1
|
Zhang G, Yan S, Liu Y, Du Z, Min Q, Qin S. PROTACs coupled with oligonucleotides to tackle the undruggable. Bioanalysis 2025:1-16. [PMID: 39895280 DOI: 10.1080/17576180.2025.2459528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
Undruggable targets account for roughly 85% of human disease-related targets and represent a category of therapeutic targets that are difficult to tackle with traditional methods, but their considerable clinical importance. These targets are generally defined by planar functional interfaces and the absence of efficient ligand-binding pockets, making them unattainable for conventional pharmaceutical strategies. The advent of oligonucleotide-based proteolysis-targeting chimeras (PROTACs) has instilled renewed optimism in addressing these challenges. These PROTACs facilitate the targeted degradation of undruggable entities, including transcription factors (TFs) and RNA-binding proteins (RBPs), via proteasome-dependent mechanisms, thereby presenting novel therapeutic approaches for diseases linked to these targets. This review offers an in-depth examination of recent progress in the integration of PROTAC technology with oligonucleotides to target traditionally undruggable proteins, emphasizing the design principles and mechanisms of action of these innovative PROTACs.
Collapse
Affiliation(s)
- Guangshuai Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Si Yan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Yan Liu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Ziwei Du
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Qin Min
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Shuanglin Qin
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, P.R. China
| |
Collapse
|
2
|
Yan Y, Shi L, Ma T, Wang L, Huang H. SNP rs9364554 Modulates Androgen Receptor Binding and Drug Response in Prostate Cancer. Biomolecules 2025; 15:64. [PMID: 39858458 PMCID: PMC11763896 DOI: 10.3390/biom15010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
(1) Background: Prostate cancer treatment efficacy is significantly influenced by androgen receptor (AR) signaling pathways. SLC22A3, a membrane transporter, has been linked to SNP rs9364554 risk loci for drug efficacy in prostate cancer. (2) Methods: We examined the location of SNP rs9364554 in the genome and utilized TCGA and other publicly available datasets to analyze the association of this SNP with SLC22A3 transcription levels. We verified onco-mining findings in prostate cancer cell lines using quantitative PCR and Western blots. Additionally, we employed electrophoretic mobility shift assay (EMSA) to detect the binding affinity of transcription factors to this SNP. The ChIP-Seq was used to analyze the enrichment of H3K27ac on the SLC22A3 promoter. (3) Results: In this study, we revealed that SNP rs9364554 resides in the SLC22A3 gene and affects its transcription. The downregulation of SLC22A3 is associated with drug resistance. More importantly, we found that this SNP has different binding affinities with transcription factors, specifically FOXA1 and AR, which significantly affects their regulation of SLC22A3 transcription. (4) Conclusions: Our findings highlight the potential of using this SNP as a biomarker for predicting chemotherapeutic outcomes and uncover possible mechanisms underlying drug resistance in advanced prostate cancers. More importantly, it provides a clinical foundation for targeting FOXA1 to enhance drug efficacy in prostate cancer patients.
Collapse
Affiliation(s)
- Yuqian Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
- Department of Neurosurgery, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Lei Shi
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou 310025, China;
| | - Tao Ma
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Liguo Wang
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
3
|
Pliatsika D, Blatter C, Riedl R. Targeted protein degradation: current molecular targets, localization, and strategies. Drug Discov Today 2024; 29:104178. [PMID: 39276920 DOI: 10.1016/j.drudis.2024.104178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Targeted protein degradation (TPD) has revolutionized drug discovery by selectively eliminating specific proteins within and outside the cellular context. Over the past two decades, TPD has expanded its focus beyond well-established targets, exploring diverse proteins beyond cancer-related ones. This evolution extends the potential of TPD to various diseases. Notably, TPD can target proteins at demanding locations, such as the extracellular matrix (ECM) and cellular membranes, presenting both opportunities and challenges for future research. In this review, we comprehensively examine the exciting opportunities in the burgeoning field of TPD, highlighting different targets, their cellular environment, and innovative strategies for modern drug discovery.
Collapse
Affiliation(s)
- Dimanthi Pliatsika
- Institute of Chemistry and Biotechnology, Competence Center for Drug Discovery, Zurich University of Applied Sciences, CH-8820 Wädenswil, Switzerland
| | - Cindy Blatter
- Institute of Chemistry and Biotechnology, Competence Center for Drug Discovery, Zurich University of Applied Sciences, CH-8820 Wädenswil, Switzerland
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Competence Center for Drug Discovery, Zurich University of Applied Sciences, CH-8820 Wädenswil, Switzerland.
| |
Collapse
|
4
|
Dong Y, Ma T, Xu T, Feng Z, Li Y, Song L, Yao X, Ashby CR, Hao GF. Characteristic roadmap of linker governs the rational design of PROTACs. Acta Pharm Sin B 2024; 14:4266-4295. [PMID: 39525578 PMCID: PMC11544172 DOI: 10.1016/j.apsb.2024.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/11/2024] [Accepted: 04/02/2024] [Indexed: 11/16/2024] Open
Abstract
Proteolysis targeting chimera (PROTAC) technology represents a groundbreaking development in drug discovery, leveraging the ubiquitin‒proteasome system to specifically degrade proteins responsible for the disease. PROTAC is characterized by its unique heterobifunctional structure, which comprises two functional domains connected by a linker. The linker plays a pivotal role in determining PROTAC's biodegradative efficacy. Advanced and rationally designed functional linkers for PROTAC are under development. Nonetheless, the correlation between linker characteristics and PROTAC efficacy remains under-investigated. Consequently, this study will present a multidisciplinary analysis of PROTAC linkers and their impact on efficacy, thereby guiding the rational design of linkers. We will primarily discuss the structural types and characteristics of PROTAC linkers, and the optimization strategies used for their rational design. Furthermore, we will discuss how factors like linker length, group type, flexibility, and linkage site affect the biodegradation efficiency of PROTACs. We believe that this work will contribute towards the advancement of rational linker design in the PROTAC research area.
Collapse
Affiliation(s)
- Yawen Dong
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Tingting Ma
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Ting Xu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Zhangyan Feng
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Yonggui Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Lingling Song
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Xiaojun Yao
- Faculty of Applied Sciences, Macau Polytechnic University, Macau 999078, China
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, St. John's University, New York, NY 11439, USA
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Chen H, Qu M, Wang Y, Gao X. Immunotherapy in the treatment of rectal invasion by prostate cancer with focal neuroendocrine differentiation: a case report and literature review. Transl Androl Urol 2024; 13:2153-2159. [PMID: 39434747 PMCID: PMC11491206 DOI: 10.21037/tau-24-223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/01/2024] [Indexed: 10/23/2024] Open
Abstract
Background Incidences of rectal infiltration by prostate cancer (PCa) are reported to affect up to 12% of patients studied. PCa invading the rectum is prone to cause difficulty in defecation, bloody stool and pain, leading to a decline in patients' quality of life. Unfortunately, the prognosis for these patients is poor and the survival period is short. Total pelvic exenteration (TPE) has been demonstrated to mitigate pain and improve symptoms such as defecation difficulty, dysuria, and hematuria. However, most patients still harbor residual tumor and fail to exhibit any improvement in long-term survival. Case Description Here, we present a case of PCa invading the rectum with focal neuroendocrine differentiation, characterized by clinical presentations of defecation difficulties and rectal bleeding. A TPE procedure was performed, with a whole exome sequencing (WES) assay indicating that the patient exhibited a high tumor mutation burden (TMB) and high microsatellite instability (MSI-H). Subsequently, the patient received androgen deprivation therapy (ADT) combined with adjuvant immunotherapy following the procedure. At the subsequent six-year follow-up, no local or systemic recurrence was observed, and the prostate-specific antigen (PSA) level remained undetectable. Conclusions This disease entity remains relatively rare in the literature. Accurate differential diagnosis is important. TPE combined with immunotherapy may improve the prognosis. It is of utmost importance to achieve an accurate differential diagnosis, which necessitates the collaboration of multiple disciplines and the performance of requisite tests, including immunohistochemistry and genetic testing.
Collapse
Affiliation(s)
- Huan Chen
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Min Qu
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yan Wang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xu Gao
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Xu J, Zhao X, Liang X, Guo D, Wang J, Wang Q, Tang X. Development of miRNA-based PROTACs targeting Lin28 for breast cancer therapy. SCIENCE ADVANCES 2024; 10:eadp0334. [PMID: 39292784 PMCID: PMC11409961 DOI: 10.1126/sciadv.adp0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/09/2024] [Indexed: 09/20/2024]
Abstract
Lin28, a highly conserved carcinogenic protein, plays an important role in the generation of cancer stem cells, contributing to the unfavorable prognosis of cancer patients. This RNA binding protein specifically binds to pri/pre-microRNA (miRNA) lethal-7 (let-7), impeding its miRNA maturation. The reduced expression of tumor suppressor miRNA let-7 fosters development and progression-related traits such as proliferation, invasion, metastasis, and drug resistance. We report a series of miRNA-based Lin28A-miRNA proteolysis-targeting chimeras (Lin28A-miRNA-PROTACs) designed to efficiently degrade Lin28A through a ubiquitin-proteasome-dependent mechanism, resulting in up-regulation of mature let-7 family. The augmented levels of matured let-7 miRNAs further exert inhibitory effects on cancer cell proliferation and migration, and increase its sensitivity to chemotherapy. In a mouse ectopic tumor model, Lin28A-miRNA-PROTAC demonstrates a substantial efficacy in inhibiting tumor growth. When combined with tamoxifen, the tumors exhibit gradual regression. This study displays an effective miRNA-based PROTACs to degrade Lin28A and inhibit tumor growth, providing a promising therapeutic avenue for cancer treatment with miRNA-based therapy.
Collapse
Affiliation(s)
- Jianfei Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center and School of Pharmaceutical Sciences, Peking University, Xueyuan Rd, Beijing 100191, China
| | - Xiaoran Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center and School of Pharmaceutical Sciences, Peking University, Xueyuan Rd, Beijing 100191, China
| | - Xingxing Liang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center and School of Pharmaceutical Sciences, Peking University, Xueyuan Rd, Beijing 100191, China
| | - Dongyang Guo
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center and School of Pharmaceutical Sciences, Peking University, Xueyuan Rd, Beijing 100191, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center and School of Pharmaceutical Sciences, Peking University, Xueyuan Rd, Beijing 100191, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center and School of Pharmaceutical Sciences, Peking University, Xueyuan Rd, Beijing 100191, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center and School of Pharmaceutical Sciences, Peking University, Xueyuan Rd, Beijing 100191, China
| |
Collapse
|
7
|
Cao C, Li A, Xu C, Wu B, Yao L, Liu Y. Engineering artificial non-coding RNAs for targeted protein degradation. Nat Chem Biol 2024:10.1038/s41589-024-01719-w. [PMID: 39215101 DOI: 10.1038/s41589-024-01719-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Targeted protein degradation has become a notable drug development strategy, but its application has been limited by the dependence on protein-based chimeras with restricted genetic manipulation capabilities. The use of long non-coding RNAs (lncRNAs) has emerged as a viable alternative, offering interactions with cellular proteins to modulate pathways and enhance degradation capabilities. Here we introduce a strategy employing artificial lncRNAs (alncRNAs) for precise targeted protein degradation. By integrating RNA aptamers and sequences from the lncRNA HOTAIR, our alncRNAs specifically target and facilitate the ubiquitination and degradation of oncogenic transcription factors and tumor-related proteins, such as c-MYC, NF-κB, ETS-1, KRAS and EGFR. These alncRNAs show potential in reducing malignant phenotypes in cells, both in vitro and in vivo, offering advantages in efficiency, adaptability and versatility. This research enhances knowledge of lncRNA-driven protein degradation and presents an effective method for targeted therapies.
