurrent Generation Mechanism in Air-Grown Organic Single Crystals for High-Speed Multiband Imaging. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48442-48451. [PMID: 37788404 DOI: 10.1021/acsami.3c08058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Organic semiconductors herald new opportunities for fabricating high-performance flexible and wearable optoelectronic devices owing to their intrinsic mechanical flexibility, excellent optical absorption, and cool-free operation. The photocurrent generation mechanisms are of multiple physical origins, including photoconductive, photovoltaic, and photogating effects, and the influence of individual effects on the device figures-of-merit is still not well understood. Here we fabricated a high-performance pentacene single-crystal transistor employing graphene electrodes and demonstrated the modulation from the photogating mechanism to the photoconduction effect by controlling gate bias. Control experiments indicate that the calculation based on transfer curves tends to overestimate the responsivity due to nearby trap states. Using a high frequency-modulated light signal to suppress the trapping process, we successfully measured its intrinsic -3 dB bandwidth of 75 kHz. Finally, high-resolution and UV-NIR high-speed imaging capability was demonstrated. Our work provides new guidelines for understanding the photophysical process and intrinsic performances of organic devices and also confirms the potential of organic single crystals in high-speed imaging applications.
Collapse
Affiliation(s)
- Mengru Li
- Key Laboratory of Optical Communication Science and Technology of Shandong Province, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng252059, China
| | - Shuchao Qin
- Key Laboratory of Optical Communication Science and Technology of Shandong Province, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng252059, China
| | - Xialian Zheng
- Key Laboratory of Optical Communication Science and Technology of Shandong Province, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng252059, China
| | - Qianqian Du
- Key Laboratory of Optical Communication Science and Technology of Shandong Province, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng252059, China
| | - Yunlong Liu
- Key Laboratory of Optical Communication Science and Technology of Shandong Province, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng252059, China
| | - Shuhong Li
- Key Laboratory of Optical Communication Science and Technology of Shandong Province, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng252059, China
| | - Huiqin Li
- Bruker (Beijing) Scientific Technology Co. Ltd., Beijing 100081, China
| | - Wenjun Wang
- Key Laboratory of Optical Communication Science and Technology of Shandong Province, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng252059, China
| | - Fengqiu Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing210093, China
| |
Collapse
|
45
|
Shinar R, Shinar J. Organic Electronics-Microfluidics/Lab on a Chip Integration in Analytical Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:8488. [PMID: 37896581 PMCID: PMC10611406 DOI: 10.3390/s23208488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Organic electronics (OE) technology has matured in displays and is advancing in solid-state lighting applications. Other promising and growing uses of this technology are in (bio)chemical sensing, imaging, in vitro cell monitoring, and other biomedical diagnostics that can benefit from low-cost, efficient small devices, including wearable designs that can be fabricated on glass or flexible plastic. OE devices such as organic LEDs, organic and hybrid perovskite-based photodetectors, and organic thin-film transistors, notably organic electrochemical transistors, are utilized in such sensing and (bio)medical applications. The integration of compact and sensitive OE devices with microfluidic channels and lab-on-a-chip (LOC) structures is very promising. This survey focuses on studies that utilize this integration for a variety of OE tools. It is not intended to encompass all studies in the area, but to present examples of the advances and the potential of such OE technology, with a focus on microfluidics/LOC integration for efficient wide-ranging sensing and biomedical applications.
Collapse
Affiliation(s)
- Ruth Shinar
- Electrical & Computer Engineering Department, Iowa State University, Ames, IA 50011, USA
| | - Joseph Shinar
- Physics & Astronomy Department and Ames National Laboratory—USDOE, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
46
|
Ha JW, Lee AY, Eun HJ, Kim JH, Ahn H, Park S, Lee C, Seo DW, Heo J, Yoon SC, Ko SJ, Kim JH. High Detectivity Near Infrared Organic Photodetectors Using an Asymmetric Non-Fullerene Acceptor for Optimal Nanomorphology and Suppressed Dark Current. ACS NANO 2023; 17:18792-18804. [PMID: 37781927 DOI: 10.1021/acsnano.3c03171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Recently, the development of non-fullerene acceptors (NFAs) for near-infrared (NIR) organic photodetectors (OPDs) has attracted great interest due to their excellent NIR light absorption properties. Herein, we developed NFAs by substituting an electron-donating moiety (branched alkoxy thiophene (BAT)) asymmetrically (YOR1) and symmetrically (YOR2) for the Y6 framework. YOR1 exhibited nanoscale phase separation in a film blended with PTB7-Th. Moreover, substituting the BAT unit effectively extended the absorption wavelengths of YOR1 over 1000 nm by efficient intramolecular charge transfer and extension of the conjugation length. Consequently, YOR1-OPD exhibited significantly reduced dark current and improved responsivity by simultaneously satisfying optimal nanomorphology and significant suppression of charge recombination, resulting in 1.98 × 1013 and 3.38 × 1012 Jones specific detectivity at 950 and 1000 nm, respectively. Moreover, we successfully demonstrated the application of YOR1-OPD in highly sensitive photoplethysmography sensors using NIR light. This study suggests a strategic approach for boosting the overall performance of NIR OPDs targeting a 1000 nm light signal using an all-in-one (optimal morphology, suppressed dark current, and extended NIR absorption wavelength) NFA.
