1
|
Essner JB, Bera A, Jabrayilov M, Chaudhari A, Diroll BT, Zaikina JV, Panthani MG. Elucidating the role of oxidation in two-dimensional silicon nanosheets. NANOSCALE HORIZONS 2025. [PMID: 39838897 DOI: 10.1039/d4nh00387j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
We report a synthetic protocol that yields hydrogen-terminated 2D silicon nanosheets with greatly reduced siloxane (e.g., Si-O-Si, OxSi) content. These nanosheets displayed weak, broad photoluminescence centered near 610 nm with a low absolute photoluminescence quantum yield (as low as 0.2%). By intentionally oxidizing the nanosheets, the photoluminescence peak emission wavelength blueshifted to 510 nm, and the quantum yield increased by more than an order of magnitude to 8.5%. These results demonstrate that oxidation of 2D silicon nanosheets modulates the material's bandgap and suggests that previously reported photoluminescence properties for this material resulted, in part, from oxidation.
Collapse
Affiliation(s)
- Jeremy B Essner
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA.
| | - Abhijit Bera
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA.
| | - Maharram Jabrayilov
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA.
| | - Abhishek Chaudhari
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA.
| | - Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60639, USA
| | - Julia V Zaikina
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Matthew G Panthani
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
2
|
Park K, Kang BH, An JB, Jung S, Moon K, Kwak K, Chung J, Choi DH, Hwang YS, Kim HJ. Endurable IGZO/SnS x/IGZO Heterojunction Phototransistor Arrays for Image Sensors. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3620-3630. [PMID: 39749703 DOI: 10.1021/acsami.4c18491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Optoelectronic devices require stable operation to detect repetitive visual information. In this study, endurable arrays based on heterojunction phototransistors composed of indium-gallium-zinc oxide (IGZO) with a low dark current and tin sulfide (SnSx) capable of absorbing visible light are developed for image sensors. The tandem structure of IGZO/SnSx/IGZO (ISI) enables stable operation under repetitive exposure to visible light by improving the transport ability of the photoexcited carriers through mitigated trap sites and their separation into each IGZO layer. Additionally, the structure promotes recombination by confining the holes. Therefore, the optimal ISI phototransistors exhibit a photoresponsivity of 514.50 A/W and a detectivity of 1.31 × 109 Jones under red light (635 nm) of 1 mW/mm2 and endurable time-dependent photoresponse characteristics, including a slope value of 1.66 × 10-11, without the persistent photoconductivity phenomenon under green light (532 nm) at a frequency of 50 mHz for over 4,000 s. Furthermore, image sensing characteristics of the 6 × 6 arrays based on ISI phototransistors for image sensors are demonstrated by sequentially applying "4" and "2" digit numbers. These technologies contribute to the development of endurable oxide-based optoelectronic devices and provide valuable perspectives on the utility of next-generation image sensors.
Collapse
Affiliation(s)
- Kyungho Park
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Byung Ha Kang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jong Bin An
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sujin Jung
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kunho Moon
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyungmoon Kwak
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jusung Chung
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Dong Hyun Choi
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yong Seon Hwang
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyun Jae Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Van On V, Thi Phuong Thuy H, Guerrero-Sanchez J, Hoat DM. Antiferromagnetic semiconductor nature in a GeS 2 monolayer doped with Mn and Fe transition metals. Phys Chem Chem Phys 2025; 27:1631-1639. [PMID: 39714259 DOI: 10.1039/d4cp03570d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The absence of intrinsic magnetism in two-dimensional (2D) materials demands functionalization as necessary for broadening their applications. In this work, doping with transition metals (Mn and Fe) is proposed to modify the electronic and magnetic properties of a GeS2 monolayer. A pristine monolayer is an indirect gap semiconductor with an energy gap of 0.73(1.47) eV computed by using the PBE(HSE06) functional. Significant magnetism with a total magnetic moment of 1.18μB emerges in the GeS2 monolayer upon creating a single Ge vacancy, which is produced mainly by six nearest neighboring S atoms. In this case, the monolayer is metallized with S-px,y states responsible. Similarly, the magnetization of the GeS2 monolayer is also achieved by doping with Mn and Fe atoms with total magnetic moments of 3.00 and 3.78μB, respectively. The calculated band structures imply that the magnetic semiconductor nature with a spin-up/spin-down gap of 0.72/0.53 eV is induced by Mn impurity, while doping with Fe atoms leads to monolayer metallization. Being surrounded by more electronegative S atoms, Mn and Fe impurities lose charge amounts of 1.19 and 1.11e, respectively. Further investigations on spin coupling indicate the antiferromagnetic semiconductor nature in Mn- and Fe-doped systems, regardless of the distance between impurities. Our results provide important insights into the effects of doping into the GeS2 monolayer, which demonstrate that the doped systems hold promise for spintronic applications.
Collapse
Affiliation(s)
- Vo Van On
- Institute of Innovation in Pharmaceutical and Healhthcare Food, Thu Dau Mot University, Binh Duong Province, Vietnam
| | - Huynh Thi Phuong Thuy
- Center for Forecasting Study, Institute of Southeast Vietnamese Studies, Thu Dau Mot University, Binh Duong Province, Vietnam
| | - J Guerrero-Sanchez
- Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Apartado Postal 14, Ensenada, Baja California Codigo Postal 22800, Mexico
| | - D M Hoat
- Institute of Theoretical and Applied Research, Duy Tan University, Ha Noi 100000, Vietnam.
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
4
|
Liu HY, Lin HF, Xu LY, Hou TP, Liu NS. Tunable band alignment and large power conversion efficiency in a two-dimensional InS/ZnIn 2S 4 heterostructure. RSC Adv 2024; 14:40077-40085. [PMID: 39717804 PMCID: PMC11664243 DOI: 10.1039/d4ra06901c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/06/2024] [Indexed: 12/25/2024] Open
Abstract
Heterostructures can efficiently modulate the bandgap of semiconductors and enhance the separation of photocarriers, thereby enhancing the performance of optoelectronic devices. Herein, we design an InS/ZnIn2S4 van der Waals (vdW) heterostructure and investigate its electronic and photovoltaic properties using first principles calculation. Compared to its individual monolayers, the InS/ZnIn2S4 heterostructure not only possesses a smaller band gap of 2.21 eV and superior light absorption performance in the visible short-wavelength region (<500 nm) but also forms a type-II1 band alignment. Moreover, a large power conversion efficiency (PCE) of 10.86% is achieved. The transformation of the band alignment from type-II1 to type-I or type-II2 can be forced using an external electric field, and the PCE can be further increased up to 12.19% at a positive E ⊥ of 0.2 V Å-1. Within a critical biaxial strain of 4%, the type-II1 band alignment can be maintained, and a high PCE of 20.80% is achieved at a tensile strain (ε) of 4%. Our results may suggest a potential optoelectronic application direction for the InS/ZnIn2S4 heterostructure and offer effective means to enhance its optoelectronic device performance.
Collapse
Affiliation(s)
- Hui-Ying Liu
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, College of Science, Wuhan University of Science and Technology Wuhan 430081 China
| | - Heng-Fu Lin
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, College of Science, Wuhan University of Science and Technology Wuhan 430081 China
- The State Key Laboratory for Refractory Material and Metallurgy, International Research Institute for Steel Technology, Collaborative Center on Advanced Steels, Wuhan University of Science and Technology Wuhan 430081 China
| | - Lu-Ya Xu
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, College of Science, Wuhan University of Science and Technology Wuhan 430081 China
| | - Ting-Ping Hou
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, College of Science, Wuhan University of Science and Technology Wuhan 430081 China
- The State Key Laboratory for Refractory Material and Metallurgy, International Research Institute for Steel Technology, Collaborative Center on Advanced Steels, Wuhan University of Science and Technology Wuhan 430081 China
| | - Nan-Shu Liu
- Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University Chongqing 400715 China
| |
Collapse
|
5
|
Zhang F, Tamura R, Zeng F, Kozawa D, Kitaura R. Bayesian Optimization for Controlled Chemical Vapor Deposition Growth of WS 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59109-59115. [PMID: 39405090 DOI: 10.1021/acsami.4c15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
We applied Bayesian optimization (BO), a machine learning (ML) technique, to optimize the growth conditions of monolayer WS2 using photoluminescence (PL) intensity as the objective function. Through iterative experiments guided by BO, an improvement of 86.6% in PL intensity is achieved within 13 optimization rounds. Statistical analysis revealed the relationships between growth conditions and PL intensity, highlighting the importance of critical conditions, including the tungsten source concentration and Ar flow rate. Furthermore, the effectiveness of BO is demonstrated by comparison with random search, showing its ability to converge to optimal conditions with fewer iterations. This research highlights the potential of ML-driven approaches in accelerating material synthesis and optimization processes, paving the way for advances in two-dimensional (2D) material-based technologies.
Collapse
Affiliation(s)
- Feng Zhang
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Chemistry, Nagoya University, Nagoya 464-8601, Japan
| | - Ryo Tamura
- Center for Basic Research on Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa City, Chiba 277-8568, Japan
| | - Fanyu Zeng
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Daichi Kozawa
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Ryo Kitaura
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
6
|
Yang H, Su X. Editorial for the Special Issue on Integrated Photonics and Optoelectronics. MICROMACHINES 2024; 15:1090. [PMID: 39337750 PMCID: PMC11433954 DOI: 10.3390/mi15091090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Integrated photonic and optoelectronic technologies have become powerful tools in the drive to develop devices that are much smaller and more highly integrated, with lower power consumption and higher functionality [...].