Collapse
Affiliation(s)
- Congcong Cao
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Synthetic Biology Research Center, Health Science Center, Shenzhen University, Shenzhen, China
| | - Aolin Li
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Chaojie Xu
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Baorui Wu
- Department of Urology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Lin Yao
- Department of Urology, Peking University First Hospital, Beijing, China.
| | - Yuchen Liu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Synthetic Biology Research Center, Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
8
|
Kabir M, Qin L, Luo K, Xiong Y, Sidi RA, Park KS, Jin J. Discovery and Characterization of a Novel Cereblon-Recruiting PRC1 Bridged PROTAC Degrader. J Med Chem 2024; 67:6880-6892. [PMID: 38607318 PMCID: PMC11069391 DOI: 10.1021/acs.jmedchem.4c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bridged PROTAC is a novel protein complex degrader strategy that exploits the target protein's binding partner to degrade undruggable proteins by inducing proximity to an E3 ubiquitin ligase. In this study, we discovered for the first time that cereblon (CRBN) can be employed for the bridged PROTAC approach and report the first-in-class CRBN-recruiting and EED-binding polycomb repressive complex 1 (PRC1) degrader, compound 1 (MS181). We show that 1 induces preferential degradation of PRC1 components, BMI1 and RING1B, in an EED-, CRBN-, and ubiquitin-proteosome system (UPS)-dependent manner. Compound 1 also has superior antiproliferative activity in multiple metastatic cancer cell lines over EED-binding PRC2 degraders and can be efficacious in VHL-defective cancer cells. Altogether, compound 1 is a valuable chemical biology tool to study the role of PRC1 in cancer. Importantly, we show that CRBN can be utilized to develop bridged PROTACs, expanding the bridged PROTAC technology for degrading undruggable proteins.
Collapse
Affiliation(s)
- Md Kabir
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Lihuai Qin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kaixiu Luo
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Rebecca A Sidi
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
9
|
Wang Z, Zhang D, Qiu X, Inuzuka H, Xiong Y, Liu J, Chen L, Chen H, Xie L, Kaniskan HÜ, Chen X, Jin J, Wei W. Structurally Specific Z-DNA Proteolysis Targeting Chimera Enables Targeted Degradation of Adenosine Deaminase Acting on RNA 1. J Am Chem Soc 2024; 146:7584-7593. [PMID: 38469801 PMCID: PMC10988290 DOI: 10.1021/jacs.3c13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Given the prevalent advancements in DNA- and RNA-based PROTACs, there remains a significant need for the exploration and expansion of more specific DNA-based tools, thus broadening the scope and repertoire of DNA-based PROTACs. Unlike conventional A- or B-form DNA, Z-form DNA is a configuration that exclusively manifests itself under specific stress conditions and with specific target sequences, which can be recognized by specific reader proteins, such as ADAR1 or ZBP1, to exert downstream biological functions. The core of our innovation lies in the strategic engagement of Z-form DNA with ADAR1 and its degradation is achieved by leveraging a VHL ligand conjugated to Z-form DNA to recruit the E3 ligase. This ingenious construct engendered a series of Z-PROTACs, which we utilized to selectively degrade the Z-DNA-binding protein ADAR1, a molecule that is frequently overexpressed in cancer cells. This meticulously orchestrated approach triggers a cascade of PANoptotic events, notably encompassing apoptosis and necroptosis, by mitigating the blocking effect of ADAR1 on ZBP1, particularly in cancer cells compared with normal cells. Moreover, the Z-PROTAC design exhibits a pronounced predilection for ADAR1, as opposed to other Z-DNA readers, such as ZBP1. As such, Z-PROTAC likely elicits a positive immunological response, subsequently leading to a synergistic augmentation of cancer cell death. In summary, the Z-DNA-based PROTAC (Z-PROTAC) approach introduces a modality generated by the conformational change from B- to Z-form DNA, which harnesses the structural specificity intrinsic to potentiate a selective degradation strategy. This methodology is an inspiring conduit for the advancement of PROTAC-based therapeutic modalities, underscoring its potential for selectivity within the therapeutic landscape of PROTACs to target undruggable proteins.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Dingpeng Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Xing Qiu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Li Chen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - He Chen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ling Xie
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xian Chen
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
10
|
Hall J, Zhang Z, Bhattacharya S, Wang D, Alcantara M, Liang Y, Swiderski P, Forman S, Kwak L, Vaidehi N, Kortylewski M. Oligo-PROTAC strategy for cell-selective and targeted degradation of activated STAT3. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102137. [PMID: 38384444 PMCID: PMC10879796 DOI: 10.1016/j.omtn.2024.102137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Decoy oligodeoxynucleotides (ODNs) allow targeting undruggable transcription factors, such as STAT3, but their limited potency and lack of delivery methods hampered translation. To overcome these challenges, we conjugated a STAT3-specific decoy to thalidomide, a ligand to cereblon in E3 ubiquitin ligase complex, to generate a proteolysis-targeting chimera (STAT3DPROTAC). STAT3DPROTAC downregulated STAT3 in target cells, but not STAT1 or STAT5. Computational modeling of the STAT3DPROTAC ternary complex predicted two surface lysines, K601 and K626, in STAT3 as potential ubiquitination sites. Accordingly, K601/K626 point mutations in STAT3, as well as proteasome inhibition or cereblon deletion, alleviated STAT3DPROTAC effect. Next, we conjugated STAT3DPROTAC to a CpG oligonucleotide targeting Toll-like receptor 9 (TLR9) to generate myeloid/B cell-selective C-STAT3DPROTAC. Naked C-STAT3DPROTAC was spontaneously internalized by TLR9+ myeloid cells, B cells, and human and mouse lymphoma cells but not by T cells. C-STAT3DPROTAC effectively decreased STAT3 protein levels and also STAT3-regulated target genes critical for lymphoma cell proliferation and/or survival (BCL2L1, CCND2, and MYC). Finally, local C-STAT3DPROTAC administration to human Ly3 lymphoma-bearing mice triggered tumor regression, while control C-STAT3D and C-SCR treatments had limited effects. Our results underscore the feasibility of using a PROTAC strategy for cell-selective, decoy oligonucleotide-based STAT3 targeting of and potentially other tumorigenic transcription factors for cancer therapy.
Collapse
Affiliation(s)
- Jeremy Hall
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Zhuoran Zhang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Supriyo Bhattacharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Dongfang Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Marice Alcantara
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yong Liang
- DNA/RNA Synthesis Core Facility, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Piotr Swiderski
- DNA/RNA Synthesis Core Facility, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Stephen Forman
- Department of Hematology & Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Larry Kwak
- Department of Hematology & Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
11
|
Kasi PM, Lee JK, Pasquina LW, Decker B, Vanden Borre P, Pavlick DC, Allen JM, Parachoniak C, Quintanilha JCF, Graf RP, Schrock AB, Oxnard GR, Lovly CM, Tukachinsky H, Subbiah V. Circulating Tumor DNA Enables Sensitive Detection of Actionable Gene Fusions and Rearrangements Across Cancer Types. Clin Cancer Res 2024; 30:836-848. [PMID: 38060240 PMCID: PMC10870120 DOI: 10.1158/1078-0432.ccr-23-2693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Genomic rearrangements can generate potent oncogenic drivers or disrupt tumor suppressor genes. This study examines the landscape of fusions and rearrangements detected by liquid biopsy (LBx) of circulating tumor DNA (ctDNA) across different cancer types. EXPERIMENTAL DESIGN LBx from 53,842 patients with 66 solid tumor types were profiled using FoundationOneLiquid CDx, a hybrid-capture sequencing platform that queries 324 cancer-related genes. Tissue biopsies (TBx) profiled using FoundationOneCDx were used as a comparator. RESULTS Among all LBx, 7,377 (14%) had ≥1 pathogenic rearrangement detected. A total of 3,648 (6.8%) LBx had ≥1 gain-of-function (GOF) oncogene rearrangement, and 4,428 (8.2%) LBx had ≥1 loss-of-function rearrangement detected. Cancer types with higher prevalence of GOF rearrangements included those with canonical fusion drivers: prostate cancer (19%), cholangiocarcinoma (6.4%), bladder (5.5%), and non-small cell lung cancer (4.4%). Although the prevalence of driver rearrangements was lower in LBx than TBx overall, the frequency of detection was comparable in LBx with a tumor fraction (TF) ≥1%. Rearrangements in FGFR2, BRAF, RET, and ALK, were detected across cancer types, but tended to be clonal variants in some cancer types and potential acquired resistance variants in others. CONCLUSIONS In contrast to some prior literature, this study reports detection of a wide variety of rearrangements in ctDNA. The prevalence of driver rearrangements in tissue and LBx was comparable when TF ≥1%. LBx presents a viable alternative when TBx is not available, and there may be less value in confirmatory testing when TF is sufficient.
Collapse
Affiliation(s)
- Pashtoon M. Kasi
- Weill Cornell Medicine, Englander Institute of Precision Medicine, New York Presbyterian Hospital, New York, New York
| | | | | | | | | | | | | | | | | | - Ryon P. Graf
- Foundation Medicine, Inc., Cambridge, Massachusetts
| | | | | | | | | | - Vivek Subbiah
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
12
|
Yang N, Kong B, Zhu Z, Huang F, Zhang L, Lu T, Chen Y, Zhang Y, Jiang Y. Recent advances in targeted protein degraders as potential therapeutic agents. Mol Divers 2024; 28:309-333. [PMID: 36790583 PMCID: PMC9930057 DOI: 10.1007/s11030-023-10606-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023]
Abstract
Targeted protein degradation (TPD) technology has gradually become widespread in the past 20 years, which greatly boosts the development of disease treatment. Contrary to small inhibitors that act on protein kinases, transcription factors, ion channels, and other targets they can bind to, targeted protein degraders could target "undruggable targets" and overcome drug resistance through ubiquitin-proteasome pathway (UPP) and lysosome pathway. Nowadays, some bivalent degraders such as proteolysis-targeting chimeras (PROTACs) have aroused great interest in drug discovery, and some of them have successfully advanced into clinical trials. In this review, to better understand the mechanism of degraders, we elucidate the targeted protein degraders according to their action process, relying on the ubiquitin-proteasome system or lysosome pathway. Then, we briefly summarize the study of PROTACs employing different E3 ligases. Subsequently, the effect of protein of interest (POI) ligands, linker, and E3 ligands on PROTAC degradation activity is also discussed in detail. Other novel technologies based on UPP and lysosome pathway have been discussed in this paper such as in-cell click-formed proteolysis-targeting chimeras (CLIPTACs), molecular glues, Antibody-PROTACs (Ab-PROTACs), autophagy-targeting chimeras, and lysosome-targeting chimeras. Based on the introduction of these degradation technologies, we can clearly understand the action process and degradation mechanism of these approaches. From this perspective, it will be convenient to obtain the development status of these drugs, choose appropriate degradation methods to achieve better disease treatment and provide basis for future research and simultaneously distinguish the direction of future research efforts.