Collapse
Affiliation(s)
- Jong-Woon Ha
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Ah Young Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Hyeong Ju Eun
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Jae-Hyun Kim
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Sungjun Park
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Changjin Lee
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Deok Won Seo
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Junseok Heo
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Sung Cheol Yoon
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Seo-Jin Ko
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jong H Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| |
Collapse
|
47
|
Müller K, Schellhammer KS, Gräßler N, Debnath B, Liu F, Krupskaya Y, Leo K, Knupfer M, Ortmann F. Directed exciton transport highways in organic semiconductors. Nat Commun 2023; 14:5599. [PMID: 37699907 PMCID: PMC10497625 DOI: 10.1038/s41467-023-41044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
Exciton bandwidths and exciton transport are difficult to control by material design. We showcase the intriguing excitonic properties in an organic semiconductor material with specifically tailored functional groups, in which extremely broad exciton bands in the near-infrared-visible part of the electromagnetic spectrum are observed by electron energy loss spectroscopy and theoretically explained by a close contact between tightly packing molecules and by their strong interactions. This is induced by the donor-acceptor type molecular structure and its resulting crystal packing, which induces a remarkable anisotropy that should lead to a strongly directed transport of excitons. The observations and detailed understanding of the results yield blueprints for the design of molecular structures in which similar molecular features might be used to further explore the tunability of excitonic bands and pave a way for organic materials with strongly enhanced transport and built-in control of the propagation direction.
Collapse
Affiliation(s)
- Kai Müller
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01062, Dresden, Germany
| | - Karl S Schellhammer
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01062, Dresden, Germany
| | - Nico Gräßler
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01062, Dresden, Germany
- Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Bipasha Debnath
- Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Yulia Krupskaya
- Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01062, Dresden, Germany
| | - Martin Knupfer
- Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Frank Ortmann
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany.
- Department of Chemistry, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstr. 4, 85748, Garching b. München, Germany.
| |
Collapse
|
48
|
Druet V, Ohayon D, Petoukhoff CE, Zhong Y, Alshehri N, Koklu A, Nayak PD, Salvigni L, Almulla L, Surgailis J, Griggs S, McCulloch I, Laquai F, Inal S. A single n-type semiconducting polymer-based photo-electrochemical transistor. Nat Commun 2023; 14:5481. [PMID: 37673950 PMCID: PMC10482932 DOI: 10.1038/s41467-023-41313-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
Conjugated polymer films, which can conduct both ionic and electronic charges, are central to building soft electronic sensors and actuators. Despite the possible interplay between light absorption and the mixed conductivity of these materials in aqueous biological media, no single polymer film has been utilized to create a solar-switchable organic bioelectronic circuit that relies on a fully reversible and redox reaction-free potentiometric photodetection and current modulation. Here we demonstrate that the absorption of light by an electron and cation-transporting polymer film reversibly modulates its electrochemical potential and conductivity in an aqueous electrolyte, which is harnessed to design an n-type photo-electrochemical transistor (n-OPECT). By controlling the intensity of light incident on the n-type polymeric gate electrode, we generate transistor output characteristics that mimic the modulation of the polymeric channel current achieved through gate voltage control. The micron-scale n-OPECT exhibits a high signal-to-noise ratio and an excellent sensitivity to low light intensities. We demonstrate three direct applications of the n-OPECT, i.e., a photoplethysmogram recorder, a light-controlled inverter circuit, and a light-gated artificial synapse, underscoring the suitability of this platform for a myriad of biomedical applications that involve light intensity changes.