Collapse
Affiliation(s)
- He Yang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Xinyang Su
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
7
|
Shu F, Chen W, Chen Y, Liu G. 2D Atomic-Molecular Heterojunctions toward Brainoid Applications. Macromol Rapid Commun 2024:e2400529. [PMID: 39101667 DOI: 10.1002/marc.202400529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Brainoid computing using 2D atomic crystals and their heterostructures, by emulating the human brain's remarkable efficiency and minimal energy consumption in information processing, poses a formidable solution to the energy-efficiency and processing speed constraints inherent in the von Neumann architecture. However, conventional 2D material based heterostructures employed in brainoid devices are beset with limitations, performance uniformity, fabrication intricacies, and weak interfacial adhesion, which restrain their broader application. The introduction of novel 2D atomic-molecular heterojunctions (2DAMH), achieved through covalent functionalization of 2D materials with functional molecules, ushers in a new era for brain-like devices by providing both stability and tunability of functionalities. This review chiefly delves into the electronic attributes of 2DAMH derived from the synergy of polymer materials with 2D materials, emphasizing the most recent advancements in their utilization within memristive devices, particularly their potential in replicating the functionality of biological synapses. Despite ongoing challenges pertaining to precision in modification, scalability in production, and the refinement of underlying theories, the proliferation of innovative research is actively pursuing solutions. These endeavors illuminate the vast potential for incorporating 2DAMH within brain-inspired intelligent systems, highlighting the prospect of achieving a more efficient and energy-conserving computing paradigm.
Collapse
Affiliation(s)
- Fan Shu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weilin Chen
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Chen
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gang Liu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
8
|
Xie Z, Zhao T, Yu X, Wang J. Nonlinear Optical Properties of 2D Materials and their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311621. [PMID: 38618662 DOI: 10.1002/smll.202311621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/12/2024] [Indexed: 04/16/2024]
Abstract
2D materials are a subject of intense research in recent years owing to their exclusive photoelectric properties. With giant nonlinear susceptibility and perfect phase matching, 2D materials have marvelous nonlinear light-matter interactions. The nonlinear optical properties of 2D materials are of great significance to the design and analysis of applied materials and functional devices. Here, the fundamental of nonlinear optics (NLO) for 2D materials is introduced, and the methods for characterizing and measuring second-order and third-order nonlinear susceptibility of 2D materials are reviewed. Furthermore, the theoretical and experimental values of second-order susceptibility χ(2) and third-order susceptibility χ(3) are tabulated. Several applications and possible future research directions of second-harmonic generation (SHG) and third-harmonic generation (THG) for 2D materials are presented.
Collapse
Affiliation(s)
- Zhixiang Xie
- National Research Center for Optical Sensors/communications Integrated Networks, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China
| | - Tianxiang Zhao
- National Research Center for Optical Sensors/communications Integrated Networks, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China
| | - Xuechao Yu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
| | - Junjia Wang
- National Research Center for Optical Sensors/communications Integrated Networks, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China
| |
Collapse
|
9
|
Ma L, Lin S, Ma H, Liao J, Ye Y, Jian J, Li J, Wang P, Dai S, He T, Wang J, Jin T, Wu J, Si Y, Li J, Yang J, Li L, Lin H, Chen W. Silicon Waveguide-Integrated Platinum Telluride Midinfrared Photodetector with High Responsivity and High Speed. ACS NANO 2024. [PMID: 39086003 DOI: 10.1021/acsnano.4c04640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The detection of mid-infrared light, covering a variety of molecular vibrational spectra, is critical for both civil and military purposes. Recent studies have highlighted the potential of two-dimensional topological semimetals for mid-infrared detection due to their advantages, including van der Waals (vdW) stacking and gapless electronic structures. Among them, mid-infrared photodetectors based on type-II Dirac semimetals have been less studied. In this paper, we present a silicon waveguide integrated type-II Dirac semimetal platinum telluride (PtTe2) mid-infrared photodetector, and further improve detection performance by using PtTe2-graphene heterostructure. For the fabricated silicon waveguide-integrated PtTe2 photodetector, with an external bias voltage of -10 mV and an input optical power of 86 nW, the measured responsivity is 2.7 A/W at 2004 nm and a 3 dB bandwidth of 0.6 MHz is realized. For the fabricated silicon waveguide-integrated PtTe2-graphene photodetector, as the external bias voltage and input optical power are 0.5 V and 0.13 μW, a responsivity of 5.5 A/W at 2004 nm and a 3 dB bandwidth of 35 MHz are obtained. An external quantum efficiency of 119% can be achieved at an input optical power of 0.376 μW.
Collapse
Affiliation(s)
- Lingxiao Ma
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Shuo Lin
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hui Ma
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jie Liao
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Yuting Ye
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Jialing Jian
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Junying Li
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pengjun Wang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
| | - Shixun Dai
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
- Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China
| | - Ting He
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Jiacheng Wang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tao Jin
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Jianghong Wu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Yalan Si
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jun Li
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Jianyi Yang
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lan Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Hongtao Lin
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weiwei Chen
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| |
Collapse
|
10
|
Wang JP, Chen X, Zhao Q, Fang Y, Liu Q, Fu J, Liu Y, Xu X, Zhang J, Zhen L, Xu CY, Huang F, Meixner AJ, Zhang D, Gou G, Li Y. Out-of-plane Emission Dipole of Second Harmonic Generation in Odd- and Even-layered vdWs Janus Nb 3SeI 7. ACS NANO 2024; 18:16274-16284. [PMID: 38867607 DOI: 10.1021/acsnano.4c02854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Integration of atomically thin nonlinear optical (NLO) devices demands an out-of-plane (OP) emission dipole of second harmonic generation (SHG) to enhance the spontaneous emission for nanophotonics. However, the research on van der Waals (vdWs) materials with an OP emission dipole of SHG is still in its infancy. Here, by coupling back focal plane (BFP) imaging with numerical simulations and density functional theory (DFT) calculations, we demonstrate that vdWs Janus Nb3SeI7, ranging from bulk to the monolayer limit, exhibits a dominant OP emission dipole of SHG owing to the breaking of the OP symmetry. Explicitly, even-layered Nb3SeI7 with C6v symmetry is predicted to exhibit a pure OP emission dipole attributed to the only second-order susceptibility coefficient χzxx. Meanwhile, although odd-layered Nb3SeI7 with C3v symmetry has both OP and IP dipole components (χzxx and χyyy), the value of χzxx is 1 order of magnitude greater than that of χyyy, leading to an approximate OP emission dipole of SHG. Moreover, the crystal symmetry and OP emission dipole can be preserved under hydrostatic pressure, accompanied by the enhanced χzxx and the resulting 3-fold increase in SHG intensity. The reported stable OP dipole in 2D vdWs Nb3SeI7 can facilitate the rapid development of chip-integrated NLO devices.
Collapse
Affiliation(s)
- Jia-Peng Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xinfeng Chen
- Frontier Institute of Science and Technology & State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi' an 710049, China
| | - Qiyi Zhao
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710199, China
| | - Yuqiang Fang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai 200050, China
| | - Quan Liu
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Jierui Fu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yue Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xinlong Xu
- School of Physics, Northwest University, Xi'an 710069, China
| | - Jia Zhang
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| | - Liang Zhen
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| | - Cheng-Yan Xu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Fuqiang Huang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai 200050, China
| | - Alfred J Meixner
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Dai Zhang
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Gaoyang Gou
- Frontier Institute of Science and Technology & State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi' an 710049, China
| | - Yang Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
11
|
Zhu Y, Feng B, Su Y, Li G, Liu Y, Hou Y, Zhang J, Li W, Zhong G, Yang C, Chen M. Strong Covalent Coupling in Vertically Layered SnSe 2/PTAA Heterojunctions Enabled High Performance Inorganic-Organic Hybrid Photodetectors. NANO LETTERS 2024; 24:6778-6787. [PMID: 38767965 DOI: 10.1021/acs.nanolett.4c01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Controllable large-scale integration of two-dimensional (2D) materials with organic semiconductors and the realization of strong coupling between them still remain challenging. Herein, we demonstrate a wafer-scale, vertically layered SnSe2/PTAA heterojunction array with high light-trapping ability via a low-temperature molecular beam epitaxy method and a facile spin-coating process. Conductive probe atomic force microscopy (CP-AFM) measurements reveal strong rectification and photoresponse behavior in the individual SnSe2 nanosheet/PTAA heterojunction. Theoretical analysis demonstrates that vertically layered SnSe2/PTAA heterojunctions exhibit stronger C-Se covalent coupling than that of the conventional tiled type, which could facilitate more efficient charge transfer. Benefiting from these advantages, the SnSe2/PTAA heterojunction photodetectors with an optimized PTAA concentration show high performance, including a responsivity of 41.02 A/W, an external quantum efficiency of 1.31 × 104%, and high uniformity. The proposed approach for constructing large-scale 2D inorganic-organic heterostructures represents an effective route to fabricate high-performance broadband photodetectors for integrated optoelectronic systems.