Collapse
Affiliation(s)
- Na Yang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Bo Kong
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Zhaohong Zhu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Fei Huang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Liliang Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yadong Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China.
| | - Yanmin Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China.
| | - Yulei Jiang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
13
|
Xue X, Zhang C, Li X, Wang J, Zhang H, Feng Y, Xu N, Li H, Tan C, Jiang Y, Tan Y. mRNA PROTACs: engineering PROTACs for high-efficiency targeted protein degradation. MedComm (Beijing) 2024; 5:e478. [PMID: 38374873 PMCID: PMC10876204 DOI: 10.1002/mco2.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 02/21/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) are essential bifunctional molecules that target proteins of interest (POIs) for degradation by cellular ubiquitination machinery. Despite significant progress made in understanding PROTACs' functions, their therapeutic potential remains largely untapped. As a result of the success of highly flexible, scalable, and low-cost mRNA therapies, as well as the advantages of the first generation of peptide PROTACs (p-PROTACs), we present for the first time an engineering mRNA PROTACs (m-PROTACs) strategy. This design combines von Hippel-Lindau (VHL) recruiting peptide encoding mRNA and POI-binding peptide encoding mRNA to form m-PROTAC and promote cellular POI degradation. We then performed proof-of-concept experiments using two m-PROTACs targeting two cancer-related proteins, estrogen receptor alpha and B-cell lymphoma-extra large protein. Our results demonstrated that m-PROTACs could successfully degrade the POIs in different cell lines and more effectively inhibit cell proliferation than the traditional p-PROTACs. Moreover, the in vivo experiment demonstrated that m-PROTAC led to significant tumor regression in the 4T1 mouse xenograft model. This finding highlights the enormous potential of m-PROTAC as a promising approach for targeted protein degradation therapy.
Collapse
Affiliation(s)
- Xiaoqi Xue
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Chen Zhang
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Xiaolin Li
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Junqiao Wang
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Haowei Zhang
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Ying Feng
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Naihan Xu
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
- School of Food and DrugShenzhen Polytechnic UniversityShenzhenChina
| | - Hongyan Li
- Shenzhen NeoCura Biotechnology Co., Ltd.ShenzhenChina
| | - Chunyan Tan
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Yuyang Jiang
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Ying Tan
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| |
Collapse
|
14
|
Liu R, Liu Z, Chen M, Xing H, Zhang P, Zhang J. Cooperatively designed aptamer-PROTACs for spatioselective degradation of nucleocytoplasmic shuttling protein for enhanced combinational therapy. Chem Sci 2023; 15:134-145. [PMID: 38131089 PMCID: PMC10732009 DOI: 10.1039/d3sc04249a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Nucleocytoplasmic shuttling proteins (NSPs) have emerged as a promising class of therapeutic targets for many diseases. However, most NSPs-based therapies largely rely on small-molecule inhibitors with limited efficacy and off-target effects. Inspired by proteolysis targeting chimera (PROTAC) technology, we report a new archetype of PROTAC (PS-ApTCs) by introducing a phosphorothioate-modified aptamer to a CRBN ligand, realizing tumor-targeting and spatioselective degradation of NSPs with improved efficacy. Using nucleolin as a model, we demonstrate that PS-ApTCs is capable of effectively degrading nucleolin in the target cell membrane and cytoplasm but not in the nucleus, through the disruption of nucleocytoplasmic shuttling. Moreover, PS-ApTCs exhibits superior antiproliferation, pro-apoptotic, and cell cycle arrest potencies. Importantly, we demonstrate that a combination of PS-ApTCs-mediated nucleolin degradation with aptamer-drug conjugate-based chemotherapy enables a synergistic effect on tumor inhibition. Collectively, PS-ApTCs could expand the PROTAC toolbox to more targets in subcellular localization and accelerate the discovery of new combinational therapeutic approaches.
Collapse
Affiliation(s)
- Ran Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Zheng Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Mohan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
| | - Penghui Zhang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou 310022 China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| |
Collapse
|
15
|
Hou M, Guo R, Ren T, Wang T, Jiang JH, He J. Selective Proteolysis of Activated Transcriptional Factor by NIR-Responsive Palindromic DNA Thalidomide Conjugate Inhibits the Canonical Smad Pathway. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302525. [PMID: 37415558 DOI: 10.1002/smll.202302525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Dysfunctional transcription factors that activate abnormal expressions of specific proteins are often associated with the progression of various diseases. Despite being attractive drug targets, the lack of druggable sites has dramatically hindered their drug development. The emergence of proteolysis targeting chimeras (PROTACs) has revitalized the drug development of many conventional hard-to-drug protein targets. Here, the use of a palindromic double-strand DNA thalidomide conjugate (PASTE) to selectively bind and induce proteolysis of targeted activated transcription factor (PROTAF) is reported. The selective proteolysis of the dimerized phosphorylated receptor-regulated Smad2/3 and inhibition of the canonical Smad pathway validates PASTE-mediated PROTAF. Further aptamer-guided active delivery of PASTE and near-infrared light-triggered PROTAF are demonstrated. Great potential in using PASTE for the selective degradation of the activated transcription factor is seen, providing a powerful tool for studying signaling pathways and developing precision medicines.
Collapse
Affiliation(s)
- Min Hou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, 410205, China
| | - Rui Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tianyu Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tao Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jianjun He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
16
|
Naganuma M, Ohoka N, Tsuji G, Inoue T, Naito M, Demizu Y. Structural Optimization of Decoy Oligonucleotide-Based PROTAC That Degrades the Estrogen Receptor. Bioconjug Chem 2023; 34:1780-1788. [PMID: 37736001 DOI: 10.1021/acs.bioconjchem.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) have attracted attention as a chemical method of protein knockdown via the ubiquitin-proteasome system. Some oligonucleotide-based PROTACs have recently been developed for disease-related proteins that do not have optimal small-molecule ligands such as transcription factors. We have previously developed the PROTAC LCL-ER(dec), which uses a decoy oligonucleotide as a target ligand for estrogen receptor α (ERα) as a model transcription factor. However, LCL-ER(dec) has a low intracellular stability because it comprises natural double-stranded DNA sequences. In the present study, we developed PROTACs containing chemically modified decoys to address this issue. Specifically, we introduced phosphorothioate modifications and hairpin structures into LCL-ER(dec). Among the newly designed PROTACs, LCL-ER(dec)-H46, with a T4 loop structure at the end of the decoy, showed long-term ERα degradation activity while acquiring enzyme tolerance. These findings suggest that the introduction of hairpin structures is a useful modification of oligonucleotides in decoy oligonucleotide-based PROTACs.
Collapse
Affiliation(s)
- Miyako Naganuma
- Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa 210-9501, Japan
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa 236-0027, Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Genichiro Tsuji
- Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Takao Inoue
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Mikihiko Naito
- Laboratory of Targeted Protein Degradation, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 110-0033, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa 210-9501, Japan
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa 236-0027, Japan
| |
Collapse
|
17
|
Wang Z, Liu J, Qiu X, Zhang D, Inuzuka H, Chen L, Chen H, Xie L, Kaniskan HÜ, Chen X, Jin J, Wei W. Methylated Nucleotide-Based Proteolysis-Targeting Chimera Enables Targeted Degradation of Methyl-CpG-Binding Protein 2. J Am Chem Soc 2023; 145:21871-21878. [PMID: 37774414 PMCID: PMC10979653 DOI: 10.1021/jacs.3c06023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Methyl-CpG-binding protein 2 (MeCP2), a reader of DNA methylation, has been extensively investigated for its function in neurological and neurodevelopmental disorders. Emerging evidence indicates that MeCP2 exerts an oncogenic function in cancer; however, the endeavor to develop a MeCP2-targeted therapy remains a challenge. This work attempts to address it by introducing a methylated nucleotide-based targeting chimera termed methyl-proteolysis-targeting chimera (methyl-PROTAC). The methyl-PROTAC incorporates a methylated cytosine into an oligodeoxynucleotide moiety to recruit MeCP2 for targeted degradation in a von Hippel-Lindau- and proteasome-dependent manner, thus displaying antiproliferative effects in cancer cells reliant on MeCP2 overexpression. This selective cytotoxicity endows methyl-PROTAC with the capacity to selectively eliminate cancer cells that are addicted to the overexpression of the MeCP2 oncoprotein. Furthermore, methyl-PROTAC-mediated MeCP2 degradation induces apoptosis in cancer cells. These findings underscore the therapeutic potential of methyl-PROTAC to degrade undruggable epigenetic regulatory proteins. In summary, the development of methyl-PROTAC introduces an innovative strategy by designing a modified nucleotide-based degradation approach for manipulating epigenetic factors, thereby representing a promising avenue for the advancement of PROTAC-based therapeutics.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Xing Qiu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Dingpeng Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Li Chen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - He Chen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ling Xie
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xian Chen
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
18
|
Chen Z, Chen M, Liu R, Fan H, Zhang J. A cocktail therapeutic strategy based on clofarabine-containing aptamer-PROTAC for enhanced cancer therapy. Chem Commun (Camb) 2023; 59:11560-11563. [PMID: 37681438 DOI: 10.1039/d3cc02904b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
By introducing a therapeutic nucleoside analogue tail to the parent Aptamer-PROTACs, a PROTAC-cocktail system (ApTCs-3X) was designed and evaluated. ApTCs-3X exhibited improved nuclease resistance and efficiently degraded target protein with subcellular localization preference. This cocktail therapy results in enhanced therapeutic outcomes, making it suitable for advancing PROTAC in combination therapy.
Collapse
Affiliation(s)
- Zhenzhen Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Mohan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Ran Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Huanhuan Fan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
19
|
Shen F, Dassama LMK. Opportunities and challenges of protein-based targeted protein degradation. Chem Sci 2023; 14:8433-8447. [PMID: 37592990 PMCID: PMC10430753 DOI: 10.1039/d3sc02361c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/02/2023] [Indexed: 08/19/2023] Open
Abstract
In the 20 years since the first report of a proteolysis targeting chimeric (PROTAC) molecule, targeted protein degradation (TPD) technologies have attempted to revolutionize the fields of chemical biology and biomedicine by providing exciting research opportunities and potential therapeutics. However, they primarily focus on the use of small molecules to recruit the ubiquitin proteasome system to mediate target protein degradation. This then limits protein targets to cytosolic domains with accessible and suitable small molecule binding pockets. In recent years, biologics such as proteins and nucleic acids have instead been used as binders for targeting proteins, thereby expanding the scope of TPD platforms to include secreted proteins, transmembrane proteins, and soluble but highly disordered intracellular proteins. This perspective summarizes the recent TPD platforms that utilize nanobodies, antibodies, and other proteins as binding moieties to deplete challenging targets, either through the ubiquitin proteasome system or the lysosomal degradation pathway. Importantly, the perspective also highlights opportunities and remaining challenges of current protein-based TPD technologies.