Collapse
Affiliation(s)
- Victor Druet
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal, 23955-6900, Saudi Arabia
| | - David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal, 23955-6900, Saudi Arabia
| | - Christopher E Petoukhoff
- KAUST Solar Center, Physical Science and Engineering Division, Materials Science and Engineering Program, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Yizhou Zhong
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal, 23955-6900, Saudi Arabia
| | - Nisreen Alshehri
- KAUST Solar Center, Physical Science and Engineering Division, Materials Science and Engineering Program, KAUST, Thuwal, 23955-6900, Saudi Arabia
- Physics and Astronomy Department, College of Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Anil Koklu
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal, 23955-6900, Saudi Arabia
| | - Prem D Nayak
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal, 23955-6900, Saudi Arabia
| | - Luca Salvigni
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal, 23955-6900, Saudi Arabia
| | - Latifah Almulla
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal, 23955-6900, Saudi Arabia
| | - Jokubas Surgailis
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal, 23955-6900, Saudi Arabia
| | - Sophie Griggs
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Iain McCulloch
- KAUST Solar Center, Physical Science and Engineering Division, Materials Science and Engineering Program, KAUST, Thuwal, 23955-6900, Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Frédéric Laquai
- KAUST Solar Center, Physical Science and Engineering Division, Materials Science and Engineering Program, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
49
|
Can A, Deneme I, Demirel G, Usta H. Solution-Processable Indenofluorenes on Polymer Brush Interlayer: Remarkable N-Channel Field-Effect Transistor Characteristics under Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41666-41679. [PMID: 37582254 PMCID: PMC10485804 DOI: 10.1021/acsami.3c07365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023]
Abstract
The development of solution-processable n-type molecular semiconductors that exhibit high electron mobility (μe ≥ 0.5 cm2/(V·s)) under ambient conditions, along with high current modulation (Ion/Ioff ≥ 106-107) and near-zero turn on voltage (Von) characteristics, has lagged behind that of other semiconductors in organic field-effect transistors (OFETs). Here, we report the design, synthesis, physicochemical and optoelectronic characterizations, and OFET performances of a library of solution-processable, low-LUMO (-4.20 eV) 2,2'-(2,8-bis(3-alkylthiophen-2-yl)indeno[1,2-b]fluorene-6,12-diylidene)dimalononitrile small molecules, β,β'-Cn-TIFDMTs, having varied alkyl chain lengths (n = 8, 12, 16). An intriguing correlation is identified between the solid-isotropic liquid transition enthalpies and the solubilities, indicating that cohesive energetics, which are tuned by alkyl chains, play a pivotal role in determining solubility. The semiconductors were spin-coated under ambient conditions on densely packed (grafting densities of 0.19-0.45 chains/nm2) ultrathin (∼3.6-6.6 nm) polystyrene-brush surfaces. It is demonstrated that, on this polymer interlayer, thermally induced dispersive interactions occurring over a large number of methylene units between flexible alkyl chains (i.e., zipper effect) are critical to achieve a favorable thin-film crystallization with a proper microstructure and morphology for efficient charge transport. While C8 and C16 chains show a minimal zipper effect upon thermal annealing, C12 chains undergo an extended interdigitation involving ∼6 methylene units. This results in the formation of large crystallites having lamellar stacking ((100) coherence length ∼30 nm) in the out-of-plane direction and highly favorable in-plane π-interactions in a slipped-stacked arrangement. Uninterrupted microstructural integrity (i.e., no face-on (010)-oriented crystallites) was found to be critical to achieving high mobilities. The excellent crystallinity of the C12-substituted semiconductor thin film was also evident in the observed crystal lattice vibrations (phonons) at 58 cm-1 in low-frequency Raman scattering. Two-dimensional micrometer-sized (∼1-3 μm), sharp-edged plate-like grains lying parallel with the substrate plane were observed. OFETs fabricated by the current small molecules showed excellent n-channel behavior in ambient with μe values reaching ∼0.9 cm2/(V·s), Ion/Ioff ∼ 107-108, and Von ≈ 0 V. Our study not only demonstrates one of the highest performing n-channel OFET devices reported under ambient conditions via solution processing but also elucidates significant relationships among chemical structures, molecular properties, self-assembly from solution into a thin film, and semiconducting thin-film properties. The design rationales presented herein may open up new avenues for the development of high-electron-mobility novel electron-deficient indenofluorene and short-axis substituted donor-acceptor π-architectures via alkyl chain engineering and interface engineering.
Collapse
Affiliation(s)
- Ayse Can
- Department
of Nanotechnology Engineering, Abdullah
Gül University, 38080 Kayseri, Turkey
| | - Ibrahim Deneme
- Department
of Nanotechnology Engineering, Abdullah
Gül University, 38080 Kayseri, Turkey
| | - Gokhan Demirel
- Bio-inspired
Materials Research Laboratory (BIMREL), Department of Chemistry, Gazi University, 06500 Ankara, Turkey
| | - Hakan Usta
- Department
of Nanotechnology Engineering, Abdullah
Gül University, 38080 Kayseri, Turkey
| |
Collapse
|
50
|
Anni M. Investigation of the Origin of High Photoluminescence Quantum Yield in Thienyl-S,S-dioxide AIEgens Oligomers by Temperature Dependent Optical Spectroscopy. Molecules 2023; 28:5161. [PMID: 37446823 DOI: 10.3390/molecules28135161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The development of organic molecules showing high photoluminescence quantum yield (PLQY) in solid state is a fundamental step for the implementation of efficient light emitting devices. In this work the origin of the high PLQY of two trimers and two pentamers having one central thiophene-S,S-dioxide unit and two and four lateral thiophene or phenyl groups, respectively, is investigated by temperature dependent photoluminescence and time resolved photoluminescence measurements. The experimental results demonstrate that the molecules with lateral phenyl rings show higher PLQY due to a weaker coupling with intramolecular vibrations-related to variations in the radiative and non-radiative decay rates-and indicate different molecular rigidity as the main factors affecting the PLQY of this class of molecules.
Collapse
Affiliation(s)
- Marco Anni
- Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, Via per Arnesano, 73100 Lecce, Italy
| |
Collapse
|