Collapse
Affiliation(s)
- Yuanhao Zhu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Bohan Feng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Yuhan Su
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Guangyuan Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yingming Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuxin Hou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Jie Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wenjie Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Guohua Zhong
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chunlei Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ming Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
12
|
Aslam MA, Leitner S, Tyagi S, Provias A, Tkachuk V, Pavlica E, Dienstleder M, Knez D, Watanabe K, Taniguchi T, Yan D, Shi Y, Knobloch T, Waltl M, Schwingenschlögl U, Grasser T, Matković A. All van der Waals Semiconducting PtSe 2 Field Effect Transistors with Low Contact Resistance Graphite Electrodes. NANO LETTERS 2024; 24:6529-6537. [PMID: 38789104 PMCID: PMC11157664 DOI: 10.1021/acs.nanolett.4c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
Contact resistance is a multifaceted challenge faced by the 2D materials community. Large Schottky barrier heights and gap-state pinning are active obstacles that require an integrated approach to achieve the development of high-performance electronic devices based on 2D materials. In this work, we present semiconducting PtSe2 field effect transistors with all-van-der-Waals electrode and dielectric interfaces. We use graphite contacts, which enable high ION/IOFF ratios up to 109 with currents above 100 μA μm-1 and mobilities of 50 cm2 V-1 s-1 at room temperature and over 400 cm2 V-1 s-1 at 10 K. The devices exhibit high stability with a maximum hysteresis width below 36 mV nm-1. The contact resistance at the graphite-PtSe2 interface is found to be below 700 Ω μm. Our results present PtSe2 as a promising candidate for the realization of high-performance 2D circuits built solely with 2D materials.
Collapse
Affiliation(s)
- M. Awais Aslam
- Chair
of Physics, Department Physics, Mechanical Engineering, and Electrical
Engineering, Montanuniversität Leoben, Franz Josef Strasse 18, 8700 Leoben, Austria
| | - Simon Leitner
- Chair
of Physics, Department Physics, Mechanical Engineering, and Electrical
Engineering, Montanuniversität Leoben, Franz Josef Strasse 18, 8700 Leoben, Austria
| | - Shubham Tyagi
- Physical
Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Alexandros Provias
- Institute
for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040 Wien, Austria
| | - Vadym Tkachuk
- Laboratory
of Organic Matter Physics, University of
Nova Gorica, Vipavska
13, Nova Gorica SI-5000, Slovenia
| | - Egon Pavlica
- Laboratory
of Organic Matter Physics, University of
Nova Gorica, Vipavska
13, Nova Gorica SI-5000, Slovenia
| | | | - Daniel Knez
- Institute
of Electron Microscopy and Nanoanalysis, Graz University of Technology (NAWI Graz), Steyrergasse 17, 8010 Graz, Austria
| | - Kenji Watanabe
- Research
Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Dayu Yan
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, 100190 Beijing, China
| | - Youguo Shi
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, 100190 Beijing, China
| | - Theresia Knobloch
- Institute
for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040 Wien, Austria
| | - Michael Waltl
- Christian
Doppler Laboratory for Single-Defect Spectroscopy at the Institute
for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040 Wien, Austria
| | - Udo Schwingenschlögl
- Physical
Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Tibor Grasser
- Institute
for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040 Wien, Austria
| | - Aleksandar Matković
- Chair
of Physics, Department Physics, Mechanical Engineering, and Electrical
Engineering, Montanuniversität Leoben, Franz Josef Strasse 18, 8700 Leoben, Austria
| |
Collapse
|
13
|
Trallero-Giner C, Santiago-Pérez DG, Tkachenko DV, Marques GE, Fomin VM. Raman scattering owing to magneto-polaron states in monolayer transition metal dichalcogenides. Sci Rep 2024; 14:12857. [PMID: 38834720 PMCID: PMC11637126 DOI: 10.1038/s41598-024-63179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
Magneto-optical measurements are fundamental research tools that allow for studying the hitherto unexplored optical transitions and the related applications of topological two-dimensional (2D) transition metal dichalcogenides (TMDs). A theoretical model is developed for the first-order magneto-resonant Raman scattering in a monolayer of TMD. A significant number of avoided crossing points involving optical phonons in the magneto-polaron (MP) spectrum, a superposition of the electron and hole states in the excitation branches, and their manifestations in optical transitions at various light scattering configurations are unique features for these 2D structures. The Raman intensity reveals three resonant splittings of double avoided-crossing levels. The three excitation branches are present in the MP spectrum provoked by the coupling of the Landau levels in the conduction and valence bands via an out-of-plane A 1 -optical phonon mode. The energy gaps at the anticrossing points in the MP scattering spectrum are revealed as a function of the electron and hole optical deformation potential constants. The resonant MP Raman scattering efficiency profile allows for quantifying the relative contribution of the conduction and valence bands in the formation of MPs. The results obtained are a guideline for controlling MP effects on the magneto-optical properties of TMD semiconductors, which open pathways to novel optoelectronic devices based on 2D TMDs.
Collapse
Affiliation(s)
- C Trallero-Giner
- Departamento de Física, Universidade Federal de São Carlos, São Carlos, São Paulo, 13.565-905, Brazil
| | - D G Santiago-Pérez
- Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, 62209, Cuernavaca, Morelos, Mexico
| | - D V Tkachenko
- Pridnestrovian State University, 25 October Str., 128, 3300, Tiraspol, Republic of Moldova
| | - G E Marques
- Departamento de Física, Universidade Federal de São Carlos, São Carlos, São Paulo, 13.565-905, Brazil
| | - V M Fomin
- Institute for Emerging Electronic Technologies (IET), Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstraβe 20, 01069, Dresden, Germany.
- Faculty of Physics and Engineering, Moldova State University, Str. A. Mateevici 60, 2009, Chişinău, Republic of Moldova.
| |
Collapse
|
14
|
Xu K, Zhang Q, Zhu D, Jiang Z. Hydrogels in Gene Delivery Techniques for Regenerative Medicine and Tissue Engineering. Macromol Biosci 2024; 24:e2300577. [PMID: 38265144 DOI: 10.1002/mabi.202300577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Hydrogels are 3D networks swollen with water. They are biocompatible, strong, and moldable and are emerging as a promising biomedical material for regenerative medicine and tissue engineering to deliver therapeutic genes. The excellent natural extracellular matrix simulation properties of hydrogels enable them to be co-cultured with cells or enhance the expression of viral or non-viral vectors. Its biocompatibility, high strength, and degradation performance also make the action process of carriers in tissues more ideal, making it an ideal biomedical material. It has been shown that hydrogel-based gene delivery technologies have the potential to play therapy-relevant roles in organs such as bone, cartilage, nerve, skin, reproductive organs, and liver in animal experiments and preclinical trials. This paper reviews recent articles on hydrogels in gene delivery and explains the manufacture, applications, developmental timeline, limitations, and future directions of hydrogel-based gene delivery techniques.
Collapse
Affiliation(s)
- Kexing Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Qinmeng Zhang
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Danji Zhu
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhiwei Jiang
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
15
|
Lai J, Wang L, Li F, Zhang H, Zhang Q. Klein Tunneling in β12 Borophene. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:790. [PMID: 38727384 PMCID: PMC11085157 DOI: 10.3390/nano14090790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/20/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
Motivated by the recent observation of Klein tunneling in 8-Pmmn borophene, we delve into the phenomenon in β12 borophene by employing tight-binding approximation theory to establish a theoretical mode. The tight-binding model is a semi-empirical method for establishing the Hamiltonian based on atomic orbitals. A single cell of β12 borophene contains five atoms and multiple central bonds, so it creates the complexity of the tight-binding model Hamiltonian of β12 borophene. We investigate transmission across one potential barrier and two potential barriers by changing the width and height of barriers and the distance between two potential barriers. Regardless of the change in the barrier heights and widths, we find the interface to be perfectly transparent for normal incidence. For other angles of incidence, perfect transmission at certain angles can also be observed. Furthermore, perfect and all-angle transmission across a potential barrier takes place when the incident energy approaches the Dirac point. This is analogous to the "super", all-angle transmission reported for the dice lattice for Klein tunneling across a potential barrier. These findings highlight the significance of our theoretical model in understanding the complex dynamics of Klein tunneling in borophene structures.
Collapse
Affiliation(s)
- Jinhao Lai
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (J.L.); (L.W.)
| | - Lekang Wang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (J.L.); (L.W.)
| | - Fu Li
- Institute of Materials Science, Technology University of Darmstadt, 64287 Darmstadt, Germany; (F.L.); (H.Z.)
| | - Hongbin Zhang
- Institute of Materials Science, Technology University of Darmstadt, 64287 Darmstadt, Germany; (F.L.); (H.Z.)
| | - Qingtian Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (J.L.); (L.W.)
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
16
|
He W, Wu D, Kong L, Yu P, Yang G. Giant Negative Photoresponse in van der Waals Graphene/AgBiP 2Se 6/Graphene Trilayer Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312541. [PMID: 38252894 DOI: 10.1002/adma.202312541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/17/2024] [Indexed: 01/24/2024]
Abstract
The positive photoconductive (PPC) effect is a well-established primary detection mechanism employed by photodetectors. In contrast, the negative photoconductive (NPC) effect is not extensively investigated thus far, and research on the NPC effect is still in its early stage. Herein, a quaternary van der Waals material, AgBiP2Se6 atomic layers, is discovered to achieve a giant NPC effect. Through experimental observations in a Graphene/AgBiP2Se6/ Graphene-based vertical photodetector, an irreversible conversion is identified from common PPC photoresponse to atypical NPC photoresponse. Notably, this device demonstrates an exceptionally high negative responsivity (R) of 4.9 × 105 A W-1, surpassing the previous records for NPC photodetectors. Additionally, it exhibits remarkable optoelectronic performances, including an external quantum efficiency of 1.3 × 108% and a detectivity (D) of 3.60 × 1012 Jones. The exceptionally high NPC photoresponse observed in this device can be attributed to the swift suppression of photogenerated free carriers at robust recombination centers situated at significant depths, induced by the elevated drain-source voltage bias. The remarkably high NPC photoresponse also positions AgBiP2Se6 as a promising 2D material for multifunctional optoelectronic devices and an excellent platform for systematic exploration of the NPC effect.