Collapse
Affiliation(s)
- Fangfang Shen
- Department of Chemistry, Sarafan ChEM-H Institute, Stanford University USA
| | - Laura M K Dassama
- Department of Chemistry, Sarafan ChEM-H Institute, Stanford University USA
- Department of Microbiology & Immunology, Stanford School of Medicine USA
| |
Collapse
|
20
|
Zhao C, Wang H, Zhan W, Lv X, Ma X. Exploitation of Proximity-Mediated Effects in Drug Discovery: An Update of Recent Research Highlights in Perturbing Pathogenic Proteins and Correlated Issues. J Med Chem 2023; 66:10122-10149. [PMID: 37489834 DOI: 10.1021/acs.jmedchem.3c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The utilization of proximity-mediated effects to perturb pathogenic proteins of interest (POIs) has emerged as a powerful strategic alternative to conventional drug design approaches based on target occupancy. Over the past three years, the burgeoning field of targeted protein degradation (TPD) has witnessed the expansion of degradable POIs to membrane-associated, extracellular, proteasome-resistant, and even microbial proteins. Beyond TPD, researchers have achieved the proximity-mediated targeted protein stabilization, the recruitment of intracellular immunophilins to disturb undruggable targets, and the nonphysiological post-translational modifications of POIs. All of these strides provide new avenues for innovative drug discovery aimed at battling human malignancies and other major diseases. This perspective presents recent research highlights and discusses correlated issues in developing therapeutic modalities that exploit proximity-mediated effects to modulate pathogenic proteins, thereby guiding future academic and industrial efforts in this field.
Collapse
Affiliation(s)
- Can Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Henian Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wenhu Zhan
- iCarbonX (Shenzhen) Co., Ltd., Shenzhen, 518000, China
| | - Xiaoqing Lv
- College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Xiaodong Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
21
|
Ding D, Blee AM, Zhang J, Pan Y, Becker NA, Maher LJ, Jimenez R, Wang L, Huang H. Gain-of-function mutant p53 together with ERG proto-oncogene drive prostate cancer by beta-catenin activation and pyrimidine synthesis. Nat Commun 2023; 14:4671. [PMID: 37537199 PMCID: PMC10400651 DOI: 10.1038/s41467-023-40352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Whether TMPRSS2-ERG fusion and TP53 gene alteration coordinately promote prostate cancer (PCa) remains unclear. Here we demonstrate that TMPRSS2-ERG fusion and TP53 mutation / deletion co-occur in PCa patient specimens and this co-occurrence accelerates prostatic oncogenesis. p53 gain-of-function (GOF) mutants are now shown to bind to a unique DNA sequence in the CTNNB1 gene promoter and transactivate its expression. ERG and β-Catenin co-occupy sites at pyrimidine synthesis gene (PSG) loci and promote PSG expression, pyrimidine synthesis and PCa growth. β-Catenin inhibition by small molecule inhibitors or oligonucleotide-based PROTAC suppresses TMPRSS2-ERG- and p53 mutant-positive PCa cell growth in vitro and in mice. Our study identifies a gene transactivation function of GOF mutant p53 and reveals β-Catenin as a transcriptional target gene of p53 GOF mutants and a driver and therapeutic target of TMPRSS2-ERG- and p53 GOF mutant-positive PCa.
Collapse
Affiliation(s)
- Donglin Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Alexandra M Blee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 73240, USA
| | - Jianong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Rafael Jimenez
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
| |
Collapse
|
22
|
Zhou L, Yu B, Gao M, Chen R, Li Z, Gu Y, Bian J, Ma Y. DNA framework-engineered chimeras platform enables selectively targeted protein degradation. Nat Commun 2023; 14:4510. [PMID: 37495569 PMCID: PMC10372072 DOI: 10.1038/s41467-023-40244-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
A challenge in developing proteolysis targeting chimeras (PROTACs) is the establishment of a universal platform applicable in multiple scenarios for precise degradation of proteins of interest (POIs). Inspired by the addressability, programmability, and rigidity of DNA frameworks, we develop covalent DNA framework-based PROTACs (DbTACs), which can be synthesized in high-throughput via facile bioorthogonal chemistry and self-assembly. DNA tetrahedra are employed as templates and the spatial position of each atom is defined. Thus, by precisely locating ligands of POI and E3 ligase on the templates, ligand spacings can be controllably manipulated from 8 Å to 57 Å. We show that DbTACs with the optimal linker length between ligands achieve higher degradation rates and enhanced binding affinity. Bispecific DbTACs (bis-DbTACs) with trivalent ligand assembly enable multi-target depletion while maintaining highly selective degradation of protein subtypes. When employing various types of warheads (small molecules, antibodies, and DNA motifs), DbTACs exhibit robust efficacy in degrading diverse targets, including protein kinases and transcription factors located in different cellular compartments. Overall, utilizing modular DNA frameworks to conjugate substrates offers a universal platform that not only provides insight into general degrader design principles but also presents a promising strategy for guiding drug discovery.
Collapse
Affiliation(s)
- Li Zhou
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Bin Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Mengqiu Gao
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Rui Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhiyu Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yueqing Gu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jinlei Bian
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yi Ma
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
23
|
Wang H, Zhou R, Xu F, Yang K, Zheng L, Zhao P, Shi G, Dai L, Xu C, Yu L, Li Z, Wang J, Wang J. Beyond canonical PROTAC: biological targeted protein degradation (bioTPD). Biomater Res 2023; 27:72. [PMID: 37480049 PMCID: PMC10362593 DOI: 10.1186/s40824-023-00385-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/21/2023] [Indexed: 07/23/2023] Open
Abstract
Targeted protein degradation (TPD) is an emerging therapeutic strategy with the potential to modulate disease-associated proteins that have previously been considered undruggable, by employing the host destruction machinery. The exploration and discovery of cellular degradation pathways, including but not limited to proteasomes and lysosome pathways as well as their degraders, is an area of active research. Since the concept of proteolysis-targeting chimeras (PROTACs) was introduced in 2001, the paradigm of TPD has been greatly expanded and moved from academia to industry for clinical translation, with small-molecule TPD being particularly represented. As an indispensable part of TPD, biological TPD (bioTPD) technologies including peptide-, fusion protein-, antibody-, nucleic acid-based bioTPD and others have also emerged and undergone significant advancement in recent years, demonstrating unique and promising activities beyond those of conventional small-molecule TPD. In this review, we provide an overview of recent advances in bioTPD technologies, summarize their compositional features and potential applications, and briefly discuss their drawbacks. Moreover, we present some strategies to improve the delivery efficacy of bioTPD, addressing their challenges in further clinical development.
Collapse
Affiliation(s)
- Huifang Wang
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Runhua Zhou
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Fushan Xu
- The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Kongjun Yang
- The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Liuhai Zheng
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Pan Zhao
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Guangwei Shi
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Lingyun Dai
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Chengchao Xu
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Le Yu
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, P. R. China.
| | - Zhijie Li
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China.
| | - Jianhong Wang
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, 518020, Guangdong, P. R. China.
| | - Jigang Wang
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China.
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, P. R. China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China.
| |
Collapse
|
24
|
Ismail TM, Crick RG, Du M, Shivkumar U, Carnell A, Barraclough R, Wang G, Cheng Z, Yu W, Platt-Higgins A, Nixon G, Rudland PS. Targeted Destruction of S100A4 Inhibits Metastasis of Triple Negative Breast Cancer Cells. Biomolecules 2023; 13:1099. [PMID: 37509135 PMCID: PMC10377353 DOI: 10.3390/biom13071099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Most patients who die of cancer do so from its metastasis to other organs. The calcium-binding protein S100A4 can induce cell migration/invasion and metastasis in experimental animals and is overexpressed in most human metastatic cancers. Here, we report that a novel inhibitor of S100A4 can specifically block its increase in cell migration in rat (IC50, 46 µM) and human (56 µM) triple negative breast cancer (TNBC) cells without affecting Western-blotted levels of S100A4. The moderately-weak S100A4-inhibitory compound, US-10113 has been chemically attached to thalidomide to stimulate the proteasomal machinery of a cell. This proteolysis targeting chimera (PROTAC) RGC specifically eliminates S100A4 in the rat (IC50, 8 nM) and human TNBC (IC50, 3.2 nM) cell lines with a near 20,000-fold increase in efficiency over US-10113 at inhibiting cell migration (IC50, 1.6 nM and 3.5 nM, respectively). Knockdown of S100A4 in human TNBC cells abolishes this effect. When PROTAC RGC is injected with mouse TNBC cells into syngeneic Balb/c mice, the incidence of experimental lung metastases or local primary tumour invasion and spontaneous lung metastasis is reduced in the 10-100 nM concentration range (Fisher's Exact test, p ≤ 0.024). In conclusion, we have established proof of principle that destructive targeting of S100A4 provides the first realistic chemotherapeutic approach to selectively inhibiting metastasis.
Collapse
Affiliation(s)
- Thamir M. Ismail
- Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool L69 7ZB, UK; (T.M.I.); (R.B.); (A.P.-H.)
| | - Rachel G. Crick
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZB, UK; (R.G.C.); (U.S.); (A.C.)
| | - Min Du
- Department of Clinical Infection, Microbiology and Immunity, University of Liverpool, Liverpool L69 7ZB, UK; (M.D.); (G.W.)
| | - Uma Shivkumar
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZB, UK; (R.G.C.); (U.S.); (A.C.)
| | - Andrew Carnell
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZB, UK; (R.G.C.); (U.S.); (A.C.)
| | - Roger Barraclough
- Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool L69 7ZB, UK; (T.M.I.); (R.B.); (A.P.-H.)
| | - Guozheng Wang
- Department of Clinical Infection, Microbiology and Immunity, University of Liverpool, Liverpool L69 7ZB, UK; (M.D.); (G.W.)
| | - Zhenxing Cheng
- Medical School, Southeast University, Nanjing 230032, China; (Z.C.); (W.Y.)