Collapse
Affiliation(s)
- Wei He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P.R. China
| | - Dong Wu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P.R. China
| | - Lingling Kong
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P.R. China
| | - Peng Yu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P.R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P.R. China
| |
Collapse
|
17
|
Wang Y, Wang Y, Lan C, Zhou L, Kang J, Zheng W, Xue T, Li Y, Yuan X, Xiao S, Li H, He J. Interfacial Charge Transfer for Enhancing Nonlinear Saturable Absorption in WS 2/graphene Heterostructure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306096. [PMID: 38225721 DOI: 10.1002/advs.202306096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Interlayer charge-transfer (CT) in 2D atomically thin vertical stacks heterostructures offers an unparalleled new approach to regulation of device performance in optoelectronic and photonics applications. Despite the fact that the saturable absorption (SA) in 2D heterostructures involves highly efficient optical modulation in the space and time domain, the lack of explicit SA regulation mechanism at the nanoscale prevents this feature from realizing nanophotonic modulation. Here, the enhancement of SA response via CT in WS2/graphene vertical heterostructure is proposed and the related mechanism is demonstrated through simulations and experiments. Leveraging this mechanism, CT-induced SA enhancement can be expanded to a wide range of nonlinear optical modulation applications for 2D materials. The results suggest that CT between 2D heterostructures enables efficient nonlinear optical response regulation.
Collapse
Affiliation(s)
- Yiduo Wang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Yingwei Wang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Changyong Lan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Li Zhou
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Jianlong Kang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Wanxin Zheng
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Tianyu Xue
- Center for High-Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Yejun Li
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Xiaoming Yuan
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Si Xiao
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Heping Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jun He
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| |
Collapse
|
18
|
Xiao Y, Zou G, Huo J, Sun T, Peng J, Li Z, Shen D, Liu L. Local modulation of Au/MoS 2 Schottky barriers using a top ZnO nanowire gate for high-performance photodetection. NANOSCALE HORIZONS 2024; 9:285-294. [PMID: 38063807 DOI: 10.1039/d3nh00448a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Schottky junctions are commonly used for fabricating heterojunction-based 2D transition metal dichalcogenide (TMD) photodetectors, characteristically offering a wide detection range, high sensitivity and fast response. However, these devices often suffer from reduced detectivity due to the high dark current, making it challenging to discover a simple and efficient universal way to improve the photoelectric performances. Here, we demonstrate a novel approach for integrating ZnO nanowire gates into a MoS2-Au Schottky junction to improve the photoelectric performances of photodetectors by locally controlling the Schottky barrier. This strategy remarkably reduces the dark current level of the device without affecting its photocurrent and the Schottky detectivity can be modified to a maximum detectivity of 1.4 × 1013 Jones with -20 V NG bias. This work provides potential possibilities for tuning the band structure of other materials and optimizing the performance of heterojunction photodetectors.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Guisheng Zou
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Jinpeng Huo
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Tianming Sun
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| | - Jin Peng
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Zehua Li
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Daozhi Shen
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Liu
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
19
|
Chen W, Chen A, Zhang R, Zeng J, Zhang L, Gu M, Wang C, Huang M, Guo Y, Duan H, Hu C, Shen W, Niu B, Watanabe K, Taniguchi T, Zhang J, Li J, Cai X, Liu G. Strong In-Plane Optoelectronic Anisotropy and Polarization Sensitivity in Low-Symmetry 2D Violet Phosphorus. NANO LETTERS 2023. [PMID: 38050812 DOI: 10.1021/acs.nanolett.3c02951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Anisotropic optoelectronics based on low-symmetry two-dimensional (2D) materials hold immense potential for enabling multidimensional visual perception with improved miniaturization and integration capabilities, which has attracted extensive interest in optical communication, high-gain photoswitching circuits, and polarization imaging fields. However, the reported in-plane anisotropic photocurrent and polarized dichroic ratios are limited, hindering the achievement of high-performance anisotropic optoelectronics. In this study, we introduce novel low-symmetry violet phosphorus (VP) with a unique tubular cross-linked structure into this realm, and the corresponding anisotropic optical and optoelectronic properties are investigated both experimentally and theoretically for the first time. Remarkably, our prepared VP-based van der Waals phototransistor exhibits significant optoelectronic anisotropies with a giant in-plane anisotropic photocurrent ratio exceeding 10 and a comparable polarized dichroic ratio of 2.16, which is superior to those of most reported 2D counterparts. Our findings establish VP as an exceptional candidate for anisotropic optoelectronics, paving the way for future multifunctional applications.
Collapse
Affiliation(s)
- Weilin Chen
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - An Chen
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ruan Zhang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jianmin Zeng
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Lihui Zhang
- Xi'an Thermal Power Research Institute Co., Ltd., Xi'an 710054, People's Republic of China
| | - Mengyue Gu
- School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Chaofan Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, Guangdong, People's Republic of China
| | - Mingyuan Huang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, Guangdong, People's Republic of China
| | - Yanbo Guo
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hongxiao Duan
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Chunguang Hu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Wanfu Shen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Baoxin Niu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Jinying Zhang
- School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jinjin Li
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xinghan Cai
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Gang Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
20
|
Wang Y, Wang S, Zhao J, Xue M. Dual Coupled Long-Range Hybrid Surface Plasmon Polariton Waveguide for Sub-Wavelength Confinement. MICROMACHINES 2023; 14:2167. [PMID: 38138336 PMCID: PMC10745809 DOI: 10.3390/mi14122167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/25/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023]
Abstract
In this paper, a long-range hybrid waveguide for subwavelength confinement based on double SPP coupling is proposed. The hybrid waveguide consists of a metal-based cylindrical hybrid waveguide and a silver nanowire. There are two coupling regions in the waveguide structure that enhance mode coupling. Strong mode coupling enables the waveguide to exhibit both a small effective mode area (0.01) and an extremely long transmission length (700 μm). The figure of merit (FOM) of the waveguide can be as high as 4000. In addition, the cross-sectional area of the waveguide is only 500 nm × 500 nm, allowing optical operation in the subwavelength range, which helps enhance the miniaturization of optoelectronic devices. The excellent characteristics of the hybrid waveguide make it have potential applications in photoelectric integrated systems.
Collapse
Affiliation(s)
- Yindi Wang
- School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.Z.); (M.X.)
| | - Shulong Wang
- Key Laboratory for Wide Band Gap Semiconductor Materials and Devices of Education, School of Microelectronics, Xidian University, Xi’an 710071, China;
| | - Juanning Zhao
- School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.Z.); (M.X.)
| | - Mingyuan Xue
- School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.Z.); (M.X.)
| |
Collapse
|
21
|
Li B, Bai H, Yu Z, Li Y, Kwok CT, Feng W, Wang S, Ng KW. Electronic and magnetic properties of layered M 3Si 2Te 6(M = alkaline earth and transition metals). JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:065801. [PMID: 37813101 DOI: 10.1088/1361-648x/ad0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
Recently, a new layered material, Mn3Si2Te6, was identified to be a semiconductor with nodal-line topological property and ferrimagnetic ground state. In this work, we propose a series of structures, M3Si2Te6(M = alkaline earth and transition metals), and systematically investigate their mechanical, magnetic and electronic properties, and the strain effect to enrich the family of the layered materials for practical applications. We find 13 stable M3Si2Te6, including 5 semiconductors (M = Ca, Sr, Fe, Ru and Os) and 8 metals (M = Sc, Ti, Nb, Ta, Cr, Mo, W and Tc). Two structures (M = Ti and Cr) are antiferromagnetic (AFM), while other structures are non-magnetic (NM). Similar to Mn3Si2Te6, the AFM structures exhibit magnetic anisotropy energies (MAEs) and semiconductors have anisotropic electron effective masses. We further show that compressions along thez-axis can effectively tune the electronic and magnetic properties, such as the semiconductor-metal and NM-AFM transition in Fe3Si2Te6, the two-fold degeneracy of the valence band maximums in Sr3Si2Te6, as well as the reduced MAE for all magnetic structures. These results demonstrate the diverse properties of the layered M3Si2Te6family and provide promising theoretical predictions for the future design of new layered materials.
Collapse
Affiliation(s)
- Bowen Li
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR 999078, People's Republic of China
| | - Haoyun Bai
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR 999078, People's Republic of China
| | - Zhichao Yu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR 999078, People's Republic of China
| | - Yutong Li
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macao SAR 999078, People's Republic of China
| | - Chi Tat Kwok
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macao SAR 999078, People's Republic of China
| | - Wenlin Feng
- School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China
| | - Shuangpeng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR 999078, People's Republic of China
| | - Kar Wei Ng
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR 999078, People's Republic of China
| |
Collapse
|
22
|
Yam KM, Zhang Y, Guo N, Jiang Z, Deng H, Zhang C. Two-dimensional graphitic metal carbides: structure, stability and electronic properties. NANOTECHNOLOGY 2023; 34:465706. [PMID: 37549662 DOI: 10.1088/1361-6528/acedb6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Via first-principles computational modeling and calculations, we propose a new class of two-dimensional (2D) atomically thin crystals that contain metal-C3(MC3) moieties periodically distributed in a graphenic lattice, which we refer to as 2D graphitic metal carbides (g-MCs). Most g-MCs are dynamically stable as verified by the calculated phonon spectra. Our detailed chemical bonding analyzes reveal that the high stability of g-MCs can be attributed to a unique bonding feature, which manifests as the carbon-backbone-mediated metal-metal interactions. These analyzes provide new insights for understanding the stability of 2D materials. It is found that the calculated electronic band gaps and magnetic moments (per unit cell) of g-MCs can range from 0 to 1.30 eV and 0 to 4.40μB, respectively. Highly tunable electronic properties imply great potential of 2D g-MCs in various applications. As an example, we show that 2D g-MnC can be an excellent electrocatalyst towards CO2reductive reaction for the formation of formic acid with an exceptionally high loading of Mn atoms (∼43 wt%). We expect this work to simulate new experiments for fabrication and applications of g-MCs.