- Department of Gastroenterology, First Affiliated Hospital, Anhui Medical University, Hefei 210009, China
| | - Weiping Yu
- Medical School, Southeast University, Nanjing 230032, China; (Z.C.); (W.Y.)
| | - Angela Platt-Higgins
- Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool L69 7ZB, UK; (T.M.I.); (R.B.); (A.P.-H.)
| | - Gemma Nixon
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZB, UK; (R.G.C.); (U.S.); (A.C.)
| | - Philip S. Rudland
- Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool L69 7ZB, UK; (T.M.I.); (R.B.); (A.P.-H.)
| |
Collapse
|
25
|
Sang R, Fan R, Deng A, Gou J, Lin R, Zhao T, Hai Y, Song J, Liu Y, Qi B, Du G, Cheng M, Wei G. Degradation of Hexokinase 2 Blocks Glycolysis and Induces GSDME-Dependent Pyroptosis to Amplify Immunogenic Cell Death for Breast Cancer Therapy. J Med Chem 2023. [PMID: 37376788 DOI: 10.1021/acs.jmedchem.3c00118] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Hexokinase 2 (HK2) is the principal rate-limiting enzyme in the aerobic glycolysis pathway and determines the quantity of glucose entering glycolysis. However, the current HK2 inhibitors have poor activity, so we used proteolysis-targeting chimera (PROTAC) technology to design and synthesize novel HK2 degraders. Among them, C-02 has the best activity to degrade HK2 protein and inhibit breast cancer cells. It is demonstrated that C-02 could block glycolysis, cause mitochondrial damage, and then induce GSDME-dependent pyroptosis. Furthermore, pyroptosis induces cell immunogenic death (ICD) and activates antitumor immunity, thus improving antitumor immunotherapy in vitro and in vivo. These findings show that the degradation of HK2 can effectively inhibit the aerobic metabolism of breast cancer cells, thereby inhibiting their malignant proliferation and reversing the immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Ruoxi Sang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Renming Fan
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Aohua Deng
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jiakui Gou
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruizhuo Lin
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Ting Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongrui Hai
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Junke Song
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bing Qi
- Institute of Oncology, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi 710038, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gaofei Wei
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
26
|
Fan C, González-Prieto R, Kuipers TB, Vertegaal ACO, van Veelen PA, Mei H, Ten Dijke P. The lncRNA LETS1 promotes TGF-β-induced EMT and cancer cell migration by transcriptionally activating a TβR1-stabilizing mechanism. Sci Signal 2023; 16:eadf1947. [PMID: 37339182 DOI: 10.1126/scisignal.adf1947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/25/2023] [Indexed: 06/22/2023]
Abstract
Transforming growth factor-β (TGF-β) signaling is a critical driver of epithelial-to-mesenchymal transition (EMT) and cancer progression. In SMAD-dependent TGF-β signaling, activation of the TGF-β receptor complex stimulates the phosphorylation of the intracellular receptor-associated SMADs (SMAD2 and SMAD3), which translocate to the nucleus to promote target gene expression. SMAD7 inhibits signaling through the pathway by promoting the polyubiquitination of the TGF-β type I receptor (TβRI). We identified an unannotated nuclear long noncoding RNA (lncRNA) that we designated LETS1 (lncRNA enforcing TGF-β signaling 1) that was not only increased but also perpetuated by TGF-β signaling. Loss of LETS1 attenuated TGF-β-induced EMT and migration in breast and lung cancer cells in vitro and extravasation of the cells in a zebrafish xenograft model. LETS1 potentiated TGF-β-SMAD signaling by stabilizing cell surface TβRI, thereby forming a positive feedback loop. Specifically, LETS1 inhibited TβRI polyubiquitination by binding to nuclear factor of activated T cells (NFAT5) and inducing the expression of the gene encoding the orphan nuclear receptor 4A1 (NR4A1), a component of a destruction complex for SMAD7. Overall, our findings characterize LETS1 as an EMT-promoting lncRNA that potentiates signaling through TGF-β receptor complexes.
Collapse
Affiliation(s)
- Chuannan Fan
- Department of Cell and Chemical Biology, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
- Oncode Institute, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
- Genome Proteomics Laboratory, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Seville, Américo Vespucio 24, 41092 Seville, Spain
- Department of Cell Biology, University of Seville, Américo Vespucio 24, 41092 Seville, Spain
| | - Thomas B Kuipers
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
- Oncode Institute, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
| |
Collapse
|
27
|
Tsujimura H, Naganuma M, Ohoka N, Inoue T, Naito M, Tsuji G, Demizu Y. Development of DNA Aptamer-Based PROTACs That Degrade the Estrogen Receptor. ACS Med Chem Lett 2023; 14:827-832. [PMID: 37312841 PMCID: PMC10258903 DOI: 10.1021/acsmedchemlett.3c00126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/16/2023] [Indexed: 06/15/2023] Open
Abstract
Targeted protein degradation (TPD), using chimeric molecules such as proteolysis-targeting chimeras (PROTACs), has attracted attention as a strategy for selective degradation of intracellular proteins by hijacking the ubiquitin-proteasome system (UPS). However, it is often difficult to develop such degraders due to the absence of appropriate ligands for target proteins. In targeting proteins for degradation, the application of nucleic acid aptamers is considered to be effective because these can be explored using systematic evolution of ligand by exponential enrichment (SELEX) methods. In this study, we constructed chimeric molecules in which nucleic acid aptamers capable of binding to the estrogen receptor α (ERα) and E3 ubiquitin ligase ligands were linked via a linker. ERα aptamer-based PROTACs were found to degrade ERα via the UPS. These findings represent the development of novel aptamer-based PROTACs that target intracellular proteins and are potentially applicable to other proteins.
Collapse
Affiliation(s)
- Haruna Tsujimura
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kanagawa 210-9501, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, Kanagawa 236-0027, Japan
| | - Miyako Naganuma
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kanagawa 210-9501, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, Kanagawa 236-0027, Japan
| | - Nobumichi Ohoka
- Division
of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Takao Inoue
- Division
of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Mikihiko Naito
- Laboratory
of Targeted Protein Degradation, Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Genichiro Tsuji
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kanagawa 210-9501, Japan
| | - Yosuke Demizu
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kanagawa 210-9501, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, Kanagawa 236-0027, Japan
- Graduate
School of Medicine, Dentistry and Pharmaceutical Sciences, Division
of Pharmaceutical Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
28
|
Liu H, Chen W, Wu G, Zhou J, Liu C, Tang Z, Huang X, Gao J, Xiao Y, Kong N, Joshi N, Cao Y, Abdi R, Tao W. Glutathione-Scavenging Nanoparticle-Mediated PROTACs Delivery for Targeted Protein Degradation and Amplified Antitumor Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207439. [PMID: 37066758 PMCID: PMC10238184 DOI: 10.1002/advs.202207439] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/10/2023] [Indexed: 06/04/2023]
Abstract
PROteolysis TArgeting Chimeras (PROTACs) are an emerging class of promising therapeutic modalities that selectively degrade intracellular proteins of interest by hijacking the ubiquitin-proteasome system. However, the lack of techniques to efficiently transport these degraders to targeted cells and consequently the potential toxicity of PROTACs limit their clinical applications. Here, a strategy of nanoengineered PROTACs, that is, Nano-PROTACs, is reported, which improves the bioavailability of PROTACs and maximizes their capacity to therapeutically degrade intracellular oncogenic proteins for tumor therapy. The Nano-PROTACs are developed by encapsulating PROTACs in glutathione (GSH)-responsive poly(disulfide amide) polymeric (PDSA) nanoparticles and show that ARV@PDSA Nano-PROTAC, nanoengineered BRD4 degrader ARV-771, improves BRD4 protein degradation and decreases the downstream oncogene c-Myc expression. Benefiting from the GSH-scavenging ability to amply the c-Myc-related ferroptosis and cell cycle arrest, this ARV@PDSA Nano-PROTACs strategy shows superior anti-tumor efficacy with a low dose administration and good biocompatibility in vivo. The findings reveal the potential of the Nano-PROTACs strategy to treat a broad range of diseases by dismantling associated pathogenic proteins.
Collapse
Affiliation(s)
- Hai‐Jun Liu
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
- Transplantation Research CenterRenal DivisionBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Wei Chen
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Gongwei Wu
- Department of Medical OncologyDana‐Farber Cancer InstituteHarvard Medical SchoolBostonMA02215USA
| | - Jun Zhou
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Chuang Liu
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Zhongmin Tang
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Xiangang Huang
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Jingjing Gao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Yufen Xiao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Na Kong
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Nitin Joshi
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Yihai Cao
- Department of MicrobiologyTumor and Cell BiologyKarolinska InstituteStockholm171 77Sweden
| | - Reza Abdi
- Transplantation Research CenterRenal DivisionBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Wei Tao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| |
Collapse
|
29
|
Wang Z, Liu J, Chen H, Qiu X, Xie L, Kaniskan HÜ, Chen X, Jin J, Wei W. Telomere Targeting Chimera Enables Targeted Destruction of Telomeric Repeat-Binding Factor Proteins. J Am Chem Soc 2023; 145:10872-10879. [PMID: 37141574 PMCID: PMC10976431 DOI: 10.1021/jacs.3c02783] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Telomeres are naturally shortened after each round of cell division in noncancerous normal cells, while the activation of telomerase activity to extend telomere in the cancer cell is essential for cell transformation. Therefore, telomeres are regarded as a potential anticancer target. In this study, we report the development of a nucleotide-based proteolysis-targeting chimera (PROTAC) designed to degrade TRF1/2 (telomeric repeat-binding factor 1/2), which are the key components of the shelterin complex (telosome) that regulates the telomere length by directly interacting with telomere DNA repeats. The prototype telomere-targeting chimeras (TeloTACs) efficiently degrade TRF1/2 in a VHL- and proteosome-dependent manner, resulting in the shortening of telomeres and suppressed cancer cell proliferation. Compared to the traditional receptor-based off-target therapy, TeloTACs have potential application in a broad spectrum of cancer cell lines due to their ability to selectively kill cancer cells that overexpress TRF1/2. In summary, TeloTACs provide a nucleotide-based degradation approach for shortening the telomere and inhibiting tumor cell growth, representing a promising avenue for cancer treatment.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - He Chen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xing Qiu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ling Xie
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xian Chen
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
30
|
Liu L, Chen C, Liu P, Li J, Pang Z, Zhu J, Lin Z, Zhou H, Xie Y, Lan T, Chen ZS, Zeng Z, Fang W. MYH10 Combines with MYH9 to Recruit USP45 by Deubiquitinating Snail and Promotes Serous Ovarian Cancer Carcinogenesis, Progression, and Cisplatin Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203423. [PMID: 36929633 DOI: 10.1002/advs.202203423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 01/24/2023] [Indexed: 05/18/2023]
Abstract
The poor prognosis of serous ovarian cancer (SOC) is due to its high invasive capacity and cisplatin resistance of SOC cells, whereas the molecular mechanisms remain poorly understood. In the present study, the expression and function of non-muscle myosin heavy chain IIB (MYH10) in SOC are identified by immunohistochemistry, in vitro, and in vivo studies, respectively. The mechanism of MYH10 is demonstrated by co-immunoprecipitation, GST pull-down, confocal laser assays, and so on. The results show that the knockdown of MYH10 suppressed SOC cell proliferation, migration, invasion, metastasis, and cisplatin resistance both in vivo and in vitro. Further studies confirm that the MYH10 protein functional domain combines with non-muscle myosin heavy chain IIA (MYH9) to recruit the deubiquitinating enzyme Ubiquitin-specific proteases 45 and deubiquitinates snail to inhibit snail degradation, eventually promoting tumorigenesis, progression, and cisplatin resistance in SOC. In clinical samples, MYH10 expression is significantly elevated in SOC samples compared to the paratumor samples. And the expression of MYH10 is positively correlated with MYH9 expression. MYH10+/MYH9+ co-expression is an independent prognostic factor for predicting SOC patient survival. These findings uncover a key role of the MYH10-MYH9-snail axis in SOC carcinogenesis, progression, and cisplatin resistance, and provide potential novel therapeutic targets for SOC intervention.
Collapse
Affiliation(s)
- Longyang Liu
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Chunlin Chen
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ping Liu
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jing Li
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhanjun Pang
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiayu Zhu
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhongqiu Lin
- Department of Gynecological Oncology, The Memorial Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Haixu Zhou
- Department of Neurosurgery, Graduate School of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Yingying Xie
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Tiancai Lan
- Department of Neurosurgery, Liuzhou City People's Hospital, Guangxi, 545000, China
| | - Zhe-Sheng Chen
- Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, NY, 11439, USA
| | - Zhaoyang Zeng
- Department of Gynecology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| |
Collapse
|
31
|
Li X, Zhang Z, Gao F, Ma Y, Wei D, Lu Z, Chen S, Wang M, Wang Y, Xu K, Wang R, Xu F, Chen JY, Zhu C, Li Z, Yu H, Guan X. c-Myc-Targeting PROTAC Based on a TNA-DNA Bivalent Binder for Combination Therapy of Triple-Negative Breast Cancer. J Am Chem Soc 2023; 145:9334-9342. [PMID: 37068218 DOI: 10.1021/jacs.3c02619] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Triple-negative breast cancer (TNBC) is highly aggressive with a poor clinical prognosis and no targeted therapy. The c-Myc protein is a master transcription factor and a potential therapeutic target for TNBC. In this study, we develop a PROTAC (PROteolysis TArgeting Chimera) based on TNA (threose nucleic acid) and DNA that effectively targets and degrades c-Myc. The TNA aptamer is selected in vitro to bind the c-Myc/Max heterodimer and appended to the E-box DNA sequence to create a high-affinity, biologically stable bivalent binder. The TNA-E box-pomalidomide (TEP) conjugate specifically degrades endogenous c-Myc/Max, inhibits TNBC cell proliferation, and sensitizes TNBC cells to the cyclin-dependent kinase inhibitor palbociclib in vitro. In a mouse TNBC model, combination therapy with TEP and palbociclib potently suppresses tumor growth. This study offers a promising nucleic acid-based PROTAC modality for both chemical biology studies and therapeutic interventions of TNBC.
Collapse
Affiliation(s)
- Xintong Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ze Zhang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Fangyan Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuxuan Ma
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Dongying Wei
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Zhangwei Lu
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Siqi Chen
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Mengqi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yueyao Wang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Kun Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Runtian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Feng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Chengjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhe Li
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Hanyang Yu
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
32
|
Liu Y, Qian X, Ran C, Li L, Fu T, Su D, Xie S, Tan W. Aptamer-Based Targeted Protein Degradation. ACS NANO 2023; 17:6150-6164. [PMID: 36942868 DOI: 10.1021/acsnano.2c10379] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The selective removal of misfolded, aggregated, or aberrantly overexpressed protein plays an essential role in maintaining protein-dominated biological processes. In parallel, the precise knockout of abnormal proteins is inseparable from the accurate identification of proteins within complex environments. Guided by these precepts, small molecules, or antibodies, are commonly used as protein recognition tools for developing targeted protein degradation (TPD) technology. Indeed, TPD has shown tremendous prospects in chronic diseases, rare diseases, cancer research, and other fields. Meanwhile, aptamers are short RNA or DNA oligonucleotides that can bind to target proteins with high specificity and strong affinity. Accordingly, aptamers are actively used in designing and constructing TPD technology. In this perspective, we provide a brief introduction to TPD technology in its current progress, and we summarize its application challenges. Recent advances in aptamer-based TPD technology are reviewed, together with corresponding challenges and outlooks.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xu Qian
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Chunyan Ran
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Longjie Li
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ting Fu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Dan Su
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Sitao Xie
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
33
|
Ji J, Ma S, Zhu Y, Zhao J, Tong Y, You Q, Jiang Z. ARE-PROTACs Enable Co-degradation of an Nrf2-MafG Heterodimer. J Med Chem 2023; 66:6070-6081. [PMID: 36892138 DOI: 10.1021/acs.jmedchem.2c01909] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Proteolysis-targeting chimera (PROTAC) technology has emerged as a potential strategy to degrade "undruggable" proteins in recent years. Nrf2, an aberrantly activated transcription factor in cancer, is generally considered undruggable as lacking active sites or allosteric pockets. Here, we constructed the chimeric molecule C2, which consists of an Nrf2-binding element and a CRBN ligand, as a first-in-class Nrf2 degrader. Surprisingly, C2 was found to selectively degrade an Nrf2-MafG heterodimer simultaneously via the ubiquitin-proteasome system. C2 impeded Nrf2-ARE transcriptional activity significantly and improved the sensitivity of NSCLC cells to ferroptosis and therapeutic drugs. The degradation character of ARE-PROTACs suggests that the PROTAC hijacking the transcription element of TFs could achieve co-degradation of the transcription complex.
Collapse
Affiliation(s)
- Jianai Ji
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Sinan Ma
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Zhu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jinglong Zhao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Tong
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
34
|
Current Status of Oligonucleotide-Based Protein Degraders. Pharmaceutics 2023; 15:pharmaceutics15030765. [PMID: 36986626 PMCID: PMC10055846 DOI: 10.3390/pharmaceutics15030765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Transcription factors (TFs) and RNA-binding proteins (RBPs) have long been considered undruggable, mainly because they lack ligand-binding sites and are equipped with flat and narrow protein surfaces. Protein-specific oligonucleotides have been harnessed to target these proteins with some satisfactory preclinical results. The emerging proteolysis-targeting chimera (PROTAC) technology is no exception, utilizing protein-specific oligonucleotides as warheads to target TFs and RBPs. In addition, proteolysis by proteases is another type of protein degradation. In this review article, we discuss the current status of oligonucleotide-based protein degraders that are dependent either on the ubiquitin–proteasome system or a protease, providing a reference for the future development of degraders.
Collapse
|
35
|
O'Brien Laramy MN, Luthra S, Brown MF, Bartlett DW. Delivering on the promise of protein degraders. Nat Rev Drug Discov 2023; 22:410-427. [PMID: 36810917 DOI: 10.1038/s41573-023-00652-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 02/23/2023]
Abstract
Over the past 3 years, the first bivalent protein degraders intentionally designed for targeted protein degradation (TPD) have advanced to clinical trials, with an initial focus on established targets. Most of these clinical candidates are designed for oral administration, and many discovery efforts appear to be similarly focused. As we look towards the future, we propose that an oral-centric discovery paradigm will overly constrain the chemical designs that are considered and limit the potential to drug novel targets. In this Perspective, we summarize the current state of the bivalent degrader modality and propose three categories of degrader designs, based on their likely route of administration and requirement for drug delivery technologies. We then describe a vision for how parenteral drug delivery, implemented early in research and supported by pharmacokinetic-pharmacodynamic modelling, can enable exploration of a broader drug design space, expand the scope of accessible targets and deliver on the promise of protein degraders as a therapeutic modality.
Collapse
Affiliation(s)
| | - Suman Luthra
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., Boston, MA, USA
| | - Matthew F Brown
- Discovery Sciences, Worldwide Research, Development, and Medical, Pfizer Inc., Groton, CT, USA
| | - Derek W Bartlett
- Pharmacokinetics, Dynamics, & Metabolism, Worldwide Research, Development, and Medical, Pfizer Inc., San Diego, CA, USA
| |
Collapse
|
36
|
Shiah JV, Johnson DE, Grandis JR. Transcription Factors and Cancer: Approaches to Targeting. Cancer J 2023; 29:38-46. [PMID: 36693157 PMCID: PMC9881838 DOI: 10.1097/ppo.0000000000000639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
ABSTRACT Cancer is defined by the presence of uncontrollable cell growth, whereby improper proliferative signaling has overcome regulation by cellular mechanisms. Transcription factors are uniquely situated at the helm of signaling, merging extracellular stimuli with intracellular responses. Therefore, this class of proteins plays a pivotal role in coordinating the correct gene expression levels for maintaining normal cellular functions. Dysregulation of transcription factor activity unsurprisingly drives tumorigenesis and oncogenic transformation. Although this imparts considerable therapeutic potential to targeting transcription factors, their lack of enzymatic activity renders intervention challenging and has contributed to a sense that transcription factors are "undruggable." Yet, enduring efforts to elucidate strategies for targeting transcription factors as well as a deeper understanding of their interactions with binding partners have led to advancements that are emerging to counter this narrative. Here, we highlight some of these approaches, focusing primarily on therapeutics that have advanced to the clinic.
Collapse
Affiliation(s)
- Jamie V Shiah
- From the Department Otolaryngology-Head and Neck Surgery, University of California at San Francisco, San Francisco, CA
| | | | | |
Collapse
|
37
|
Xiong Y, Zhong Y, Yim H, Yang X, Park KS, Xie L, Poulikakos PI, Han X, Xiong Y, Chen X, Liu J, Jin J. Bridged Proteolysis Targeting Chimera (PROTAC) Enables Degradation of Undruggable Targets. J Am Chem Soc 2022; 144:22622-22632. [PMID: 36448571 PMCID: PMC9772293 DOI: 10.1021/jacs.2c09255] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Proteolysis Targeting Chimeras (PROTACs) are attractive therapeutic modalities for degrading disease-causing proteins. While many PROTACs have been developed for numerous protein targets, current small-molecule PROTAC approaches cannot target undruggable proteins that do not have small-molecule binders. Here, we present a novel PROTAC approach, termed bridged PROTAC, which utilizes a small-molecule binder of the target protein's binding partner to recruit the protein complex into close proximity with an E3 ubiquitin ligase to target undruggable proteins. Applying this bridged PROTAC strategy, we discovered MS28, the first-in-class degrader of cyclin D1, which lacks a small-molecule binder. MS28 effectively degrades cyclin D1, with faster degradation kinetics and superior degradation efficiency than CDK4/6, through recruiting the CDK4/6-cyclin D1 complex to the von Hippel-Lindau E3 ligase. MS28 also suppressed the proliferation of cancer cells more effectively than CDK4/6 inhibitors and degraders. Altogether, the bridged PROTAC strategy could provide a generalizable platform for targeting undruggable proteins.