Collapse
Affiliation(s)
- Kah-Meng Yam
- Department of Physics, National University of Singapore, 2 Science Drive 3 117551, Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3 117543, Singapore
| | - Yongjie Zhang
- Department of Physics, National University of Singapore, 2 Science Drive 3 117551, Singapore
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Na Guo
- NUS (Chongqing) Research Institute, No. 16 South Huashan Road, 401123, Chongqing, People's Republic of China
| | - Zhuoling Jiang
- Department of Physics, National University of Singapore, 2 Science Drive 3 117551, Singapore
| | - Hui Deng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Chun Zhang
- Department of Physics, National University of Singapore, 2 Science Drive 3 117551, Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3 117543, Singapore
| |
Collapse
|
23
|
Hu Y, Yang F, Chen J, Lu S, Zeng Q, Han H, Ma Y, Zhao Z, Chai G, Xiang B, Ruan S. High-responsivity and high-speed black phosphorus photodetectors integrated with proton exchanged thin-film lithium niobate waveguides. OPTICS EXPRESS 2023; 31:27962-27972. [PMID: 37710861 DOI: 10.1364/oe.497756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/29/2023] [Indexed: 09/16/2023]
Abstract
We present a high-performance broadband (450-1550 nm) black phosphorus photodetector based on a thin-film lithium niobate waveguide. The waveguides are fabricated by the proton exchange method with flat surfaces, which reduces the stress and deformation of two-dimensional materials. At a wavelength of 1550 nm, the photodetector simultaneously achieves a high responsivity and wide bandwidth, with a responsivity as high as 147 A/W (at an optical power of 17 nW), a 3-dB bandwidth of 0.86 GHz, and a detectivity of 3.04 × 1013 Jones. Our photodetector exhibits one of the highest responsivity values among 2D material-integrated waveguide photodetectors.
Collapse
|
24
|
Zhao D, Xu S, Wang H, Shen Y, Xu Q. Exfoliation of MoS 2 by zero-valent transition metal intercalation. Chem Commun (Camb) 2023. [PMID: 37309252 DOI: 10.1039/d3cc02528d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exfoliation of bulk molybdenum disulfide (MoS2) into few-layered nanosheets is achieved with the assistance of zero-valent transition metal (Co0, Ni0, Cu0) intercalation. The as-prepared MoS2 nanosheets are characterized to consist of 1T- and 2H-phases with an enhanced electrocatalytic hydrogen evolution reaction (HER) activity. This work provides a novel strategy to prepare 2D MoS2 nanosheets using mild reductive reagents, which is expected to avoid the undesired structural damage from conventional chemical exfoliation.
Collapse
Affiliation(s)
- Duanduan Zhao
- College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, P. R. China.
| | - Song Xu
- College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, P. R. China.
| | - Hengan Wang
- International College, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yonglong Shen
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China.
| | - Qun Xu
- College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, P. R. China.
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China.
| |
Collapse
|
25
|
Chen S, Sun Y, Fan X, Xu Y, Chen S, Zhang X, Man B, Yang C, Du J. Review on two-dimensional material-based field-effect transistor biosensors: accomplishments, mechanisms, and perspectives. J Nanobiotechnology 2023; 21:144. [PMID: 37122015 PMCID: PMC10148958 DOI: 10.1186/s12951-023-01898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/16/2023] [Indexed: 05/02/2023] Open
Abstract
Field-effect transistor (FET) is regarded as the most promising candidate for the next-generation biosensor, benefiting from the advantages of label-free, easy operation, low cost, easy integration, and direct detection of biomarkers in liquid environments. With the burgeoning advances in nanotechnology and biotechnology, researchers are trying to improve the sensitivity of FET biosensors and broaden their application scenarios from multiple strategies. In order to enable researchers to understand and apply FET biosensors deeply, focusing on the multidisciplinary technical details, the iteration and evolution of FET biosensors are reviewed from exploring the sensing mechanism in detecting biomolecules (research direction 1), the response signal type (research direction 2), the sensing performance optimization (research direction 3), and the integration strategy (research direction 4). Aiming at each research direction, forward perspectives and dialectical evaluations are summarized to enlighten rewarding investigations.
Collapse
Affiliation(s)
- Shuo Chen
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yang Sun
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Xiangyu Fan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yazhe Xu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Shanshan Chen
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xinhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Cheng Yang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Jun Du
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
26
|
Boucherdoud A, Mesbah S, Lantri T, Houari M, Bestani B, Benderdouche N. Pressure effect on the physical, mechanical, and thermal properties of ternary halide perovskite AgCaCl 3: a first-principles study. J Mol Model 2023; 29:164. [PMID: 37118316 DOI: 10.1007/s00894-023-05573-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/23/2023] [Indexed: 04/30/2023]
Abstract
CONTEXT AND RESULTS As an inorganic halide perovskite material, AgCaCl3, characterized by its high stability and environmental friendliness, is considered a potential candidate for major applications in optoelectronics and lens manufacturing. This work aimed to determine the electronic properties such as density of state (DOS) and band structure (BS) of AgCaCl3. The results showed that the material has an indirect band gap almost invariably at 1.5 eV in the pressure range studied. The dielectric function [Formula: see text], absorption coefficient [Formula: see text], optical conductivity [Formula: see text], reflectivity [Formula: see text], and the refractive index [Formula: see text] showed clearly that the perovskite AgCaCl3 preserved its optical characteristics within the chosen pressure range investigated. The calculated elastic constants C11, C12, and C14 as dynamic stability criteria for the elastic moduli such as bulk modulus (B), shear modulus (G), Young's modulus (Y), Poisson's ratio ([Formula: see text]), and anisotropy factor (A) showed that the material is a ductile plastic. Debye temperature ([Formula: see text]), isobaric and isochoric heat capacities (CP, CV), coefficient of the thermal expansion (α), Gibbs free energy (G), and entropy (S) were also studied. The results obtained provide a theoretical basis for experimental work and offer the possibility of future industrial applications of AgCaCl3. COMPUTATIONAL AND THEORETICAL TECHNIQUES Density functional theory (DFT) calculations as implemented in the Wien2K code were used to study the mechanical and thermal properties of AgCaCl3 perovskite over a pressure range. Lattice parameters, electronic, and optical properties are optimized with the approximation of the generalized gradient of the Perdew-Burke-Ernzerhof function (PBE-GGA) function. The mechanical and thermodynamic properties were calculated using ElaStic and Gibbs2 codes, and the properties of AgCaCl3 over the pressure range investigated were predicted.
Collapse
Affiliation(s)
- Ahmed Boucherdoud
- Faculty of Science and Technology, University of Relizane , 48000, Bourmadia, Algeria.
- Laboratory of Structure, Elaboration, and Application of Molecular Materials (SEA2M), Faculty of Science and Technology, University Abdelhamid Ibn Badis of Mostaganem, Mostaganem, Algeria.
| | - Smain Mesbah
- Faculty of Science and Technology, University of Relizane , 48000, Bourmadia, Algeria
- Laboratory Physico-Chemistry of Advanced Materials, University of Djillali Liabes, BP 89, 22000, Sidi- Bel- Abbes, Algeria
| | - Tayeb Lantri
- Faculty of Science and Technology, University of Relizane , 48000, Bourmadia, Algeria
- Laboratory of Technology and of Solids Properties, Faculty of Science and Technology, Abdel Hamid Ibn Badis University, 27000, Mostaganem, Algeria
| | - Mohammed Houari
- Faculty of Science and Technology, University of Relizane , 48000, Bourmadia, Algeria
- Laboratory of Technology and of Solids Properties, Faculty of Science and Technology, Abdel Hamid Ibn Badis University, 27000, Mostaganem, Algeria
| | - Benaouda Bestani
- Laboratory of Structure, Elaboration, and Application of Molecular Materials (SEA2M), Faculty of Science and Technology, University Abdelhamid Ibn Badis of Mostaganem, Mostaganem, Algeria
| | - Nouredine Benderdouche
- Laboratory of Structure, Elaboration, and Application of Molecular Materials (SEA2M), Faculty of Science and Technology, University Abdelhamid Ibn Badis of Mostaganem, Mostaganem, Algeria
| |
Collapse
|
27
|
Senger C, Fan X, Pagaduan JN, Zhang X, Ping J, Katsumata R. Defect Healing in Graphene via Rapid Thermal Annealing with Polymeric "Nanobandage". SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206295. [PMID: 36549897 DOI: 10.1002/smll.202206295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Overcoming throughput challenges in current graphene defect healing processes, such as conventional thermal annealing, is crucial for realizing post-silicon device fabrication. Herein, a new time- and energy-efficient method for defect healing in graphene is reported, utilizing polymer-assisted rapid thermal annealing (RTA). In this method, a nitrogen-rich, polymeric "nanobandage" is coated directly onto graphene and processed via RTA at 800 °C for 15 s. During this process, the polymer matrix is cleanly degraded, while nitrogen released from the nanobandage can diffuse into graphene, forming nitrogen-doped healed graphene. To study the influence of pre-existing defects on graphene healing, lattice defects are purposefully introduced via electron beam irradiation and investigated by Raman microscopy. X-ray photoelectron spectroscopy reveals successful healing of graphene, observing a maximum doping level of 3 atomic nitrogen % in nanobandage-treated samples from a baseline of 0-1 atomic % in non-nanobandage treated samples. Electrical transport measurements further indicate that the nanobandage treatment recovers the conductivity of scanning electron microscope-treated defective graphene at ≈85%. The reported polymer-assisted RTA defect healing method shows promise for healing other 2D materials with other dopants by simply changing the chemistry of the polymeric nanobandage.
Collapse
Affiliation(s)
- Claire Senger
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Xiao Fan
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - James Nicolas Pagaduan
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Xiaoyu Zhang
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Jinglei Ping
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Institute of Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Reika Katsumata
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
28
|
Gu H, Guo Z, Huang L, Fang M, Liu S. Investigations of Optical Functions and Optical Transitions of 2D Semiconductors by Spectroscopic Ellipsometry and DFT. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:196. [PMID: 36616106 PMCID: PMC9823946 DOI: 10.3390/nano13010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Optical functions and transitions are essential for a material to reveal the light-matter interactions and promote its applications. Here, we propose a quantitative strategy to systematically identify the critical point (CP) optical transitions of 2D semiconductors by combining the spectroscopic ellipsometry (SE) and DFT calculations. Optical functions and CPs are determined by SE, and connected to DFT band structure and projected density of states via equal-energy and equal-momentum lines. The combination of SE and DFT provides a powerful tool to investigate the CP optical transitions, including the transition energies and positions in Brillouin zone (BZ), and the involved energy bands and carries. As an example, the single-crystal monolayer WS2 is investigated by the proposed method. Results indicate that six excitonic-type CPs can be quantitatively distinguished in optical function of the monolayer WS2 over the spectral range of 245-1000 nm. These CPs are identified as direct optical transitions from three highest valence bands to three lowest conduction bands at high symmetry points in BZ contributed by electrons in S-3p and W-5d orbitals. Results and discussion on the monolayer WS2 demonstrate the effectiveness and advantages of the proposed method, which is general and can be easily extended to other materials.
Collapse
Affiliation(s)
- Honggang Gu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
- Optics Valley Laboratory, Wuhan 430074, China
| | - Zhengfeng Guo
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
- Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liusheng Huang
- Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingsheng Fang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Shiyuan Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
- Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
29
|
Mahmoodi E, Amiri MH, Salimi A, Frisenda R, Flores E, Ares JR, Ferrer IJ, Castellanos-Gomez A, Ghasemi F. Paper-based broadband flexible photodetectors with van der Waals materials. Sci Rep 2022; 12:12585. [PMID: 35869156 PMCID: PMC9307754 DOI: 10.1038/s41598-022-16834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Layered metal chalcogenide materials are exceptionally appealing in optoelectronic devices thanks to their extraordinary optical properties. Recently, their application as flexible and wearable photodetectors have received a lot of attention. Herein, broadband and high-performance paper-based PDs were established in a very facile and inexpensive method by rubbing molybdenum disulfide and titanium trisulfide crystals on papers. Transferred layers were characterized by SEM, EDX mapping, and Raman analyses, and their optoelectronic properties were evaluated in a wavelength range of 405–810 nm. Although the highest and lowest photoresponsivities were respectively measured for TiS3 (1.50 mA/W) and MoS2 (1.13 μA/W) PDs, the TiS3–MoS2 heterostructure not only had a significant photoresponsivity but also showed the highest on/off ratio (1.82) and fast response time (0.96 s) compared with two other PDs. This advantage is due to the band offset formation at the heterojunction, which efficiently separates the photogenerated electron–hole pairs within the heterostructure. Numerical simulation of the introduced PDs also confirmed the superiority of TiS3–MoS2 heterostructure over the other two PDs and exhibited a good agreement with the experimental results. Finally, MoS2 PD demonstrated very high flexibility under applied strain, but TiS3 based PDs suffered from its fragility and experience a remarkable drain current reduction at strain larger than ± 0.33%. However, at lower strains, all PDs displayed acceptable performances.
Collapse
|
30
|
Pan Y, Rahaman M, He L, Milekhin I, Manoharan G, Aslam MA, Blaudeck T, Willert A, Matković A, Madeira TI, Zahn DRT. Exciton tuning in monolayer WSe 2 via substrate induced electron doping. NANOSCALE ADVANCES 2022; 4:5102-5108. [PMID: 36504751 PMCID: PMC9680939 DOI: 10.1039/d2na00495j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
We report large exciton tuning in WSe2 monolayers via substrate induced non-degenerate doping. We observe a redshift of ∼62 meV for the A exciton together with a 1-2 orders of magnitude photoluminescence (PL) quenching when the monolayer WSe2 is brought in contact with highly oriented pyrolytic graphite (HOPG) compared to dielectric substrates such as hBN and SiO2. As the evidence of doping from HOPG to WSe2, a drastic increase of the intensity ratio of trions to neutral excitons was observed. Using a systematic PL and Kelvin probe force microscopy (KPFM) investigation on WSe2/HOPG, WSe2/hBN, and WSe2/graphene, we conclude that this unique excitonic behavior is induced by electron doping from the substrate. Our results propose a simple yet efficient way for exciton tuning in monolayer WSe2, which plays a central role in the fundamental understanding and further device development.
Collapse
Affiliation(s)
- Yang Pan
- Semiconductor Physics, Institute of Physics, Chemnitz University of Technology Chemnitz Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology Chemnitz Germany
| | - Mahfujur Rahaman
- Department of Electrical and Systems Engineering, University of Pennsylvania Philadelphia PA USA
| | - Lu He
- Semiconductor Physics, Institute of Physics, Chemnitz University of Technology Chemnitz Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology Chemnitz Germany
| | - Ilya Milekhin
- Semiconductor Physics, Institute of Physics, Chemnitz University of Technology Chemnitz Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology Chemnitz Germany
| | - Gopinath Manoharan
- Center for Microtechnologies, Chemnitz University of Technology Chemnitz Germany
| | | | - Thomas Blaudeck
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology Chemnitz Germany
- Center for Microtechnologies, Chemnitz University of Technology Chemnitz Germany
- Fraunhofer Institute for Electronic Nano Systems Chemnitz Germany
| | - Andreas Willert
- Fraunhofer Institute for Electronic Nano Systems Chemnitz Germany
| | | | - Teresa I Madeira
- Semiconductor Physics, Institute of Physics, Chemnitz University of Technology Chemnitz Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology Chemnitz Germany
| | - Dietrich R T Zahn
- Semiconductor Physics, Institute of Physics, Chemnitz University of Technology Chemnitz Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology Chemnitz Germany
| |
Collapse
|
31
|
Nazir G, Rehman A, Hussain S, Hakami O, Heo K, Amin MA, Ikram M, Patil SA, Din MAU. Bias-Modified Schottky Barrier Height-Dependent Graphene/ReSe 2 van der Waals Heterostructures for Excellent Photodetector and NO 2 Gas Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3713. [PMID: 36364489 PMCID: PMC9658387 DOI: 10.3390/nano12213713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Herein, we reported a unique photo device consisting of monolayer graphene and a few-layer rhenium diselenide (ReSe2) heterojunction. The prepared Gr/ReSe2-HS demonstrated an excellent mobility of 380 cm2/Vs, current on/off ratio ~ 104, photoresponsivity (R ~ 74 AW-1 @ 82 mW cm-2), detectivity (D* ~ 1.25 × 1011 Jones), external quantum efficiency (EQE ~ 173%) and rapid photoresponse (rise/fall time ~ 75/3 µs) significantly higher to an individual ReSe2 device (mobility = 36 cm2 V-1s-1, Ion/Ioff ratio = 1.4 × 105-1.8 × 105, R = 11.2 AW-1, D* = 1.02 × 1010, EQE ~ 26.1%, rise/fall time = 2.37/5.03 s). Additionally, gate-bias dependent Schottky barrier height (SBH) estimation for individual ReSe2 (45 meV at Vbg = 40 V) and Gr/ReSe2-HS (9.02 meV at Vbg = 40 V) revealed a low value for the heterostructure, confirming dry transfer technique to be successful in fabricating an interfacial defects-free junction. In addition, HS is fully capable to demonstrate an excellent gas sensing response with rapid response/recovery time (39/126 s for NO2 at 200 ppb) and is operational at room temperature (26.85 °C). The proposed Gr/ReSe2-HS is capable of demonstrating excellent electro-optical, as well as gas sensing, performance simultaneously and, therefore, can be used as a building block to fabricate next-generation photodetectors and gas sensors.
Collapse
Affiliation(s)
- Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| | - Adeela Rehman
- Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin 17104, Korea
| | - Sajjad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| | - Othman Hakami
- Department of Chemistry, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Kwang Heo
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| | - Mohammed A. Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Supriya A. Patil
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| | | |
Collapse
|
32
|
Jagani HS, Dixit V, Patel A, Gohil J, Pathak VM. Stability & durability of self-driven photo-detective parameters based on Sn 1-β Sb β Se ( β = 0, 0.05, 0.10, 0.15, 0.20) ternary alloy single crystals. RSC Adv 2022; 12:28693-28706. [PMID: 36320516 PMCID: PMC9549486 DOI: 10.1039/d2ra05492b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
In the present investigation Sn1-β Sb β Se crystals are grown using the direct vapor transport method. The crystals after growth were analyzed by EDAX and XPS to confirm the elemental composition. The surface morphological properties were studied by scanning electron microscope, confirming a flat surface and layered growth of the Sn1-β Sb β Se crystals. The structural properties studied by X-ray diffraction and high-resolution transmission electron microscopy confirm the orthorhombic structure of the grown Sn1-β Sb β Se crystals. The Raman spectroscopic measurements evince the presence of B2g and Ag vibration modes. The PL intensity peak at ∼400 nm to 500 nm confirms the energy band gap. The indirect energy band gap of 1.18 eV was evaluated using Tauc plot by employing UV-visible spectroscopy making it a promising candidate for optoelectronic and photonic applications. The pulse photo response of pure and doped samples was studied under a monochromatic source of wavelength 670 nm and intensity of 30 mW cm-2 at zero biasing voltage firstly on day one and then the same samples were preserved for 50 days and the stability of the photodetectors was observed. Photodetector parameters such as rise time, decay time, photocurrent, responsivity, sensitivity, and detectivity were observed, and evaluated results are presented in this article.