Collapse
Affiliation(s)
- Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yue Zhong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Hyerin Yim
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xiaobao Yang
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Poulikos I Poulikakos
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xiaoran Han
- Cullgen Inc., San Diego, California 92130, United States
| | - Yue Xiong
- Cullgen Inc., San Diego, California 92130, United States
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
38
|
Salama AKAA, Trkulja MV, Casanova E, Uras IZ. Targeted Protein Degradation: Clinical Advances in the Field of Oncology. Int J Mol Sci 2022; 23:15440. [PMID: 36499765 PMCID: PMC9741350 DOI: 10.3390/ijms232315440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The field of targeted protein degradation (TPD) is a rapidly developing therapeutic modality with the promise to tame disease-relevant proteins in ways that are difficult or impossible to tackle with other strategies. While we move into the third decade of TPD, multiple degrader drugs have entered the stage of the clinic and many more are expected to follow. In this review, we provide an update on the most recent advances in the field of targeted degradation with insights into possible clinical implications for cancer prevention and treatment.
Collapse
Affiliation(s)
| | | | | | - Iris Z. Uras
- Department of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
39
|
Diehl CJ, Ciulli A. Discovery of small molecule ligands for the von Hippel-Lindau (VHL) E3 ligase and their use as inhibitors and PROTAC degraders. Chem Soc Rev 2022; 51:8216-8257. [PMID: 35983982 PMCID: PMC9528729 DOI: 10.1039/d2cs00387b] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The von Hippel-Lindau (VHL) Cullin RING E3 ligase is an essential enzyme in the ubiquitin-proteasome system that recruits substrates such as the hypoxia inducible factor for ubiquitination and subsequent proteasomal degradation. The ubiquitin-proteasome pathway can be hijacked toward non-native neo-substrate proteins using proteolysis targeting chimeras (PROTACs), bifunctional molecules designed to simultaneously bind to an E3 ligase and a target protein to induce target ubiquitination and degradation. The availability of high-quality small-molecule ligands with good binding affinity for E3 ligases is fundamental for PROTAC development. Lack of good E3 ligase ligands as starting points to develop PROTAC degraders was initially a stumbling block to the development of the field. Herein, the journey towards the design of small-molecule ligands binding to VHL is presented. We cover the structure-based design of VHL ligands, their application as inhibitors in their own right, and their implementation into rationally designed, potent PROTAC degraders of various target proteins. We highlight the key findings and learnings that have provided strong foundations for the remarkable development of targeted protein degradation, and that offer a blueprint for designing new ligands for E3 ligases beyond VHL.
Collapse
Affiliation(s)
- Claudia J Diehl
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, Scotland, UK.
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
40
|
Ma B, Fan Y, Zhang D, Wei Y, Jian Y, Liu D, Wang Z, Gao Y, Ma J, Chen Y, Xu S, Li L. De Novo Design of an Androgen Receptor DNA Binding Domain-Targeted peptide PROTAC for Prostate Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201859. [PMID: 35971165 PMCID: PMC9534960 DOI: 10.1002/advs.202201859] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/10/2022] [Indexed: 05/27/2023]
Abstract
Androgen receptor splice variant-7 (AR-V7), one of the major driving factors, is the most attractive drug target in castration-resistant prostate cancer (CRPC). Currently, no available drugs efficiently target AR-V7 in clinical practice. The DNA binding domain (DBD) is indispensable for the transcriptional activity of AR full length and AR splice variants, including AR-V7. Based on the homodimerization structure of the AR DBD, a novel peptide-based proteolysis-targeting chimera (PROTAC) drug is designed to induce AR and AR-V7 degradation in a DBD and MDM2-dependent manner, without showing any activity on other hormone receptors. To overcome the short half-life and poor cell penetrability of peptide PROTAC drugs, an ultrasmall gold (Au)-peptide complex platform to deliver the AR DBD PROTAC in vivo is developed. The obtained Au-AR pep-PROTAC effectively degrades AR and AR-V7 in prostate cancer cell lines, particularly in CWR22Rv1 cells with DC50 values 48.8 and 79.2 nM, respectively. Au-AR pep-PROTAC results in suppression of AR levels and induces tumor regression in both enzalutamide sensitive and resistant prostate cancer animal models. Further optimization of the Au-AR pep-PROTAC can ultimately lead to a new therapy for AR-V7-positive CRPC.
Collapse
Affiliation(s)
- Bohan Ma
- Department of UrologyThe First Affiliated HospitalXi'an Jiaotong University#277 Yanta West RoadXi'anChina
| | - Yizeng Fan
- Department of UrologyThe First Affiliated HospitalXi'an Jiaotong University#277 Yanta West RoadXi'anChina
| | - Dize Zhang
- Department of UrologyThe First Affiliated HospitalXi'an Jiaotong University#277 Yanta West RoadXi'anChina
| | - Yi Wei
- Department of UrologyThe First Affiliated HospitalXi'an Jiaotong University#277 Yanta West RoadXi'anChina
| | - Yanlin Jian
- Department of UrologyThe First Affiliated HospitalXi'an Jiaotong University#277 Yanta West RoadXi'anChina
| | - Donghua Liu
- Department of UrologyThe First Affiliated HospitalXi'an Jiaotong University#277 Yanta West RoadXi'anChina
| | - Zixi Wang
- Department of UrologyThe First Affiliated HospitalXi'an Jiaotong University#277 Yanta West RoadXi'anChina
| | - Yang Gao
- Department of UrologyThe First Affiliated HospitalXi'an Jiaotong University#277 Yanta West RoadXi'anChina
| | - Jian Ma
- Department of UrologyThe First Affiliated HospitalXi'an Jiaotong University#277 Yanta West RoadXi'anChina
| | - Yule Chen
- Department of UrologyThe First Affiliated HospitalXi'an Jiaotong University#277 Yanta West RoadXi'anChina
| | - Shan Xu
- Department of UrologyThe First Affiliated HospitalXi'an Jiaotong University#277 Yanta West RoadXi'anChina
| | - Lei Li
- Department of UrologyThe First Affiliated HospitalXi'an Jiaotong University#277 Yanta West RoadXi'anChina
| |
Collapse
|
41
|
Wang W, He S, Dong G, Sheng C. Nucleic-Acid-Based Targeted Degradation in Drug Discovery. J Med Chem 2022; 65:10217-10232. [PMID: 35916496 DOI: 10.1021/acs.jmedchem.2c00875] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Targeted protein degradation (TPD), represented by proteolysis-targeting chimera (PROTAC), has emerged as a novel therapeutic modality in drug discovery. However, the application of conventional PROTACs is limited to protein targets containing cytosolic domains with ligandable sites. Recently, nucleic-acid-based modalities, such as modified oligonucleotide mimics and aptamers, opened new avenues to degrade protein targets and greatly expanded the scope of TPD. Beyond constructing protein-degrading chimeras, nucleic acid motifs can also serve as substrates for targeted degradation. Particularly, the new type of chimeric RNA degrader termed ribonuclease-targeting chimera (RIBOTAC) has shown promising features in drug discovery. Here, we provide an overview of the newly emerging TPD strategies based on nucleic acids as well as new strategies for targeted degradation of nucleic acid (RNA) targets. The design strategies, case studies, potential applications, and challenges are focused on.
Collapse
Affiliation(s)
- Wei Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Shipeng He
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
42
|
Liu F, Wang X, Duan J, Hou Z, Wu Z, Liu L, Lei H, Huang D, Ren Y, Wang Y, Li X, Zhuo J, Zhang Z, He B, Yan M, Yuan H, Zhang L, Yan J, Wen S, Wang Z, Liu Q. A Temporal PROTAC Cocktail-Mediated Sequential Degradation of AURKA Abrogates Acute Myeloid Leukemia Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104823. [PMID: 35652200 PMCID: PMC9353462 DOI: 10.1002/advs.202104823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/18/2022] [Indexed: 06/15/2023]
Abstract
AURKA is a potential kinase target in various malignancies. The kinase-independent oncogenic functions partially disclose the inadequate efficacy of the kinase inhibitor in a Phase III clinical trial. Simultaneously targeting the catalytic and noncatalytic functions of AURKA may be a feasible approach. Here, a set of AURKA proteolysis targeting chimeras (PROTACs) are developed. The CRBN-based dAurA383 preferentially degrades the highly abundant mitotic AURKA, while cIAP-based dAurA450 degrades the lowly abundant interphase AURKA in acute myeloid leukemia (AML) cells. The proteomic and transcriptomic analyses indicate that dAurA383 triggers the "mitotic cell cycle" and "stem cell" processes, while dAurA450 inhibits the "MYC/E2F targets" and "stem cell" processes. dAurA383 and dAurA450 are combined as a PROTAC cocktail. The cocktail effectively degrades AURKA, relieves the hook effect, and synergistically inhibits AML stem cells. Furthermore, the PROTAC cocktail induces AML regression in a xenograft mouse model and primary patient blasts. These findings establish the PROTAC cocktail as a promising spatial-temporal drug administration strategy to sequentially eliminate the multifaceted functions of oncoproteins, relieve the hook effect, and prevent cancer stem cell-mediated drug resistance.
Collapse
Affiliation(s)
- Fang Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Xuan Wang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Jianli Duan
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Zhijie Hou
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Zhouming Wu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Lingling Liu
- Department of Hematologythe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Hanqi Lei
- Department of UrologyKidney and Urology CenterPelvic Floor Disorders CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Dan Huang
- Department of Hematologythe Second Affiliated Hospital of Dalian Medical UniversityDalian116027China
| | - Yifei Ren
- Department of Hematologythe Second Affiliated Hospital of Dalian Medical UniversityDalian116027China
| | - Yue Wang
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Xinyan Li
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Junxiao Zhuo
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Zijian Zhang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Bin He
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Min Yan
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Huiming Yuan
- CAS Key Laboratory of Separation Sciences for Analytical ChemistryNational Chromatographic R&A CenterDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Sciences for Analytical ChemistryNational Chromatographic R&A CenterDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Jinsong Yan
- Department of Hematologythe Second Affiliated Hospital of Dalian Medical UniversityDalian116027China
| | - Shijun Wen
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Zifeng Wang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Quentin Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
- Department of Hematologythe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| |
Collapse
|
43
|
Li Y, Song J, Zhou P, Zhou J, Xie S. Targeting Undruggable Transcription Factors with PROTACs: Advances and Perspectives. J Med Chem 2022; 65:10183-10194. [PMID: 35881047 DOI: 10.1021/acs.jmedchem.2c00691] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dysregulation of transcription factors has been implicated in a variety of human diseases. However, these proteins have traditionally been regarded as undruggable and only a handful of them have been successfully targeted by conventional small molecules. Moreover, the development of intrinsic and acquired resistance has hampered the clinical use of these agents. Over the past years, proteolysis-targeting chimeras (PROTACs) have shown great promise because of their potential for overcoming drug resistance and their ability to target previously undruggable proteins. Indeed, several small molecule-based PROTACs have demonstrated superior efficacy in therapy-resistant metastatic cancers. Nevertheless, it remains challenging to identify ligands for the majority of transcription factors. Given that transcription factors recognize short DNA motifs in a sequence-specific manner, multiple novel approaches exploit DNA motifs as warheads in PROTAC design for the degradation of aberrant transcription factors. These PROTACs pave the way for targeting undruggable transcription factors with potential therapeutic benefits.