Collapse
Affiliation(s)
| | - Vijay Dixit
- Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388 120 Gujarat India
| | - Abhishek Patel
- Department of Physics, A. N. Patel Post Graduate Institute of Science and Research Anand 388001 India
| | - Jagrutiba Gohil
- Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388 120 Gujarat India
| | - V M Pathak
- Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388 120 Gujarat India
| |
Collapse
|
33
|
Jang AR. Tuning Schottky Barrier of Single-Layer MoS 2 Field-Effect Transistors with Graphene Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3038. [PMID: 36080075 PMCID: PMC9458018 DOI: 10.3390/nano12173038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional materials have the potential to be applied in flexible and transparent electronics. In this study, single-layer MoS2 field-effect transistors (FETs) with Au/Ti-graphene heteroelectrodes were fabricated to examine the effect of the electrodes on the electrical properties of the MoS2 FETs. The contact barrier potential was tuned using an electric field. Asymmetrical gate behavior was observed owing to the difference between the MoS2 FETs, specifically between the MoS2 FETs with Au/Ti electrodes and those with graphene electrodes. The contact barrier of the MoS2 FETs with Au/Ti electrodes did not change with the electric field. However, the contact barrier at the MoS2-graphene interface could be modulated. The MoS2 FETs with Au/Ti-graphene electrodes exhibited enhanced on/off ratios (~102 times) and electron mobility (~2.5 times) compared to the MoS2 FETs with Au/Ti electrodes. These results could improve the understanding of desirable contact formation for high-performance MoS2 FETs and provide a facile route for viable electronic applications.
Collapse
Affiliation(s)
- A-Rang Jang
- Division of Electrical, Electronic and Control Engineering, Kongju National University, Cheonan 31080, Korea
| |
Collapse
|
34
|
Rahman S, Lu Y. Nano-engineering and nano-manufacturing in 2D materials: marvels of nanotechnology. NANOSCALE HORIZONS 2022; 7:849-872. [PMID: 35758316 DOI: 10.1039/d2nh00226d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional materials have attracted significant interest and investigation since the marvellous discovery of graphene. Due to their unique physical, mechanical and optical properties, van der Waals (vdW) materials possess extraordinary potential for application in future optoelectronics devices. Nano-engineering and nano-manufacturing in the atomically thin regime has further opened multifarious avenues to explore novel physical properties. Among them, moiré heterostructures, strain engineering and substrate manipulation have created numerous exotic and topological phenomena such as unconventional superconductivity, orbital magnetism, flexible nanoelectronics and highly efficient photovoltaics. This review comprehensively summarizes the three most influential techniques of nano-engineering in 2D materials. The latest development in the marvels of moiré structures in vdW materials is discussed; in addition, topological structures in layered materials and substrate engineering on the nanoscale are thoroughly scrutinized to highlight their significance in micro- and nano-devices. Finally, we conclude with remarks on challenges and possible future directions in the rapidly expanding field of nanotechnology and nanomaterial.
Collapse
Affiliation(s)
- Sharidya Rahman
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2601, Australia.
| | - Yuerui Lu
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2601, Australia.
- ARC Centre for Quantum Computation and Communication Technology, Department of Quantum Science, School of Engineering, The Australian National University, Acton, ACT 2601, Australia.
| |
Collapse
|
35
|
Liu F, Zou Y, Wang H, Wang Z, Zhang M, Wu W, Du D, Zhao W, Zhao T, Liu Y, Yao N, Ma Y. Boosting Li-Ion Diffusion Kinetics of Na 2Ti 6-xMo xO 13 via Coherent Dimensional Engineering and Lattice Tailoring: An Alternative High-Rate Anode. ACS NANO 2022; 16:9117-9129. [PMID: 35593703 DOI: 10.1021/acsnano.2c01200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Featured with an exposed active facet, favorable ion diffusion pathway, and tailorable interfacial properties, low-dimensional structures are extensively explored as alternative electroactive materials with game-changing redox properties. Through a stepwise "proton exchange-insertion-exfoliation" procedure, in this article, we develop Na2Ti6-xMoxO13 (NTMO) nanosheets with weakened out-of-plane bonding and in-plane Mo6+ doping of the tunnel structure. Real-time phase tracking of the laminated NTMO structures upon the lithiation/delithiation process suggests mitigated lattice variation; meanwhile, the kinetics simulation shows a mitigated Li-ion diffusion barrier along the [010] orientation. At an industrial-level areal capacity loading (2.5 mAh cm-2), the NTMO electrode maintains robust cycling endurance (91% capacity retention for 2000 cycles) even at 40 C, as well as the high energy/power densities in the as-constructed NTMO||LiFePO4 full cell prototype. The dimensional and lattice modifications presented in this study thus encourage further exploration of the tailored cation diffusion pathway for the construction of fast-charging batteries.
Collapse
Affiliation(s)
- Fu Liu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yiming Zou
- International Research Center for Composite and Intelligent Manufacturing Technology, Institute of Chemical Power Sources, School of Science, Xi'an University of Technology, Xi' an 710048, P. R. China
| | - Helin Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Zhiqiao Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Min Zhang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Weiwei Wu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Dou Du
- National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Wenyu Zhao
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Ting Zhao
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yujie Liu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Ning Yao
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yue Ma
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| |
Collapse
|
36
|
Lin H, Zhang Z, Zhang H, Lin KT, Wen X, Liang Y, Fu Y, Lau AKT, Ma T, Qiu CW, Jia B. Engineering van der Waals Materials for Advanced Metaphotonics. Chem Rev 2022; 122:15204-15355. [PMID: 35749269 DOI: 10.1021/acs.chemrev.2c00048] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The outstanding chemical and physical properties of 2D materials, together with their atomically thin nature, make them ideal candidates for metaphotonic device integration and construction, which requires deep subwavelength light-matter interaction to achieve optical functionalities beyond conventional optical phenomena observed in naturally available materials. In addition to their intrinsic properties, the possibility to further manipulate the properties of 2D materials via chemical or physical engineering dramatically enhances their capability, evoking new science on light-matter interaction, leading to leaped performance of existing functional devices and giving birth to new metaphotonic devices that were unattainable previously. Comprehensive understanding of the intrinsic properties of 2D materials, approaches and capabilities for chemical and physical engineering methods, the resulting property modifications and novel functionalities, and applications of metaphotonic devices are provided in this review. Through reviewing the detailed progress in each aspect and the state-of-the-art achievement, insightful analyses of the outstanding challenges and future directions are elucidated in this cross-disciplinary comprehensive review with the aim to provide an overall development picture in the field of 2D material metaphotonics and promote rapid progress in this fast emerging and prosperous field.
Collapse
Affiliation(s)
- Han Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Zhenfang Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Huihui Zhang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Keng-Te Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoming Wen
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yao Liang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yang Fu
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Alan Kin Tak Lau
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
37
|
Abstract
Molecular doping is an excellent instrument to modify the electronic properties of two−dimensional materials. In our work, the structure and electronic properties of the adsorption systems of g−ZnO adsorbed by organic molecules (including Tetracyanoethylene (TCNE), Tetracyanoquinodimethane (TCNQ), and Tetrahydrofulvalene (TTF)) were investigated computationally using Density Functional Theory (DFT). The results showed that the TCNE and TCNQ, as electron receptors, doped the LUMO energy level above the valence band maximum (VBM) of the g−ZnO band structure, demonstrating effective p−type doping. The n−type doping of g−ZnO was obtained that the TTF molecules, as electron donors, doped the HOMO energy level below the conduction band minimum (CBM) of the band structure for g−ZnO. In addition, the TCNE, TCNQ, and TTF breathed additional holes or electrons into the monolayer g−ZnO, creating surface dipole moments between the g−ZnO and organic molecules, which caused work function to be adjustable, ranging from 3.871 eV to 5.260 eV. Our results prove that organic molecular doping was instrumental in improving the performance of g−ZnO−based nano−electronic devices, providing theoretical support for the fabrication of p−doping or n−doping nano−semiconductor components. The tunable range of field emission capability of g−ZnO−based electronic devices was also extended.
Collapse
|
38
|
Hou X, Huang K, Xia Y, Mu F, Cao H, Xia Y, Wu Y, Lu Y, Wang Y, Xu F, Yu Y, Xing W, Xu Z. Fish‐scale‐like nano‐porous membrane based on zeolite nanosheets for long stable zinc‐based flow battery. AIChE J 2022. [DOI: 10.1002/aic.17738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xiaoxuan Hou
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Kang Huang
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Yongsheng Xia
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Feiyan Mu
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Hongyan Cao
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Yu Xia
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Yulin Wu
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Yuqin Lu
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Yixing Wang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Fang Xu
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Ying Yu
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Weihong Xing
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Zhi Xu
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
39
|
Zeng Z, Braun K, Ge C, Eberle M, Zhu C, Sun X, Yang X, Yi J, Liang D, Wang Y, Huang L, Luo Z, Li D, Pan A, Wang X. Picosecond electrical response in graphene/MoTe 2 heterojunction with high responsivity in the near infrared region. FUNDAMENTAL RESEARCH 2022; 2:405-411. [PMID: 38933404 PMCID: PMC11197620 DOI: 10.1016/j.fmre.2021.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/28/2021] [Accepted: 09/21/2021] [Indexed: 11/19/2022] Open
Abstract
Understanding the fundamental charge carrier dynamics is of great significance for photodetectors with both high speed and high responsivity. Devices based on two-dimensional (2D) transition metal dichalcogenides can exhibit picosecond photoresponse speed. However, 2D materials naturally have low absorption, and when increasing thickness to gain higher responsivity, the response time usually slows to nanoseconds, limiting their photodetection performance. Here, by taking time-resolved photocurrent measurements, we demonstrated that graphene/MoTe2 van der Waals heterojunctions realize a fast 10 ps photoresponse time owing to the reduced average photocurrent drift time in the heterojunction, which is fundamentally distinct from traditional Dirac semimetal photodetectors such as graphene or Cd3As2 and implies a photodetection bandwidth as wide as 100 GHz. Furthermore, we found that an additional charge carrier transport channel provided by graphene can effectively decrease the photocurrent recombination loss to the entire device, preserving a high responsivity in the near-infrared region. Our study provides a deeper understanding of the ultrafast electrical response in van der Waals heterojunctions and offers a promising approach for the realization of photodetectors with both high responsivity and ultrafast electrical response.
Collapse
Affiliation(s)
- Zhouxiaosong Zeng
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Kai Braun
- Institute of Physical and Theoretical Chemistry and LISA+, University of Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany
| | - Cuihuan Ge
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Martin Eberle
- Institute of Physical and Theoretical Chemistry and LISA+, University of Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany
| | - Chenguang Zhu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Xingxia Sun
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Xin Yang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Jiali Yi
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Delang Liang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Yufan Wang
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Lanyu Huang
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Ziyu Luo
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Dong Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiao Wang
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
40
|
Zhu X, Su Z, Wu C, Cong H, Ai X, Yang H, Qian J. Exfoliation of MoS 2 Nanosheets Enabled by a Redox-Potential-Matched Chemical Lithiation Reaction. NANO LETTERS 2022; 22:2956-2963. [PMID: 35285225 DOI: 10.1021/acs.nanolett.2c00148] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ion intercalation assisted exfoliation is the oldest and most popular method for the scalable synthesis of molybdenum disulfide (MoS2) nanosheets. The commonly used organolithium reagents for Li+ intercalation are n-butyllithium (n-BuLi) and naphthalenide lithium (Nap-Li); however, the highly pyrophoric nature of n-BuLi and the overly reducing power of Nap-Li hinder their extensive application. Here, a novel organolithium reagent, pyrene lithium (Py-Li), which has intrinsic safe properties and a well-matched redox potential, is reported for the intercalation and exfoliation of MoS2. The redox potential of Py-Li (0.86 V vs Li+/Li) is located just between the intercalation (1.13 V) and decomposition (0.55 V) potentials of bulk MoS2, thus allowing precise Li+ intercalation to form a lamellar LiMoS2 compound without undesirable structural damage. The lithiation reaction can be accomplished within 1 h at room temperature and the exfoliated nanosheets are almost single layer. This method also offers the advantages of low cost, high repeatability, and ease in realizing large-scale production.
Collapse
Affiliation(s)
- Xiaolong Zhu
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Zipei Su
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Chen Wu
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Hengjiang Cong
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Xinping Ai
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Hanxi Yang
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Jiangfeng Qian
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| |
Collapse
|
41
|
Fabrication of Large-Area Short-Wave Infrared Array Photodetectors under High Operating Temperature by High Quality PtS2 Continuous Films. ELECTRONICS 2022. [DOI: 10.3390/electronics11060838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A narrow bandgap of a few layers of platinic disulfide (PtS2) has shown great advantages in large-area array photodetectors for wide spectra photodetection, which is necessary for infrared imaging and infrared sensing under extreme conditions. The photodetection performance of two dimensional materials is highly dependent on the crystalline quality of the film, especially under high operating temperatures. Herein, we developed large area uniform array photodetectors using a chemical vapor deposition grown on PtS2 films for short-wave infrared photodetection at high operating temperature. Due to the high uniformity and crystalline quality of as-grown large area PtS2 films, as-fabricated PtS2 field effect transistors have shown a broadband photo-response from 532 to 2200 nm with a wide working temperature from room temperature to 373 K. The photo-responsivity (R) and specific detectivity (D*) of room temperature and 373 K are about 3.20 A/W and 1.24 × 107 Jones, and 839 mA/W and 6.1 × 106 Jones, at 1550 nm, respectively. Our studies pave the way to create an effective strategy for fabricating large-area short-wave infrared (SWIR) array photodetectors with high operating temperatures using chemical vapor deposition (CVD) grown PtS2 films.
Collapse
|
42
|
Meng J, Wang J, Wang J, Li Q, Yang J. C 7N 6/Sc 2CCl 2 Weak van der Waals Heterostructure: A Promising Visible-Light-Driven Z-Scheme Water Splitting Photocatalyst with Interface Ultrafast Carrier Recombination. J Phys Chem Lett 2022; 13:1473-1479. [PMID: 35129359 DOI: 10.1021/acs.jpclett.1c04194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Designing and characterizing high-efficiency direct Z-scheme photocatalysts both from theoretical and experimental aspects still remain a big challenge. Here, based on extensive first-principles calculations combined with excited state dynamics simulations, we report that a weak van der Waals (vdW) C7N6/Sc2CCl2 heterostructure is a mediator-free direct Z-scheme photocatalyst for solar water splitting. Theoretical results clearly reveal that this heterostructure displays a nice light-harvesting performance extending to the near-infrared region. The relatively strong interfacial non-adiabatic coupling accelerates the interlayer carrier recombination in the time scale of sub-picoseconds. The well separated electrons and holes with a strong redox capacity make the hydrogen evolution reaction spontaneously occur on the C7N6 surface and the oxygen evolution reaction on the Se-doped Sc2CCl2 surface, respectively, when the proposed heterostructure is radiated with solar light.
Collapse
Affiliation(s)
- Jie Meng
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiajun Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jianing Wang
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qunxiang Li
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
43
|
Yao J, Yang G. 2D Layered Material Alloys: Synthesis and Application in Electronic and Optoelectronic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103036. [PMID: 34719873 PMCID: PMC8728821 DOI: 10.1002/advs.202103036] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/01/2021] [Indexed: 05/12/2023]
Abstract
2D layered materials (2DLMs) have come under the limelight of scientific and engineering research and broke new ground across a broad range of disciplines in the past decade. Nevertheless, the members of stoichiometric 2DLMs are relatively limited. This renders them incompetent to fulfill the multitudinous scenarios across the breadth of electronic and optoelectronic applications since the characteristics exhibited by a specific material are relatively monotonous and limited. Inspiringly, alloying of 2DLMs can markedly broaden the 2D family through composition modulation and it has ushered a whole new research domain: 2DLM alloy nano-electronics and nano-optoelectronics. This review begins with a comprehensive survey on synthetic technologies for the production of 2DLM alloys, which include chemical vapor transport, chemical vapor deposition, pulsed-laser deposition, and molecular beam epitaxy, spanning their development, as well as, advantages and disadvantages. Then, the up-to-date advances of 2DLM alloys in electronic devices are summarized. Subsequently, the up-to-date advances of 2DLM alloys in optoelectronic devices are summarized. In the end, the ongoing challenges of this emerging field are highlighted and the future opportunities are envisioned, which aim to navigate the coming exploration and fully exert the pivotal role of 2DLMs toward the next generation of electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| |
Collapse
|
44
|
Tamalampudi SR, Dushaq G, Villegas JE, Rajput NS, Paredes B, Elamurugu E, Rasras MS. Short-wavelength infrared (SWIR) photodetector based on multi-layer 2D GaGeTe. OPTICS EXPRESS 2021; 29:39395-39405. [PMID: 34809305 DOI: 10.1364/oe.442845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Recent theoretical studies proposed that two-dimensional (2D) GaGeTe crystals have promising high detection sensitivity at infrared wavelengths and can offer ultra-fast operation. This can be attributed to their small optical bandgap and high carrier mobility. However, experimental studies on GaGeTe in the infrared region are lacking and this exciting property has not been explored yet. In this work, we demonstrate a short-wavelength infrared (SWIR) photodetector based on a multilayer (ML) GaGeTe field-effect transistor (FET). Fabricated devices show a p-type behavior at room temperature with a hole field-effect mobility of 8.6 - 20 cm2 V-1s-1. Notably, under 1310 nm illumination, the photo responsivities and noise equivalent power of the detectors with 65 nm flake thickness can reach up to 57 A/W and 0.1 nW/Hz1/2, respectively, at a drain-source bias (Vds) = 2 V. The frequency responses of the photodetectors were also measured with a 1310 nm intensity-modulated light. Devices exhibit a response up to 100 MHz with a 3dB cut-off frequency of 0.9 MHz. Furthermore, we also tested the dependence of the device frequency response on the applied bias and gate voltages. These early experimental findings stimulate the potential use of multilayer GaGeTe for highly sensitive and ultrafast photodetection applications.
Collapse
|