Collapse
Affiliation(s)
- Yan Li
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Jian Song
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Ping Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.,State Key Laboratory of Medicinal Chemical Biology, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Songbo Xie
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.,School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| |
Collapse
|
44
|
He Y, Xu W, Xiao YT, Huang H, Gu D, Ren S. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:198. [PMID: 35750683 PMCID: PMC9232569 DOI: 10.1038/s41392-022-01042-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) affects millions of men globally. Due to advances in understanding genomic landscapes and biological functions, the treatment of PCa continues to improve. Recently, various new classes of agents, which include next-generation androgen receptor (AR) signaling inhibitors (abiraterone, enzalutamide, apalutamide, and darolutamide), bone-targeting agents (radium-223 chloride, zoledronic acid), and poly(ADP-ribose) polymerase (PARP) inhibitors (olaparib, rucaparib, and talazoparib) have been developed to treat PCa. Agents targeting other signaling pathways, including cyclin-dependent kinase (CDK)4/6, Ak strain transforming (AKT), wingless-type protein (WNT), and epigenetic marks, have successively entered clinical trials. Furthermore, prostate-specific membrane antigen (PSMA) targeting agents such as 177Lu-PSMA-617 are promising theranostics that could improve both diagnostic accuracy and therapeutic efficacy. Advanced clinical studies with immune checkpoint inhibitors (ICIs) have shown limited benefits in PCa, whereas subgroups of PCa with mismatch repair (MMR) or CDK12 inactivation may benefit from ICIs treatment. In this review, we summarized the targeted agents of PCa in clinical trials and their underlying mechanisms, and further discussed their limitations and future directions.
Collapse
Affiliation(s)
- Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Weidong Xu
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China
| | - Yu-Tian Xiao
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.,Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Haojie Huang
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Di Gu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.
| |
Collapse
|
45
|
Luo H, Wu L, He Y, Qin C, Tang X. Major Advances in Emerging Degrader Technologies. Front Cell Dev Biol 2022; 10:921958. [PMID: 35813205 PMCID: PMC9257139 DOI: 10.3389/fcell.2022.921958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/03/2022] [Indexed: 12/11/2022] Open
Abstract
Recently, degrader technologies have attracted increasing interest in the academic field and the pharmaceuticals industry. As one of the degrader technologies, proteolysis-targeting chimeras (PROTACs) have emerged as an attractive pharmaceutical development approach due to their catalytic ability to degrade numerous undruggable disease-causing proteins. Despite the remarkable progress, many aspects of traditional PROTACs still remain elusive. Its expansion could lead to PROTACs with new paradigm. Currently, many reviews focused on the design and optimization strategies through summarizing classical PROTACs, application in diseases and prospect of PROTACs. In this review, we categorize various emerging PROTACs ranging from simply modified classical PROTACs to atypical PROTACs such as nucleic acid-based PROTACs, and we put more emphasis on molecular design of PROTACs with different strategies. Furthermore, we summarize alternatives of PROTACs as lysosome-targeting chimeras (LYTACs) and macroautophagy degradation targeting chimeras (MADTACs) based on different degradation mechanism despite of lysosomal pathway. Beyond these protein degraders, targeting RNA degradation with the potential for cancer and virus therapeutics has been discussed. In doing so, we provide our perspective on the potential development or concerns of each degrader technology. Overall, we hope this review will offer a better mechanistic understanding of emerging degraders and prove as useful guide for the development of the coming degrader technologies.
Collapse
Affiliation(s)
- Hang Luo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chong Qin
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
46
|
Abstract
Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules consisting of one ligand that binds to a protein of interest (POI) and another that can recruit an E3 ubiquitin ligase. The chemically-induced proximity between the POI and E3 ligase results in ubiquitination and subsequent degradation of the POI by the ubiquitin-proteasome system (UPS). The event-driven mechanism of action (MOA) of PROTACs offers several advantages compared to traditional occupancy-driven small molecule inhibitors, such as a catalytic nature, reduced dosing and dosing frequency, a more potent and longer-lasting effect, an added layer of selectivity to reduce potential toxicity, efficacy in the face of drug-resistance mechanisms, targeting nonenzymatic functions, and expanded target space. Here, we highlight important milestones and briefly discuss lessons learned about targeted protein degradation (TPD) in recent years and conjecture on the efforts still needed to expand the toolbox for PROTAC discovery to ultimately provide promising therapeutics.
Collapse
Affiliation(s)
- Ke Li
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA.
| | - Craig M Crews
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA.
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, USA
- Department of Pharmacology, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
47
|
Naito M. Targeted Protein Degradation and Drug Discovery. J Biochem 2022; 172:61-69. [PMID: 35468190 DOI: 10.1093/jb/mvac041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/19/2022] [Indexed: 11/12/2022] Open
Abstract
Targeted protein degradation attracts attention as a novel modality for drug discovery as well as for basic research. Various types of degrader molecules have been developed so far, which include PROTACs and SNIPERs, E3 modulators, hydrophobic tagging molecules, IAP antagonists, and deubiquitylase inhibitors. PROTACs and SNIPERs are chimeric degrader molecules consisting of a target ligand linked to another ligand that binds to an E3 ubiquitin ligase. In the cells, they recruit an E3 ligase to the target protein, thereby inducing ubiquitylation and proteasomal degradation of the target protein. Because of their modular structure, novel PROTACs and SNIPERs targeting proteins of your interest can be rationally developed by substituting target ligands. In this article, various compounds capable of inducing protein degradation were overviewed, including SNIPER compounds developed in our laboratory.
Collapse
Affiliation(s)
- Mikihiko Naito
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
48
|
Lorenzin F, Demichelis F. Past, Current, and Future Strategies to Target ERG Fusion-Positive Prostate Cancer. Cancers (Basel) 2022; 14:cancers14051118. [PMID: 35267426 PMCID: PMC8909394 DOI: 10.3390/cancers14051118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022] Open
Abstract
Simple Summary In addition to its role in development and in the vascular and hematopoietic systems, ERG plays a central role in prostate cancer. Approximately 40–50% of prostate cancer cases are characterized by ERG gene fusions, which lead to ERG overexpression. Importantly, inhibition of ERG activity in prostate cancer cells decreases their viability. Therefore, inhibiting ERG might represent an important step to improve treatment efficacy for patients with ERG-positive prostate tumors. Here, we summarize the attempts made over the past years to repress ERG activity, the current use of ERG fusion detection and the strategies that might be utilized in the future to treat ERG fusion-positive tumors. Abstract The ETS family member ERG is a transcription factor with physiological roles during development and in the vascular and hematopoietic systems. ERG oncogenic activity characterizes several malignancies, including Ewing’s sarcoma, leukemia and prostate cancer (PCa). In PCa, ERG rearrangements with androgen-regulated genes—mostly TMPRSS2—characterize a large subset of patients across disease progression and result in androgen receptor (AR)-mediated overexpression of ERG in the prostate cells. Importantly, PCa cells overexpressing ERG are dependent on ERG activity for survival, further highlighting its therapeutic potential. Here, we review the current understanding of the role of ERG and its partners in PCa. We discuss the strategies developed in recent years to inhibit ERG activity, the current therapeutic utility of ERG fusion detection in PCa patients, and the possible future approaches to target ERG fusion-positive tumors.
Collapse
Affiliation(s)
- Francesca Lorenzin
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy
- Correspondence: (F.L.); (F.D.)
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: (F.L.); (F.D.)
| |
Collapse
|
49
|
Halloy F, Biscans A, Bujold KE, Debacker A, Hill AC, Lacroix A, Luige O, Strömberg R, Sundstrom L, Vogel J, Ghidini A. Innovative developments and emerging technologies in RNA therapeutics. RNA Biol 2022; 19:313-332. [PMID: 35188077 PMCID: PMC8865321 DOI: 10.1080/15476286.2022.2027150] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNA-based therapeutics are emerging as a powerful platform for the treatment of multiple diseases. Currently, the two main categories of nucleic acid therapeutics, antisense oligonucleotides and small interfering RNAs (siRNAs), achieve their therapeutic effect through either gene silencing, splicing modulation or microRNA binding, giving rise to versatile options to target pathogenic gene expression patterns. Moreover, ongoing research seeks to expand the scope of RNA-based drugs to include more complex nucleic acid templates, such as messenger RNA, as exemplified by the first approved mRNA-based vaccine in 2020. The increasing number of approved sequences and ongoing clinical trials has attracted considerable interest in the chemical development of oligonucleotides and nucleic acids as drugs, especially since the FDA approval of the first siRNA drug in 2018. As a result, a variety of innovative approaches is emerging, highlighting the potential of RNA as one of the most prominent therapeutic tools in the drug design and development pipeline. This review seeks to provide a comprehensive summary of current efforts in academia and industry aimed at fully realizing the potential of RNA-based therapeutics. Towards this, we introduce established and emerging RNA-based technologies, with a focus on their potential as biosensors and therapeutics. We then describe their mechanisms of action and their application in different disease contexts, along with the strengths and limitations of each strategy. Since the nucleic acid toolbox is rapidly expanding, we also introduce RNA minimal architectures, RNA/protein cleavers and viral RNA as promising modalities for new therapeutics and discuss future directions for the field.
Collapse
Affiliation(s)
- François Halloy
- Department of Paediatrics, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Annabelle Biscans
- Oligonucleotide Chemistry, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| | - Katherine E. Bujold
- Department of Chemistry & Chemical Biology, McMaster University, (Ontario), Canada
| | | | - Alyssa C. Hill
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eth Zürich, Zürich, Switzerland
| | - Aurélie Lacroix
- Sixfold Bioscience, Translation & Innovation Hub, London, UK
| | - Olivia Luige
- Department of Biosciences and Nutrition, Karolinska Institutet, Sweden
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Sweden
| | - Linda Sundstrom
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (Hiri), Helmholtz Center for Infection Research (Hzi), Würzburg, Germany
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Alice Ghidini
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
50
|
Yan Y, Shao J, Ding D, Pan Y, Tran P, Yan W, Wang Z, Li HY, Huang H. 3-Aminophthalic acid, a new cereblon ligand for targeted protein degradation by O'PROTAC. Chem Commun (Camb) 2022; 58:2383-2386. [PMID: 35080528 PMCID: PMC10467047 DOI: 10.1039/d1cc06525d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we identified 3-aminophthalic acid as a new ligand of cereblon (CRBN) E3 ubiquitin ligase and developed a phthalic acid-based O'PROTAC for degradation of the ERG transcription factor. This phthalic acid-based O'PROTAC presented an efficacy in degrading ERG comparable to those displayed by pomalidomide-based ERG O'PROTACs. Moreover, phthalic acid-being more chemically stable and economical than classical immunomodulatory drugs (IMiDs)-represents, as a ligand, a new alternative for the development of PROTACs, especially O'PROTACs.
Collapse
Affiliation(s)
- Yuqian Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| | - Jingwei Shao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Donglin Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| | - Phuc Tran
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Zhengyu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|